Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

Heidelberg, Δ_{2007} , December 14, 2007

(In collaboration with J. Berges and D. Sexty)

 </

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Outline of the talk

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Outline of the talk

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

The thermalization puzzle

Applicability of hydrodynamic models at RHIC suggests thermalization within $\tau_{\rm eq} \lesssim 0.6\,{\rm fm/c}.$

Perturbatively, one finds $\tau_{\rm eq}\gtrsim 2.6\,{\rm fm/c}$, however.

(Heinz, nucl-th/0407067; Mrówczyński, NPA 774)

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

The thermalization puzzle

Applicability of hydrodynamic models at RHIC suggests thermalization within $\tau_{\rm eq} \lesssim 0.6 \, {\rm fm/c}.$

Perturbatively, one finds $\tau_{\rm eq}\gtrsim 2.6\,{\rm fm/c}$, however.

(Heinz, nucl-th/0407067; Mrówczyński, NPA 774)

Possible ways out:

- No complete thermalization needed for hydrodynamics, isotropization & prethermalization should be sufficient. (Arnold et al., PRL 94; Berges et al., PRL 93)
- ▶ Local thermal equilibrium found in Boltzmann approaches for $t \leq 1$ fm/c (Xu, Greiner, PRC 70) but there are conceptual problems.
- ► Mechanisms other than perturbative scattering are relevant: ~> Plasma instabilities (Arnold et al., JHEP 0308)

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Instabilities & QGP- physics

An instability occurs if there is a dispersion relation $\Omega = \omega + i\gamma$ giving rise to an exponentially growing solution.

It has been known for a long time that instabilities exist in el.-magn. plasmas if the momentum distribution of the charge carriers is anisotropic (Weibel, PRL 2, 1959).

But what about the quark-gluon plasma?

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Instabilities & QGP- physics

An instability occurs if there is a dispersion relation $\Omega = \omega + i\gamma$ giving rise to an exponentially growing solution.

It has been known for a long time that instabilities exist in el.-magn. plasmas if the momentum distribution of the charge carriers is anisotropic (Weibel, PRL 2, 1959).

But what about the quark-gluon plasma?

- Indeed, instabilities have been predicted to exist in the QGP as well. (Mrówczyńsky, Phys. Lett. B214; Romatschke & Strickland, PRD 68; Arnold et al., JHEP 0308)
- Intense study of plasma instabilities in the framework of Vlasov- equations and HTL- approximations in the literature (e. g. Arnold et al., PRD 72; Dumitru et al., PRD 75; ...)
- So far, it seems as if instabilities are far too slow to explain the experimentally observed phenomena.

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Outline of the talk

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > のへの

Cartoon of an instability

(Figure taken from S. Mrowczynski, hep-ph0511052)

- Consider particles with momenta $\vec{p} \perp \vec{q}$.
- Charges get 'trapped'
- 'Filamentation'
- Resulting current amplifies the existing B- field.
- \blacktriangleright \Rightarrow Magnetic Instability

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Cartoon of an instability

(Figure taken from S. Mrowczynski, hep-ph0511052)

- Consider particles with momenta $\vec{p} \perp \vec{q}$.
- Charges get 'trapped'
- 'Filamentation'
- Resulting current amplifies the existing B- field.
- $\blacktriangleright \Rightarrow$ Magnetic Instability

In contrast, particles with momenta $\vec{p} \cdot \vec{q} \neq 0$ have a stabilising effect.

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Instabilities from HTL- calculations

Compute self-energy in HTL¹- approximation:

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

¹"hard thermal loop"

Instabilities from HTL- calculations

Compute self-energy in HTL¹- approximation:

With momentum space particle distribution $f(\vec{k})$ and $\vec{v} := \vec{k}/|\vec{k}|$:

$$\Pi_{ij}(p) \simeq -g^2 N(d-2) \int \frac{d^3k}{(2\pi)^3} \left\{ \frac{f(\vec{k})}{|\vec{k}|} (v_i v_j + g_{ij}) \right. \\ \left. + \frac{\partial f}{\partial k'} (\vec{k}) \frac{p_l v_i v_j}{p_0 + \vec{v} \cdot \vec{p}} \right\}$$

¹"hard thermal loop"

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Instabilities from HTL- calculations

Compute self-energy in HTL¹- approximation:

Then look for zeros $\Omega(\vec{p}) = \omega + i\gamma$ in the inverse gluon propagator $G_{\mu\nu}^{-1}(p) = G_{0,\mu\nu}^{-1}(p) - \Pi_{\mu\nu}(p)$ and find growth rates:

¹"hard thermal loop"

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - の Q ()

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Outline of the talk

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

Objectives

Long-term aim: Understand QCD- thermalization from first principles within appropriate approximations.

More concrete:

- Find out how requirements for hydrodynamics are fulfilled
- Understand the early stages of the thermalization process (isotropization, prethermalization)
- Verify / falsify the scenario of instability driven isotropization

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Approach

- Study the classical statistical limit of pure SU(2)- gauge theory
- Static geometry, i. e. no expansion
- Lattice discretization
- Anisotropic initial conditions

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

・ロット (四)・ (川)・ (日)・ (日)・

Approach

- Study the classical statistical limit of pure SU(2)- gauge theory
- Static geometry, i. e. no expansion
- Lattice discretization
- Anisotropic initial conditions

Advantages:

- Classical statistical approximation reliable for high occupation numbers
- Controlled approximation of the underlying field theory
- Conceptually clear limit, no modelling

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Implementation

Use common lattice discretization scheme:

Link variables: Plaquette variables:

$$U_{x,\mu} := e^{igaA_{\mu}(x)} U_{x,\mu\nu} := U_{x,\mu} U_{(x+\hat{\mu}),\nu} U_{(x+\hat{\nu}),\mu}^{-1} U_{x,\nu}^{-1}$$

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

・ロト・(中下・(中下・(中下・))

Implementation

Use common lattice discretization scheme:

 $\begin{array}{lll} \text{Link variables:} & U_{x,\mu} := e^{igaA_{\mu}(x)} \\ \text{Plaquette variables:} & U_{x,\mu\nu} := U_{x,\mu}U_{(x+\hat{\mu}),\nu}U_{(x+\hat{\nu}),\mu}^{-1}U_{x,\nu}^{-1} \end{array}$

Dynamics from Wilson- lattice action in Minkowskispacetime (Ambjorn et al. NPB 353) :

$$\begin{split} \mathcal{S}[U] &= -\beta_0 \sum_{x} \sum_{i} \left\{ \frac{1}{2\mathrm{tr}\mathbbm{1}} \left(\mathrm{tr} \; U_{x,0i} + \mathrm{tr} \; U_{x,0i}^{\dagger} \right) - 1 \right\} \\ &+ \beta_s \sum_{x} \sum_{\substack{i,j \\ i < j}} \left\{ \frac{1}{2\mathrm{tr}\mathbbm{1}} \left(\mathrm{tr} \; U_{x,ij} + \mathrm{tr} \; U_{x,ij}^{\dagger} \right) - 1 \right\} \\ &\beta_0 := \frac{2\gamma \mathrm{tr}\mathbbm{1}}{g_0^2} \;, \; \beta_s := \frac{2\mathrm{tr}\mathbbm{1}}{\gamma g_s^2} \;, \; \gamma := \frac{a_s}{a_t} \end{split}$$

Variation w. r. t. spatial links \Rightarrow Equations of motion Variation w. r. t. temporal links \Rightarrow Gauss constraint We use temporal axial gauge, i. e. $A_0 \equiv 0$. Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Initial conditions

Compute e. g. correlators as

$$\langle A(t,\vec{x})A(t',\vec{y})\rangle = \int \mathcal{D}A(t=0)\mathcal{D}\dot{A}(t=0)P[A(0),\dot{A}(0)]A(t,\vec{x})A(t',\vec{y})$$

with $P[A(0), \dot{A}(0)]$ such that

$$\langle A_j^a(t=0,\vec{k})A_j^a(t=0,-\vec{k})\rangle \sim C \exp\left\{-\frac{k_x^2+k_y^2}{2\Delta_x^2}-\frac{k_z^2}{2\Delta_z^2}
ight\},$$

 $\Delta_x \gg \Delta_z \text{ (anisotropy)}$

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Initial conditions

Compute e. g. correlators as

$$\langle A(t,\vec{x})A(t',\vec{y})\rangle = \int \mathcal{D}A(t=0)\mathcal{D}\dot{A}(t=0)P[A(0),\dot{A}(0)]A(t,\vec{x})A(t',\vec{y})$$

with $P[A(0), \dot{A}(0)]$ such that

$$\langle A_j^a(t=0,\vec{k})A_j^a(t=0,-\vec{k}) \rangle \sim C \exp\left\{-\frac{k_x^2+k_y^2}{2\Delta_x^2}-\frac{k_z^2}{2\Delta_z^2}
ight\},$$

 $\Delta_x \gg \Delta_z \text{ (anisotropy)}$

N.B.:

• Set $\vec{E}(t=0) \equiv 0 \ (\rightarrow \text{Gauss constraint fulfilled})$

- Distribution $\delta(k_z)$ like on the lattice
- Amplitude C determined from the energy density

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Fixing the units

Need to relate the lattice spacing a_s to physical units. Do this using the energy density:

$$\epsilon = \hat{\epsilon} \cdot a_s^{-4} \Rightarrow a_s = \sqrt[4]{\frac{\hat{\epsilon}}{\epsilon}}$$

- Assumption: $g_0 = g_s = g = 1$.
- For $g \neq 1$, $a_s \propto 1/\sqrt{g}$, i. e. 'mild' dependence.
- Take ϵ from the literature (Gyulassy, McLerran, NPA 750) .

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > のへの

Outline of the talk

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

Phenomenology of instabilities

Bulk

$$T_{33}(t,\vec{x}) = \frac{1}{2} \operatorname{tr} \left[B_1(t,\vec{x})^2 + B_2(t,\vec{x})^2 - B_3(t,\vec{x})^2 + \text{ same for } \vec{E} \right]$$

Then plot $\left| \frac{T_{33}(t,p_z\hat{z})}{T_{33}(t=0,p_z\hat{z})} \right|$.
anisotropy: $\xi(t) := \log_{10} \left\{ \frac{\sum_{\vec{p}} (p_x^2 + p_y^2) \left(\sum_{j=1}^3 \sum_{a=1}^3 |\tilde{A}_j^a(t,\vec{p})|^2 \right)}{\sum_{\vec{q}} q_z^2 \left(\sum_{k=1}^3 \sum_{b=1}^3 |\tilde{A}_k^b(t,\vec{q})|^2 \right)} \right\}$

・ロト・西ト・山田・ 山田・ うへの

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Phenomenology of instabilities

Find *primary & secondary* instabilities, qualitatively similar to parametric resonance in scalar field theory. Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

- Times are very large $(\epsilon^{-1/4} \sim 0.4 \, {\rm fm/c})$
- High degree of anisotropy till $\Delta t \simeq 120\epsilon^{-1/4}$
- Physical zero point of time somewhat arbitrary
- ~> consider growth rates
- Will see that secondary instabilities are driven by fluctuations

Phenomenology of instabilities (II)

A slightly different perspective:

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

Narrow band of low-momentum modes unstable initially

 Find sth. similar to a "cascade" (Arnold, Moore, PRD 73) or an "avalanche" (Dumitru, Nara, Strickland, PRD 75) to the UV at intermediate times

Isotropization?

Bulk pressure does not isotropize!

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ▲ ○ ◆ ○ ◆

Isotropization?

Bulk pressure does not isotropize!

$$\mathsf{Compute}\ \Big|\frac{\mathcal{T}_{||}(t,\vec{p}_{||})}{\mathcal{T}_{\perp}(t,\vec{p}_{\perp})}\Big|_{|\vec{p}_{||}\,|=|\,\vec{p}_{\perp}\,|}$$

Fields become isotropic in the IR- regime ($p \lesssim \epsilon^{1/4}$);

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Isotropization?

Bulk pressure does not isotropize!

$$\mathsf{Compute} \ \Big| \frac{\mathcal{T}_{||}(t,\vec{p}_{||})}{\mathcal{T}_{\perp}(t,\vec{p}_{\perp})} \Big|_{|\vec{p}_{||}|=|\vec{p}_{\perp}}$$

Fields become isotropic in the IR- regime ($p \lesssim \epsilon^{1/4}$);

 \rightsquigarrow "bottom-up isotropization"

< ロ > < 部 > < 注 > < 注 > の < 0</p>

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Growth rates & time scales

Growth rates for $|A(t, \vec{p})|^2$ (~ particle number):

ϵ	$1/\gamma_{\sf max}^{({\sf pr})}$	$1/\gamma_{\sf max}^{\sf (sec)}$
30 GeV/fm ³	1.0 fm/c	0.3 fm/c
1 GeV/fm ³	2.6 fm/c	0.8 fm/c

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Growth rates & time scales

Growth rates for $|A(t, \vec{p})|^2$ (~ particle number):

ϵ	$1/\gamma_{\sf max}^{({\sf pr})}$	$1/\gamma_{\sf max}^{(\sf sec)}$
30 GeV/fm ³	1.0 fm/c	0.3 fm/c
1 GeV/fm ³	2.6 fm/c	0.8 fm/c

- $\blacktriangleright~\gamma^{-1}\sim 1~{\rm fm/c},~{\rm ok!}$
- \blacktriangleright However, need \sim 4 γ^{-1}
- Rôle of secondaries depends strongly on initial conditions
- IR becomes isotropic first

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ● ● ●

Fluctuation effects & secondaries

Correlation function $F^{ab}_{\mu\nu}(x, y) := \langle A^a_{\mu}(x)A^b_{\nu}(y) \rangle$ obeys a 2PI- evolution equation:

$$[D_0^{-1}]^{\gamma}_{\mu} F_{\gamma\nu}(x, y) = \int_{t_0}^{x^0} dz \Pi^{\gamma}_{(\rho)\mu}(x, z) F_{\gamma\nu}(z, y) \\ - \int_{t_0}^{y^0} dz \Pi^{\gamma}_{(F)\mu}(x, z) \rho_{\gamma\nu}(z, y)$$

 $(\rho : Poisson bracket)$ (Berges, PRD 70)

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Fluctuation effects & secondaries

Correlation function $F^{ab}_{\mu\nu}(x, y) := \langle A^a_{\mu}(x)A^b_{\nu}(y) \rangle$ obeys a 2PI- evolution equation:

$$[D_0^{-1}]^{\gamma}_{\mu} F_{\gamma\nu}(x, y) = \int_{t_0}^{x^0} dz \Pi^{\gamma}_{(\rho)\mu}(x, z) F_{\gamma\nu}(z, y) \\ - \int_{t_0}^{y^0} dz \Pi^{\gamma}_{(F)\mu}(x, z) \rho_{\gamma\nu}(z, y)$$

 $(\rho : Poisson bracket)$ (Berges, PRD 70)

Try to identify times when certain diagrams make $\mathcal{O}(1)$ contributions to the self-energy $\Pi_{\mu\nu}$.

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Diagrams & secondaries

 $|A(t, \vec{p})|^2$

Lower panel:

Upper panel:

$$\left| \frac{\operatorname{diagram}(\vec{p})}{F(\vec{p})} \right|$$

 \vec{p} chosen as for gauge field in upper panel.

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

```
Classical statistical
gauge theory on
the lattice
```

Extracting time scales

Conclusions & Outlook

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ● ● ●

Diagrams & secondaries

Upper panel: $|A(t, \vec{p})|^2$

Lower panel:

$$\frac{\text{diagram}(\vec{p})}{F(\vec{p})}$$

 \vec{p} chosen as for gauge field in upper panel.

Onset of secondaries coincides with fluctuation effects becoming large, analogous to parametric resonance in scalar theories. Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

```
Classical statistical
gauge theory on
the lattice
```

Extracting time scales

Spatial Wilson loop

Spatial Wilson- loops at early times ($\simeq 10 e^{-1/4}$) in the transverse (top) and mixed plane (bottom).

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

Spatial Wilson loop

Spatial Wilson- loops at early times ($\simeq 10 e^{-1/4}$) in the transverse (top) and mixed plane (bottom).

- See area law in the transverse plane
- Physics non-perturbative
- Later, longitudinal loops obey area law, too.

(日)

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Spatial Wilson loop

Spatial Wilson- loops at early times ($\simeq 10 e^{-1/4}$) in the transverse (top) and mixed plane (bottom).

- See area law in the transverse plane
- Physics non-perturbative
- Later, longitudinal loops obey area law, too.
- Do not see convergence at late times yet:

'String tension' vs. time.

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

Outline of the talk

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > のへの

Summary

- Have studied the classical statistical limit of SU(2)gauge theory
- Confirmed existence of instabilities for anisotropic initial conditions

- Low-momentum sector becomes isotropic first
- Identified secondary instabilities as driven by fluctuations
- Growth rates still seem to be too small

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Outlook

Conceivable resolutions of the thermalization puzzle:

- Fermions could speed up the thermalization, in particular in the UV
- ▶ Going to SU(3) might change growth rates.
- Initial conditions are unrealistic or miss out some important features.

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

Outlook

Conceivable resolutions of the thermalization puzzle:

- Fermions could speed up the thermalization, in particular in the UV
- ▶ Going to SU(3) might change growth rates.
- Initial conditions are unrealistic or miss out some important features.

Outlook on future work:

- Check what happens in SU(3) (only minor changes expected, though)
- Apply 2PI- techniques, including fermions

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Thanks for your attention.

Plasma Instabilities & The Thermalization Puzzle

Sebastian Scheffler (TU Darmstadt)

The thermalization puzzle

Plasma instabilities 101

Classical statistical gauge theory on the lattice

Extracting time scales

Conclusions & Outlook

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへぐ