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Abstract

Several analytic approaches predict for SU(N) Yang-Mills

theories (in 2, 3 and 4 space-time dimensions) a suppressed

gluon propagator at small momenta in Landau gauge, with a null

value at p = 0. Numerical studies indeed support an IR finite

gluon propagator. However, the agreement between analytic and

numerical studies is only at the qualitative level in 3d and 4d,

since the gluon propagator seems to display a (finite) nonzero

value at p = 0. This might be due to finite-size effects. Here we

present data for lattices sizes of up to 3203 at β = 3.0 and up to

1284 at β = 2.2, corresponding to V ≈ (85fm)3 and

V ≈ (27fm)4. We see no sign of a null gluon propagator in the

IR limit and discuss possible explanations for this.
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IR gluon propagator and confinement

Gribov-Zwanziger confinement scenario in Landau gauge

predicts a gluon propagator D(p2) suppressed in the IR limit.

In particular, D(0) = 0 implying that reflection positivity is

maximally violated.

This result may be viewed as an indication of gluon

confinement.

Above results are confirmed by functional methods.

On large lattice volumes the gluon propagator decreases in

the limit p → 0, but D(0) > 0.

Can one find D(0) = 0 using lattice numerical simulations? Yes

in 2d (A. Maas) using lattices up to (42.7fm)2.
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SU(2) vs. SU(3)

A. Cucchieri, T.M., O. Oliveira and P. Silva (2007)
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Infinite-volume limit in 3d (I)

Gluon propagator as a func-
tion of the lattice momen-
tum p for β = 3.4 and
323 (+), β = 4.2 and 643

(×), β = 5.0 and 643 (∗)
(A. Cucchieri, Phys. Rev.
D60 034508, 1999). About
100 days using a 0.5 Gflops
workstation.
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Infinite-volume limit in 3d (II)

Gluon propagator as a func-
tion of the lattice momentum
p for lattice volumes V =

203, 403, 603 and 1403 at
β = 3.0 (A. Cucchieri, T. M.
and A. Taurines, Phys. Rev.
D67 091502, 2003). About
100 days using a 13 Gflops
PC cluster.
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Old results in 3d

The gluon propagator using lattice volumes up to 1403 and β

values 4.2, 5.0, 6.0 −→ physical lattice sides almost as large as

25 fm.
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Plot of the rescaled gluon propagator at zero
momentum as a function of the inverse lat-
tice side for β = 4.2 (×), 5.0 (2), 6.0 (3).
We also show the fit of the data using the
Ansatz d + b/Lc both with d = 0 and d 6= 0.

Can we go to even larger lattice volumes?

Heidelberg December 2007



Infinite-volume limit in 3d (III)
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Gluon propagator as a func-
tion of the lattice momentum
p including lattices of up to
3203 in the scaling region.
(A. Cucchieri, T. M., 2007)
About 5 days on a 4.5Tflops
IBM supercomputer.
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New data: infinite-volume limit in 3d

Gluon propagator at

zero momentum as

a function of the

inverse lattice side

1/L (in fm−1) and

extrapolation to infi-

nite volume. New

data, up to 3203 for

β = 3.0.
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Infinite-volume limit in 4d (I)

Gluon propagator as

a function of the lat-

tice momentum p for

lattice volume V =

484 at β = 2.2.
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Infinite-volume limit in 4d (II)

Gluon propagator as

a function of the lat-

tice momentum p for

lattice volume V =

804 at β = 2.2.
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Infinite-volume limit in 4d (III)

Gluon propagator as

a function of the lat-

tice momentum p for

lattice volume V =

1284 at β = 2.2.
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Infinite-volume limit in 4d (IV)

Gluon propagator as

a function of the lat-

tice momentum p for

lattice volume up to

V = 1284 at β = 2.2.
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Infinite-volume limit in 4d

Average absolute value of
the gluon field at zero mo-
mentum |Ab

µ(0)| (for β =

2.2) as a function of the in-
verse lattice side 1/L (in
fm−1) and extrapolation to
infinite volume. Recall that
D(0) ∝ V

P

µ,b |Ab
µ(0)|2.

We also show the fit of the
data using the Ansatz b/Lc

(with c = 1.99 ± 0.02).
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Violation of reflection positivity in 3d

The transverse gluon propagator decreases in
the IR limit for momenta smaller than pdec,
which corresponds to the mass scale λ in a
Gribov-like propagator p2/(p4 + λ4). We can
estimate pdec = 350+100

−50
MeV.

Clear violation of reflection positivity: this is one
of the manifestations of gluon confinement. In
the scaling region, the data are well described
by a sum of Gribov-like formulas, with a light-
mass scale M1 ≈ 0.74(1)

√
σ = 325(6) MeV

and a second mass scale M2 ≈ 1.69(1)
√

σ =

745(5) MeV .
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Violation of reflection positivity in 4d

Clear violation of re-

flection positivity for

lattice volume V =

1284 at β = 2.2.
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Small β in 4d

The gluon propa-

gator decreases for

small momenta in

the strong-coupling

regime. Here we

consider V = 344

and β = 1.4.
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Other gauges in 4d
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in the so-called λ-gauge

for small values of λ. Here,

diamonds correspond to a

404 ≈ (8.4 fm)4 lattice at

λ = 1/100.
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Questions

Just considering very large lattice volumes is not
enough?

Gribov-copy effects?

What about the gluon propagator in strong coupling?

Partially-wrong scenarios?

What about Coulomb gauge and the interpolating (λ)
gauge?
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Lower bound for D(0)

We can obtain a lower bound for the gluon propagator at zero momentum D(0) by
considering the quantity

M(0) =
1

d(N2
c − 1)

X

b,µ

〈|Ab
µ(0)|〉 .

Consider the Cauchy-Bunyakovski-Schwarz inequality |~x · ~y|2 ≤ ‖~x‖2‖~y‖2, a vector ~y

with all components equal to 1 and a vector ~x with components xi, we find

 

1

m

m
X

i=1

xi

!2

≤ 1

m

m
X

i=1

x2
i ,

where m is the number of components of the vectors ~x and ~y.
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Lower bound for D(0) (II)

We can now apply this inequality first to the vector with m = d(N2
c − 1) components

〈|Ab
µ(0)|〉, where

Ab
µ(0) =

1

V

X

x

Ab
µ(x)

is the gluon field at zero momentum. This yields

M(0)2 ≤ 1

d(N2
c − 1)

X

b,µ

〈|Ab
µ(0)|〉2 .

Then, we can apply the same inequality to the Monte Carlo estimate of the average value

〈|Ab
µ(0)|〉 =

1

n

X

c

|Ab
µ,c(0)| ,

where n is the number of configurations. In this case we obtain

〈|Ab
µ(0)|〉2 ≤ 〈|Ab

µ(0)|2〉 .
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Lower bound for D(0) (III)

Thus, by recalling that

D(0) =
V

d(N2
c − 1)

∑

b,µ

〈|Ab
µ(0)|2〉 ,

we find
[

V 1/2M(0)
]2

≤ D(0) .

From our fits we obtain that M(0) goes to zero exactly as 1/V 1/2!

This gives D(0) ≥ 0.5(1) (GeV−2) in 3d and D(0) ≥ 2.5(3) (GeV−2) in
4d.
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Lower bound for D(0) (IV)

Fit of M(0) using the Ansatz
B/Lc, with B = 1.0(1) (GeV−2),
c = 1.48(3) and χ/d.o.f. = 1.00 in
3d.

Fit of M(0) using the Ansatz
B/Lc, with B = 1.7(1) (GeV−2),
c = 1.99(2) and χ/d.o.f. = 0.91 in
4d.
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Upper bound for D(0)

We can now consider the inequality

〈
X

µ,b

|Ab
µ(0)|2 〉 ≤ 〈



X

µ,b

|Ab
µ(0)|

ff2

〉 .

This implies

D(0) ≤ V d(N2
c − 1) 〈M(0)2〉 .

Thus

V 〈M(0)〉
2
≤ D(0) ≤ V d(N2

c − 1) 〈M(0)
2
〉 .

In summary, if M(0) goes to zero as V −α we find that

D(0) → 0, 0 < D(0) < +∞ or D(0) → +∞

respectively if α is larger than, equal to or smaller than 1/2.
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Upper and lower bounds forD(0)

Two-dimensional case: Bl/Lc (for
a〈M(0)〉) and the Ansatz Bu/Le (for
a2〈M(0)2 〉), with Bl = 1.48(6),
c = 1.367(8) and χ/d.o.f. = 1.00

and Bu = 2.3(2), e = 2.72(1) and
χ/d.o.f. = 1.02.

Upper and lower bounds extrapolate to zero, implying D(0) = 0.
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Upper and lower bounds forD(0) (II)

Similarly for 3d: Bu = 1.0(3), e =

2.95(5) and χ/d.o.f. = 0.95.
Similarly for 4d: Bu = 3.1(5), e =

3.99(4) and χ/d.o.f. = 0.96.
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Upper and lower bounds plusD(0)/V

2d case
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Upper and lower bounds plusD(0)/V (II)

3d case 4d case
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Conclusion

Gluon propagator in Landau gauge is IR finite in 3d
and 4d, as a consequence of “self-averaging” of M(0).

May think of D(0) as a response function
(susceptibility) of the observable M(0)

(“magnetization”). In this case it is natural to expect
D(0) ∼ const in the infinite-volume limit.

2d case is different, M(0) is “over self-averaging”, the
susceptibility is zero.
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