Hidden extended dynamical symmetries in non-equilibrium systems

Malte Henkel

Laboratoire de Physique de Matériaux
Université Henri Poincaré Nancy I, France
collaborateurs: F. Baumann, M. Pleimling

$$
\text { arXiv:0709. } 3228
$$

Delta Meeting Heidelberg, $15^{\text {th }}$ of december 2007

Contents :

I. Ageing phenomena
physical ageing; scaling behaviour and exponents
II. Hidden dynamical symmetries

Local scaling with $z=2$; stochastic field-theory; computation of response and correlation functions
III. Local scale-invariance for $z \neq 2$

Mass terms ; integrability ; test through responses and correlators in 2D disordered Ising model
IV. Conclusions

I. Ageing phenomena

- why do materials 'look old' after some time?
- which (reversible) microscopic processes lead to such macroscopic effects?
- physical ageing known since historical (or prehistorical) times
- systematic studies first in glassy systems
a priori behaviour should depend on entire prehistory but evidence for reproducible and universal behaviour
- for better conceptual understanding : study ageing first in simpler systems (i.e. disordered ferromagnets)
- ageing : defining characteristics and symmetry properties :
(1) slow dynamics (i.e. non-exponential relaxation)
(2) breaking of time-translation invariance
(3) dynamical scaling
- new evidence for larger, local scaling symmetries

1. observe slow relaxation after quenching PVC from melt to low T
2. creep curves depend on waiting time t_{e} and creep time t
3. find master curve for all $\left(t, t_{e}\right) \longrightarrow$ dynamical scaling
\rightarrow three defining properties of physical ageing

master curves of distinct materials are identical
\longrightarrow Universality!
good for theorists ...

Struik 78
conceptual confirmation in phase-ordering : Allen-Cahn equation
easier to study : ageing in simple systems without disorder consider a simple magnet (ferromagnet, i.e. Ising model)
(1) prepare system initially at high temperature $T \gg T_{c}>0$
(2) quench to temperature $T<T_{c}$ (or $T=T_{c}$)
\rightarrow non-equilibrium state
(3) fix T and observe dynamics

competition :

at least 2 equivalent ground states local fields lead to rapid local ordering no global order, relaxation time ∞
formation of ordered domains, of linear size $L=L(t) \sim t^{1 / z}$ dynamical exponent z
universal Allen-Cahn equation $v=-(d-1) K$ for domain walls

Snapshots of spin configurations in several $2 D / 3 D$ Ising models quenched to $T<T_{c}$, for three different times $t=25,100,225$.
Left : pure Middle : disordered Right : 3D spin glass

Scaling behaviour \& exponents

single relevant time-dependent length scale $L(t) \sim t^{1 / z}$
Bray 94, Janssen et al. 92, Cugliandolo \& Kurchan 90s, Godrèche \& Luck 00,...
correlator $C(t, s ; \mathbf{r}):=\langle\phi(t, \mathbf{r}) \phi(s, \mathbf{0})\rangle=s^{-b} f_{C}\left(\frac{t}{s}, \frac{\mathbf{r}}{(t-s)^{1 / z}}\right)$
response $R(t, s ; \mathbf{r}):=\left.\frac{\delta\langle\phi(t, \mathbf{r})\rangle}{\delta h(s, \mathbf{0})}\right|_{h=0}=s^{-1-a} f_{R}\left(\frac{t}{s}, \frac{\mathbf{r}}{(t-s)^{1 / z}}\right)$
No fluctuation-dissipation theorem : $R(t, s ; \mathbf{r}) \neq T \partial C(t, s ; \mathbf{r}) / \partial s$ values of exponents : equilibrium correlator \rightarrow classes S and L

$$
C_{\mathrm{eq}}(\mathbf{r}) \sim\left\{\begin{array} { l }
{ \operatorname { e x p } (- | \mathbf { r } | / \xi) } \\
{ | \mathbf { r } | ^ { - (d - 2 + \eta) } }
\end{array} \Longrightarrow \left\{\begin{array} { l }
{ \text { class S } } \\
{ \operatorname { c l a s s } \mathrm { L } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
a=1 / z \\
a=(d-2+\eta) / z
\end{array}\right.\right.\right.
$$

if $T<T_{c}: z=2$ and $b=0$ for $y \rightarrow \infty: f_{C, R}(y, \mathbf{0}) \sim y^{-\lambda_{C, R} / z}$, if $T=T_{c}: z=z_{c}$ and $b=a$ $\lambda_{C, R}$ independent exponents Question : general arguments to find form of scaling functions?

Tests of dynamical scaling : $2 D$ lsing model, $T<T_{c}$

2D Ising, $\mathrm{T}=1.5$

2D Ising, $\mathrm{T}=1.5$

Values of λ_{C} for $T<T_{c}: 1.25(2)$ in $2 D$,
1.59(2) in $3 D$

Values of λ_{C} for $T=T_{c}: 1.59(2)$ in 2D,
2.78(4) in $3 D$

Yeung-Desai-Rao inequality for $T<T_{c}: \lambda_{C} \geq d / 2$
Question : how to find the scaling functions $f_{R}(y)$ and $f_{C}(y)$?

II. Hidden dynamical symmetries

A) Langevin equation (model A of hohenberg \& halperin 77)

$$
2 \mathcal{M} \frac{\partial \phi}{\partial t}=\Delta \phi-\frac{\delta \mathcal{V}[\phi]}{\delta \phi}+\eta
$$

order-parameter $\phi(t, \mathbf{r})$ non-conserved $\mathcal{M}:$ kinetic coéfficient \mathcal{V} : Landau-Ginsbourg potential η : gaussian noise, cantered and with variance

$$
\left\langle\eta(t, \mathbf{r}) \eta\left(t^{\prime}, \mathbf{r}^{\prime}\right)\right\rangle=2 T \delta\left(t-t^{\prime}\right) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

fully disordered initial conditions (centred gaussian noise)
B) master equation
i.e. kinetic Ising model with heat-bath dynamics random initial state
\rightarrow relaxation towards equilibrium stationary states

Local scaling with $z=2 \rightarrow$ LSI

Question : extended dynamical scaling for given $z \neq 1$? мн $92,94,02$ motivation :

1. conformal invariance in equilibrium critical phenomena, $z=1$
2. Schrödinger-invariance of simple diffusion, $z=2$

Lie 1881, Niederer 72, Hagen 71, Kastrup 68

$$
t \mapsto \frac{\alpha t}{\gamma t+\delta}, \quad \mathbf{r} \mapsto \frac{\mathcal{R} \mathbf{r}+\mathbf{v} t+\mathbf{a}}{\gamma t+\delta}, \alpha \delta=1
$$

Lie algebra $\mathfrak{a g e}_{1}:=\left\langle X_{1,0}, Y_{ \pm 1 / 2}, M_{0}\right\rangle$ generators :
$X_{n}=-t^{n+1} \partial_{t}-\frac{n+1}{2} t^{n} r \partial_{r}-\frac{n(n+1)}{4} \mathcal{M} t^{n-1} r^{2}-\left[\frac{x}{2}(n+1)+n \xi\right] t^{n}$
$Y_{m}=-t^{m+1 / 2} \partial_{r}-\left(m+\frac{1}{2}\right) \mathcal{M} t^{m-1 / 2} r$
$M_{n}=-t^{n} \mathcal{M}$
also contains 'phase changes' in the wave function!
(projective)

Stochastic field-theory

Langevin equations do not have non-trivial dynamical symmetries! compare results of deterministic symmetries to stochastic models? go to stochastic field-theory, action

$$
\mathcal{J}[\phi, \widetilde{\phi}]=\underbrace{\int \widetilde{\phi}\left(2 \mathcal{M} \partial_{t}-\Delta\right) \phi+\widetilde{\phi} \mathcal{V}^{\prime}[\phi]}_{\mathcal{J}_{0}[\phi, \tilde{\phi}]: \text { deterministic }} \underbrace{-T \int \widetilde{\phi}^{2}-\int \widetilde{\phi}_{t=0} C_{i n i t} \widetilde{\phi}_{t=0}}_{+\mathcal{J}_{b}[\widetilde{\phi}]: \text { noise }}
$$

$\widetilde{\phi}:$ response field ; $\quad C(t, s)=\langle\phi(t) \phi(s)\rangle, R(t, s)=\langle\phi(t) \widetilde{\phi}(s)\rangle$
averages : $\langle A\rangle_{0}:=\int \mathcal{D} \phi \mathcal{D} \phi \quad A[\phi, \overparen{\phi}] \exp \left(-\mathcal{J}_{0}[\phi, \overparen{\phi}]\right)$
masses :

$$
\mathcal{M}_{\phi}=-\mathcal{M}_{\widetilde{\phi}}
$$

Theorem : IF \mathcal{J}_{0} is Galilei- and spatially translation-invariant, then Bargman superselection rules

$$
\begin{equation*}
\left\langle\phi_{1} \cdots \phi_{n} \widetilde{\phi}_{1} \cdots \widetilde{\phi}_{m}\right\rangle_{0} \sim \delta_{n, m} \tag{1}
\end{equation*}
$$

computation of a response function

$$
\begin{aligned}
R(t, s) & =\langle\phi(t) \widetilde{\phi}(s)\rangle=\left\langle\phi(t) \widetilde{\phi}(s) e^{-\mathcal{J}_{b}[\widetilde{\phi}]}\right\rangle_{0} \\
& =\langle\phi(t) \widetilde{\phi}(s)\rangle_{0}=R_{0}(t, s)
\end{aligned}
$$

Bargman eq. $(1) \Longrightarrow$ response function does not depend on noise! left side : computed in stochastic models right side : local scale-symmetry of deterministic equation
application to ageing : $\mathfrak{a g e}_{\boldsymbol{d}}$-covariant two-point response function

$$
\begin{equation*}
R(t, s ; \mathbf{r})=r_{0} s^{-1-a}\left(\frac{t}{s}\right)^{1+a^{\prime}-\lambda_{R} / z}\left(\frac{t}{s}-1\right)^{-1-a^{\prime}} \exp \left(-\frac{\mathcal{M}}{2} \frac{\mathbf{r}^{2}}{t-s}\right) \tag{2}
\end{equation*}
$$

confirmed in many phase-ordering systems reviews:

MH, J. Phys. Cond Matt. 19, 065101 ('07)
MH \& Baumann, J. Stat. Mech. P07015 ('07)

Correlation functions for $z=2$

find $C(t, s)=\langle\phi(t) \phi(s)\rangle=\left\langle\phi(t) \phi(s) e^{-\mathcal{J}_{b}[\widetilde{\phi}]}\right\rangle_{0}$ from Bargman rule

$$
\begin{aligned}
C(t, s)= & \frac{a_{0}}{2} \int_{\mathbb{R}^{d}} \mathrm{~d} \mathbf{R} R_{0}^{(4)}(t, s, 0 ; \mathbf{R}) \\
& +\frac{T}{2 \mathcal{M}} \int_{0}^{\infty} \mathrm{d} u \int_{\mathbb{R}^{d}} \mathrm{~d} \mathbf{R} R_{0}^{(4)}(t, s, u ; \mathbf{R}) \text { thermal } \\
R_{0}^{(4)}(t, s, u ; \mathbf{r})= & \left\langle\phi(t, \mathbf{y}) \phi(s, \mathbf{y}) \widetilde{\phi}^{2}(u, \mathbf{r}+\mathbf{y})\right\rangle_{0}
\end{aligned}
$$

Four-point $R_{0}^{(4)}$ function must be found from local scaling
Theorem : LSI with $z=2 \Longrightarrow \lambda_{C}=\lambda_{R}$
agrees with a different argument of Bray 94 - and explicit models test $C(t, s)$ explicitly in Ising/Potts models mhet al. 04, Lorenz \& Janke 07

what appear to be essential features of local scaling?

- no local scaling in full Langevin equation
- noise terms only compatible with translation-invariance
- local scaling in deterministic part \rightarrow reduction formulæ
- hidden local scaling symmetry, at least when $z=2$
- Galilei-invariance of deterministic part
- together with scaling, implies full ageing-invariance

MH \& Unterberger 03

- physical origin of Galilei-invariance?
- testable predictions for responses and correlators

III. Local scale-invariance for $z \neq 2$

Extend known cases $z=1,2 \Longrightarrow$ axioms of LSI:
(1) Möbius transformations in time (generator X_{n})

$$
t \mapsto t^{\prime}=\frac{\alpha t}{\gamma t+\delta} ; \quad \alpha \delta=1
$$

require commutator: $\left[X_{n}, X_{n^{\prime}}\right]=\left(n-n^{\prime}\right) X_{n+n^{\prime}}$
(2) Dilatation generator: $X_{0}=-t \partial_{t}-\frac{1}{z} \mathbf{r} \cdot \partial_{\mathbf{r}}-\frac{x}{z}$ Implies simple power-law scaling $L(t) \sim t^{1 / z}$ (no glasses!).
(3) Spatial translation-invariance $\rightarrow 2^{e}$ family Y_{m} of generators.
(4) X_{n} contain phase terms from the scaling dimension $x=x_{\phi}$
(5) X_{n}, Y_{m} contain further 'mass terms' (Galilei!)
(0) finite number of independent conditions for n-point functions.

Extend to $z \neq 1,2$ by generators with mass terms, for $d=1$:

$$
\begin{align*}
Y_{1-1 / z}:= & -t \partial_{r}-\mu z r \nabla_{\mathbf{r}}^{2-z}-\gamma z(2-z) \partial_{r} \nabla_{\mathbf{r}}^{-z} & \text { Galilei } \tag{Galilei}\\
X_{1}:= & -t^{2} \partial_{t}-\frac{2}{z} t r \partial_{r}-\frac{2(x+\xi)}{z} t-\mu r^{2} \nabla_{\mathbf{r}}^{2-z} & \text { special } \\
& -2 \gamma(2-z) r \partial_{r} \nabla_{\mathbf{r}}^{-z}-\gamma(2-z)(1-z) \nabla_{\mathbf{r}}^{-z} &
\end{align*}
$$

- depend on two parameters γ, μ and on two dimensions x, ξ
- contains fractional derivative
(\widehat{f} : Fourier transform)

$$
\nabla_{\mathbf{r}}^{\alpha} f(\mathbf{r}):=\mathrm{i}^{\alpha} \int_{\mathbb{R}^{d}} \frac{\mathrm{~d} \mathbf{k}}{(2 \pi)^{d}}|\mathbf{k}|^{\alpha} e^{\mathrm{i} r \cdot \mathbf{k}} \widehat{f}(\mathbf{k})
$$

- some properties : $\nabla_{\mathbf{r}}^{\alpha} \nabla_{\mathbf{r}}^{\beta}=\nabla_{\mathbf{r}}^{\alpha+\beta},\left[\nabla_{\mathbf{r}}^{\alpha}, r_{i}\right]=\alpha \partial_{r_{i}} \nabla_{\mathbf{r}}^{\alpha-2}$

$$
\nabla_{\mathbf{r}}^{\alpha} \exp (\mathrm{i} \mathbf{q} \cdot \mathbf{r})=\mathrm{i}^{\alpha}|\mathbf{q}|^{\alpha} \exp (\mathrm{i} \mathbf{q} \cdot \mathbf{r})
$$

Fact 1 : simple algebraic structure :

$$
\begin{aligned}
{\left[X_{n}, X_{n^{\prime}}\right]=\left(n-n^{\prime}\right) X_{n+n^{\prime}} } & ,\left[X_{n}, Y_{m}\right]=\left(\frac{n}{z}-m\right) Y_{n+m} \\
& \rightarrow \text { Generate } Y_{m} \text { from } Y_{-1 / z}=-\partial_{r} .
\end{aligned}
$$

Fact 2 : LSI-invariant Schrödinger operator :

$$
\mathcal{S}:=-\mu \partial_{t}+z^{-2} \nabla_{\mathbf{r}}^{z}
$$

Let $x_{0}+\xi=1-2 / z+(2-z) \gamma / \mu$. Then $\left[\mathcal{S}, Y_{m}\right]=0$ and

$$
\left[\mathcal{S}, X_{0}\right]=-\mathcal{S}, \quad\left[\mathcal{S}, X_{1}\right]=-2 t \mathcal{S}+\frac{2 \mu}{z}\left(x-x_{0}\right)
$$

$\Longrightarrow S \phi=0$ is Isi-invariant equation, if $x_{\phi}=x_{0}$.
Physical assumption (hidden) : equations of motion remain of first order in ∂_{t}, even after renormalisation.

Fact 3 : non-trivial conservation laws :
iterated commutator with $G:=Y_{1-1 / z}$, ad $G .=[., G]$

$$
M_{\ell}:=\left(\operatorname{ad}_{G}\right)^{2 \ell+1} Y_{-1 / z}=a_{\ell} \mu^{2 \ell+1} \nabla_{\mathbf{r}}^{(2 \ell+1)(1-z)+1}
$$

For $z=2, a_{\ell}=0$ if $\ell \geq 1$. For a n-point function $F^{(n)}=\left\langle\phi_{1} \ldots \phi_{n}\right\rangle, M_{\ell} F^{(n)}=0$ gives in momentum space

$$
\begin{aligned}
\left(\sum_{i=1}^{n} \mu_{i}^{2 \ell-1}\left|\mathbf{k}_{i}\right|^{2 \ell-(2 \ell-1) z}\right) \widehat{F}^{(n)}\left(\left\{t_{i}, \mathbf{k}_{i}\right\}\right) & =0 \\
\left(\sum_{i=1}^{n} \mathbf{k}_{i}\right) \widehat{F}^{(n)}\left(\left\{t_{i}, \mathbf{k}_{i}\right\}\right) & =0
\end{aligned}
$$

\Longrightarrow momentum conservation \& conservation of $|\mathbf{k}|^{\alpha}$! analogous to relativistic factorisable scattering Zamolodchikov ${ }^{2}$ 79, 89 equil. analogy: $2 D$ Ising model at $T=T_{c}$ in magnetic field

Consequence : a lsi-covariant $2 n$-point function $F^{(2 n)}$ is only non-zero, if the 'masses' μ_{i} can be arranged in pairs ($\mu_{i}, \mu_{\sigma(i)}$) with $i=1, \ldots, n$ such that $\mu_{i}=-\mu_{\sigma(i)}$. generalised Galilei-invariance with $z \neq 2 \Longrightarrow$ integrability Corollary 1 : Bargman rule : $\left\langle\phi_{1} \ldots \phi_{n} \widetilde{\phi}_{1} \ldots \widetilde{\phi}_{m}\right\rangle_{0} \sim \delta_{n, m}$ Corollary 2 : treat (linear) stochastic equations with lsi-invariant deterministic part, reduction formulæ
Corollary 3 : response function noise-independent

$$
\begin{aligned}
R(t, s ; \mathbf{r}) & =R(t, s) \mathcal{F}^{\left(\mu_{1}, \gamma_{1}\right)}\left(|\mathbf{r}|(t-s)^{-1 / z}\right) \\
R(t, s) & =r_{0} s^{-a}\left(\frac{t}{s}\right)^{1+a^{\prime}-\lambda_{R} / z}\left(\frac{t}{s}-1\right)^{-1-a^{\prime}} \\
\mathcal{F}^{(\mu, \gamma)}(\mathbf{u}) & =\int_{\mathbb{R}^{d}} \frac{\mathrm{~d} \mathbf{k}}{(2 \pi)^{d}}|\mathbf{k}|^{\gamma} \exp \left(\mathbf{i u} \cdot \mathbf{k}-\mu|\mathbf{k}|^{z}\right)
\end{aligned}
$$

Corollary 4 :
Correlators obtained from factorised 4-point responses.

How to test the foundations of LSI

theory is built on :
a) simple scaling - domain sizes $L(t) \sim t^{1 / z}$
b) invariance under Möbius transformation $t \mapsto t /(\gamma t+\delta)$
c) Galilei-invariance generalised to $z \neq 2$
together with spatial translation-invariance
\Longrightarrow extended Bargman rules
\Longrightarrow factorisation of $2 n$-point functions

Möbius transformation	autoresponse $R(t, s)$
generalised Galilei-invariance	space-time response $R(t, s ; \mathbf{r})$
factorisation	two-time correlation function

Tests of LSI for $z \neq 2$:

- spherical model with conserved order-parameter, $T=T_{c}$, $z=4$
- Mullins-Herring model for surface growth, $z=4$

Röthlein, Baumann, Pleimling 06

- spherical model with long-ranged interactions, $T \leq T_{c}$, $0<z=\sigma<2$
- 2D Ising model with disorder, $T<T_{c}$ (non-frustrated) Hamiltonian $\mathcal{H}=-\sum_{(i, j)} J_{i j} \sigma_{i} \sigma_{j}$
uniform disorder $J_{i j} \in[1-\varepsilon / 2,1+\varepsilon / 2], 0 \leq \varepsilon \leq 2$
$\Longrightarrow T_{c}(\epsilon) \approx T_{c}(0)$
kinetics : non-conserved order-parameter, heat bath
pure systems : dynamics through moving domains walls universal description through Allen-Cahn eq. :
$\dot{L}=v=(1-d) K \sim L^{-1} \Longrightarrow L(t) \sim t^{1 / 2}$
disorder: pins domain walls, need thermal activation Henley \& Huse 85

$$
\frac{\mathrm{d} L(t)}{\mathrm{d} t}=D(T, L) L(t)^{-1} \quad, \quad D(T, L)=D_{0} \exp \left(-E_{B}(L) / T\right)
$$

a) power-law $E_{B}(L)=E_{0} L^{\psi}: \Longrightarrow L(t) \sim(\ln t)^{1 / \psi} \quad$ Henley \& Huse 85
b) $\log \operatorname{law} E_{B}(L)=\epsilon \ln (1+L): \Longrightarrow L(t) \sim t^{1 / z}$
with temperature- and disorder-dependent dynamical exponent

$$
z=2+\epsilon / T
$$

R. Paul, S. Puri \& H. Rieger 04

Confirmations of algebraic scaling of the domain sizes :
(1) direct simulations of $L(t)$ in bond- and site-disordered $2 D$

Ising models
gives empirical identification $\epsilon=\varepsilon$ for bond-disorder
Paul, Puri, Rieger 04/05
(2) analytical studies of SOS-model on disordered substrate

$$
\mathcal{H}=\sum_{(i, j)}\left(h_{i}-h_{j}\right)^{2}, \quad h_{i}=\underbrace{n_{i}}_{\in \mathbb{Z}}+\underbrace{d_{i}}_{\text {disorder }, \in[0,1]}
$$

continuum limit described by Cardy-Ostlund model

$$
\mathcal{H}=\int \mathrm{d} \mathbf{r}\left[(\nabla \phi(\mathbf{r}))^{2}-g \cos (2 \pi[\phi(\mathbf{r})-\xi(\mathbf{r})])\right]
$$

such that $z=2+\left(2 \pi^{2} / 9\right)\left(T_{g} / T\right)$ if $T \ll T_{g}$

Practical tests of LSI, I : autoresponse

(a) $\varepsilon=0.5, T=0.6$
(b) $\varepsilon=1, T=1$ (c) $\varepsilon=2, T=0.6$

Thermoremanent susceptibility
$\chi_{\mathrm{TRM}}(t, s)=\int_{0}^{s} \mathrm{~d} u R(t, u)=s^{-a} f_{M}(t / s)+\mathrm{O}\left(s^{-\lambda_{R} / z}\right)$
Full curve : LSI-prediction, with $a=a^{\prime}=1 / z$.
Confirm $z=2+\varepsilon / T$, in agreement with Paul, Puri \& Rieger 04/05.

Practical tests of LSI, II : space-time response

(a) $\varepsilon=2, T=1$ (b) $\varepsilon=T=1$ (c) $\varepsilon=T=0.5$ (d) $\varepsilon=0.5, T=1$
$\chi_{\operatorname{TRM}}(t, s ; \boldsymbol{r})=\int_{0}^{s} \mathrm{~d} u R(t, u ; \mathbf{r})=s^{-a} r_{0} f_{M}\left(t / s, \mathbf{r s}^{-1 / z}\right)+\mathrm{O}\left(t^{-\lambda_{R} / z}\right)$
Scaling function f_{M} only depends on ratio $\varepsilon / T \Longrightarrow$ universality Full curve: LSI-prediction, with $y=t / s$ fixed and $a=a^{\prime}=1 / z$.
first test of 'Galilei-invariance' for $z \neq 2$ in a non-linear model Baumann, MH \& Pleimling, arXiv :0709.3228

Practical tests of LSI, III : autocorrelation

(a) $\varepsilon=0.5, T=1,(\mathrm{~b}, \mathrm{c}) \varepsilon=2, T=1$ (d) $t=[200,300,500,1000,2000]$

No simple scaling with $y=t / s$ for $z \gtrsim 4$!
P, S \& R 06, H \& P 06
\indication for 'superageing'?
Paul, Schebr, Rieger 07

1. subtract finite-time correction, $C(t, s)=f_{C}(t / s)-s^{-b^{\prime}} g_{C}(t / s)$
2. then scaling of $C(t, s)$ according to simple ageing with $y=t / s$ * Scaling function f_{C} only depends on ratio $\varepsilon / T \Longrightarrow$ universality

* ageing sets in at time scale $\tau=t-s \sim s^{\zeta}$

Zippold, Kühn, Horner 00
use $C(s+\tau, s ; \boldsymbol{r}) \sim \exp \left(-\nu \mathbf{r}^{2} s^{-2 / z}\right)$

(a) $\varepsilon=2, T=1$ (b) $\varepsilon=T=1$ (c) $\varepsilon=T=0.5$ (d) $\varepsilon=0.5, T=1$

Dashed line : LSI with fully disordered initial correlator
Full curve : LSI prediction

$$
f_{C}(y)=c_{2} y^{\rho} \int_{\mathbb{R}^{d}} \frac{\mathrm{~d} \mathbf{k}}{(2 \pi)^{d}}|\mathbf{k}|^{2 \beta} \exp \left(-\alpha|\mathbf{k}|^{z}(y-1)-\frac{\mathbf{k}^{2}}{4 \nu}\right)
$$

with $\beta=\lambda_{C}-\lambda_{R}, \rho=\left(2 \beta+d-\lambda_{C}\right) / z$. Use 'initial' correlator $C(s+\tau, s ; \mathbf{r}) \sim \exp \left(-\nu \mathbf{r}^{2} s^{-2 / z}\right):$ asymptotics enough for $z>2$

Retour to the non-disordered Ising model, at $T<T_{c}: z=2$ requires a more precise form of the 'initial' correlator :

Ohta, Jasnow, Kawasaki '82

$$
C(t, t ; \mathbf{r})=\frac{2}{\pi} \arcsin \left(\exp \left[-\frac{\mathbf{r}^{2}}{L(t)^{2}}\right]\right)
$$

hence autocorrelator in the scaling limit

$$
\begin{aligned}
C(y s, s) & =C_{0} y^{\rho}(y-1)^{-\rho-\lambda_{C} / z} \int_{0}^{\infty} \mathrm{d} x e^{-x} f_{\nu}\left(\sqrt{\frac{x}{y-1}}\right) \\
f_{\nu}(\sqrt{u}) & =\int_{0}^{\infty} \mathrm{d} v \arcsin \left(e^{-\nu v}\right) J_{0}(\sqrt{u v})
\end{aligned}
$$

of practical importance :
'good' choice of 'initial correlations
$C_{\text {ini }}(\mathbf{r})=c_{0} \delta(\mathbf{r})$ not sufficient

IV. Conclusions

(1) look for extensions of dynamical scaling in ageing systems
(2) here : hypothesis of generalised Galilei-invariance
(3) leads to Bargman rule if $z=2$ and further to 'integrability' if $z \neq 1,2$.
(4) hidden dynamical symmetry of deterministic part of (linear) Langevin equations
(5) Tests : derive two-time response and correlation functions
(6) LSI exactly proven for linear Langevin equations very good numerical evidence for non-linear systems
Some questions (the list could/should be extended) :

- how to physically justify Galilei-invariance?
- how to extend to non-linear equations?
- choice of the type of fractional derivative?
- what is the algebraic (non-Lie!) structure of LSI?
- treatment of master equations with LSI ?

