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Introduction I

Chiral phase transition in QCD:

high temperature
or

high density
quark-gluon plasma
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low temperature
or

low density
hadronic phase

At Tc or ρc hadrons start to overlap, chiral symmetry is
restored:

Tc ≃ O(mπ)

ρc ≃ 3 − 5ρ0, ρ0 ≃ 0.15fm−1
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QCD Phase diagram

Urs Wenger Baryonic matter in the GN model



Introduction and Motivation
Introduction and Motivation

The Gross-Neveu model
Lattice formulations of the GN model

Summary and Outlook

Introduction II

Understanding the properties of the transition is an
intrinsically non-perturbative problem
⇒ methods like lattice simulations, effective theories,. . .

are necessary.

Standard lattice methods fail for finite density QCD
⇒ indirect methods have (large, unknown) systematic errors.

Study QCD related models where failure is absent or under
control

⇒ Gross-Neveu model
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Definition of the model

Euclidean lagrangian density in 2D [Gross, Neveu ’74]

L =

N
∑

α=1

ψ̄α(x)∂/ ψα(x) − g2

2

(

N
∑

α=1

ψ̄α(x)ψα(x)

)2

,

where ψα(x) are 2-component Dirac spinors and α flavour
index.

Introduce a scalar field σ(x) conjugate to
∑N

α=1 ψ̄
α(x)ψα(x):

L =
N
∑

α=1

ψ̄α(x)∂/ ψα(x) +
1

2g2σ(x)2 + σ(x)
N
∑

α=1

ψ̄α(x)ψα(x).
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Properties

The Gross-Neveu model
is renormalisable and asymptotically free,

β(g) = −

N − 1

2π
g3 + O(g5),

has a O(2N) × Γ-symmetry where Γ is the discrete chiral
symmetry

Γ : ψ → γ5ψ, ψ̄ → −ψ̄γ5, σ → −σ,

exhibits spontaneous breaking of the discrete chiral
symmetry

⇒ fermions acquire non-vanishing mass σ0 = 〈σ〉
(dimensional transmutation).

Note: there is no Goldstone boson due to Γ being a discrete symmetry.
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Large-N limit

In the large-N limit with λ = g2N fixed, the model can be
solved analytically:

Integrate out the fermions to obtain Z =
∫

[dσ] exp {−Seff},

Seff = N

{

∫

[dx]

σ(x)2

2λ
− Tr log [∂/ + σ]

}

.

The minimum of the effective potential is given by

∂σ(x)Seff/N =
σ(x)

λ
− ∂σ(x)Tr log [∂/ + σ] = 0, ∀x .
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Gap equation

For constant σ this reduces to a single equation

σ

λ
= ∂σTr log [∂/ + σ] ,

or in momentum space

σ = 0 or
1
λ

=

∫

[dk ]

2
k2 + σ2 .

⇒ gap equation (self consistency equation)

Equivalent equations via Hartree-Fock, Schwinger-Dyson,
Bethe-Salpeter approaches.
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Gap equation

To leading order in 1/N the spectrum consists of
[Dashen, Hasslacher, Neveu ’75; Feinberg, Zee ’97]

m1 = σ0 ∼ Λ exp
{

−π
λ

}

, single fermion,

mn = σ0 · 2N
π sin

(

nπ
2N

)

, n-fermion bound state,

mB = σ0 · 2N
π , kink-antikink state (’baryon’).

For chirally twisted spatial boundary conditions the single
kink state

σ(x) = σ0 tanh (σ0x)

is topologically stable,
interpolates between the two vacua related by the discrete
γ5-symmetry.
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The phase structure I

The GN model possesses a rich µ-T phase structure:
[Dashen, Ma, Rajaraman ’75; Wolff ’85; Karsch, Kogut, Wyld ’87]

Mermin-Wagner-Coleman theorems forbid spontaneous
breaking of

continuous symmetry at T = 0,
discrete symmetry at T 6= 0.

fluctuations are expected to destroy any long range order
⇒ free massless boson propagator is logarithmic in 2D,

however, fluctuations are suppressed at large N:

〈ψ̄(x)ψ(x)ψ̄(y)ψ(y)〉 ∼ 1 +
1
N

ln |x − y | + O(1/N2)

becomes constant as N → ∞.

⇒ take large-N limit before thermodynamic limit!
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The ’old’ phase diagram I

From the homogeneous mean field approximation [Wolff ’85]:

0 0.2 0.4 0.6 0.8 10.10.20.3
0.40.50.6
0.7A

B
C D EO �

1� b

bb

b

bb

AB → 2nd order

BD → 1st order

B → tricritical point

BCE → metastability
region

T A
c = eC/π = 0.5669

µD
c = 1/

√
2 = 0.7071

T B
c = 0.3183, µB

c = 0.6082
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The ’old’ phase diagram II

On general grounds one expects from widely separated
baryons

− ∂

∂ρ
ln Z

∣

∣

∣

∣

ρ=0,T=0
≡ µc = mB.

mean field approximation is in conflict with this,
ad-hoc reconciliation via a droplet model of baryons,
yielding a modified baryon mass mB = 1/

√
2.

Something wrong with the mean field approach? No, but. . .

⇒ Assumption of translational invariance of σ is invalid.
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The revised phase diagram I

Thies et al. recently clarified the structure of cold baryonic
matter in the GN model:
[Schön, Thies ’00; Thies, Brzoska ’02; Thies, Urlichs ’03; Thies ’03; Schnetz, Thies, Urlichs ’05]

they use a Hartree-Fock approach with a spatially varying
scalar potential,
the gap equation becomes a set of non-linear
self-consistency equations,
potential ansatz inspired by the scalar potential for a single
baryon:

σ(x) = 1 + y [tanh(yx − c0) − tanh(yx + c0)] ,

where c0 = 1
2arctanh(y) and y = y(σ0).
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The revised phase diagram II

Scalar potential ansatz:

motivated by matter at low
density forming isolated
baryons,

Pöschl-Teller potential
wells can be periodically
extended,

leads to a general ansatz
satisfying self-consistency
equation.
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The revised phase diagram III

In addition to the massive and massless Fermi gas, there is a
new baryonic crystal phase at low temperature:

µc = 2
π now consistent with mB, no first order transition at µ 6= 0.
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The revised phase diagram IV

(T , ρ)-phase diagram:

Tcrit unchanged,

tricritical point turns into
multi-critical point at the
same location.

These findings motivate to
look for the new phase in lat-
tice models.
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GN model with staggered fermions I

Consider the staggered GN action:

S = N
∑

x

σ(x)2

2λ
+
∑

x,y

N
∑

α=1

χ̄α(x) [Dxy + Σxy ]χα(y)

where the Dirac operator

Dxy =
1
2

[

δx,y+1̂ − δx,y−1̂

]

+
1
2

(−1)x1

[

δx,y+2̂ − δx,y−2̂

]

describes 2 flavours and

Σxy =
1
4
δxy

(

σ(x) + σ(x − 1̂) + σ(x − 2̂) + σ(x − 1̂ − 2̂)
)

.

Modification σ → Σ is necessary to ensure correct continuum
limit [Cohen, Elitzur, Rabinovici ’83].
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GN model with staggered fermions II

Discrete chiral symmetry is preserved:

χ(x) → (−1)x1+x2χ(x), χ̄(x) → −(−1)x1+x2 χ̄(x), σ(x) → −σ(x).

A finite chemical potential ⇔ time component of an imaginary
external constant Abelian vector potential [Hasenfratz, Karsch ’83]:

⇒ weighting the temporal derivatives with factors exp(±µ).

In momentum space this amounts to the replacement

kt ⇒ kt − iµ.

Imaginary chemical potential corresponds to a non-trivial
magnetic flux [Huang, Schreiber ’94].
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GN model with overlap fermions I

Consider the massless overlap Dirac operator
[Narayanan, Neuberger ’94; Neuberger ’98]

D = m
{

1 + DW (−m)
[

D†
W (−m)DW (−m)

]−1/2
}

satisfying the Ginsparg-Wilson relation D† + D = 1
m D†D.

The coupling to the scalar field is introduced like

L = ψ̄(x)

[(

Dx,y − σ(x)

4m
Dx,y − Dx,y

σ(y)

4m

)

+ σ(x)δx,y

]

ψ(y)

consistent with a covariant scalar density.

For σ → const. it is just the usual mass term
(

1 − σ

2m

)

D + σ.
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GN model with overlap fermions II

For constant σ we can work in momentum space; we have (for
m = 1):

D =







1 +

(

iγµ

◦
pµ +

1
2

p̂2
µ − 1

)

[

(

1
2

p̂2
µ − 1

)2

+
◦
p

2

µ

]−1/2






where
◦
pµ= sin(kµ), p̂µ = 2 sin(

kµ

2 ) with appropriate b.c.

Chemical potential as before, replacing everywhere

kt ⇒ kt − iµ.
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Thermodynamic limit for homogeneous condensate

We need to calculate the (real) fermion determinant

ln det D = 2
Lt /2−1
∑

t=0

Lx /2−1
∑

k=0

ln
[

p̂2
t + p̂2

k + σ2]

where p̂t , p̂k are lattice momenta, Lt , Lx lattice extensions.

For a homogeneous condensate one can perform the
thermodynamic limit analytically,

λ =
Lt

2





Lt /2−1
∑

t=0

1
(

σ2 + p̂2
t

)

√

1 + 1
σ2+p̂2

t





−1

.
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Thermodynamic limit for inhomogeneous condensate I

For an inhomogeneouscondensate we have

det D =

Lt−1
∏

t=0

2Lx det

(

Pt −
(

1
2

)Lx
)

with the reduced matrices [Gibbs ’86; Hasenfratz, Toussaint ’91]

Pt =

Lx /2−1
∏

x=0

(

Ωt(2x)ΩLt /2+t (2x + 1)
)

and

Ωt (x) =

(

p̂t + σ(x) 1
2

1
2 0

)

.

Can be interpreted as a transfer matrix in space at each t .
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Thermodynamic limit for inhomogeneous condensate II

If the condensate is invariant under translation by lx and
Lx = nlx ,

det Dt = 2nlx det
(

Pn
t − 2−nlx

)

.

In the thermodynamic limit we then simply have

lim
n→∞

1
n

ln det Dt =

Lt−1
∑

t=0

ln λ(1)
t

where λ(1)
t is the larger of the two eigenvalue of Pt .

Length scale Lx of the box size is replaced by lx , the wave length
of the condensate.
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Homogeneous mean field results at µ = 0,T = 0

Gap equation yields σ as a function of λ:

⇒ non-perturbative β-function vs asymptotic scaling

staggered operator, asymptotic scaling 23/2e−π/2λ overlap operator, asymptotic scaling 1.5539...e−π/λ

0 0.5 1 1.5 2
λ

0

0.2

0.4

0.6

0.8

1

σ

0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2 2.5 3
λ

0

0.1

0.2

0.3

0.4

0.5

0.6

σ

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.01

0.02

Urs Wenger Baryonic matter in the GN model



Introduction and Motivation
Introduction and Motivation

The Gross-Neveu model
Lattice formulations of the GN model

Summary and Outlook

Staggered and overlap fermions
Lattice techniques
Homogeneous mean field results
Baryonic matter in the lattice GN model

Homogeneous mean field results at µ = 0

second order transition at Tc , µ = 0:
(overlap Dirac operator, λ = 1.0, L = 200)
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Homogeneous mean field results at µ = 0

Scaling of Tc/σ0 vs (aσ0)
2:

staggered operator overlap operator
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Homogeneous mean field results

second order transition at Tc , µ = 0 vs first order at T = 0, µc :
(overlap Dirac operator, λ = 1.0, L = 200)
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Homogeneous mean field results

Normalised fermion density vs chemical potential at T ≃ 0:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
µ/σ

0

0

0.1

0.2

0.3

0.4

0.5

ρ/
(N

 σ
0)

L=200

Urs Wenger Baryonic matter in the GN model



Introduction and Motivation
Introduction and Motivation

The Gross-Neveu model
Lattice formulations of the GN model

Summary and Outlook

Staggered and overlap fermions
Lattice techniques
Homogeneous mean field results
Baryonic matter in the lattice GN model

Homogeneous mean field results

Normalised fermion density vs chemical potential at T ≃ 0:
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Homogeneous mean field results

Normalised fermion density vs chemical potential at T ≃ 0:
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Homogeneous mean field results

Normalised fermion density vs chemical potential at T ≃ 0:
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Homogeneous mean field results

Normalised fermion density vs chemical potential at T ≃ 0:
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Homogeneous mean field results

Scaling of µc/σ0 vs (aσ0)
2:

staggered operator overlap operator
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Homogeneous mean field results

Scaling of the entry into the metastable region at T ≃ 0:
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Homogeneous mean field results

Phase diagram from imaginary chemical potential [Huang, Schreiber ’94]:
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Phase diagram from imaginary chemical potential [Huang, Schreiber ’94]:
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Crystal phase results

Free energy density for kink-antikink solutions, variational
calculation at µ = 0.45:

0 0.2 0.4 0.6 0.8 1
σ

0

0.02

0.04

0.06

0.08

fr
ee

 e
ne

rg
y 

de
ns

ity

Q=4
Q=3
Q=2
Q=1
Q=0

µ=0.45, λ=1.4, L=24, T=0.0

Urs Wenger Baryonic matter in the GN model



Introduction and Motivation
Introduction and Motivation

The Gross-Neveu model
Lattice formulations of the GN model

Summary and Outlook

Staggered and overlap fermions
Lattice techniques
Homogeneous mean field results
Baryonic matter in the lattice GN model

Crystal phase results

behaviour suggests second order transition:
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Crystal phase results

Free energy density vs. different kink-antikink solutions, λ = 0.8:
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Crystal phase results

Crystal phase towards strong coupling, λ = 1.15:
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Crystal phase results

Crystal phase towards strong coupling, λ = 1.25:
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Crystal phase results

Crystal phase towards strong coupling, λ = 1.35:
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Crystal phase results

Crystal phase towards strong coupling, λ = 1.50:
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Crystal phase results

Crystal phase towards strong coupling, λ = 1.65:
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Crystal phase results

Single kink solutions towards strong coupling:
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Crystal phase results

Instability of the σ = 0 free energy density wrt spatial variations
⇔ end of the crystal phase
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Crystal phase results

Instability of the σ = 0 free energy density wrt spatial variations
⇔ end of the crystal phase
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Crystal phase results

Phase diagram:
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Phase diagram with crystal phase, unit cell lx = 80:
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Crystal phase results

Phase diagram with crystal phase, thermodynamic limit:

0 0.5 1 1.5
µ/σ

0

0

0.1

0.2

0.3

0.4

0.5

T
/σ

0

staggered fermions, weak coupling L
t
=80

Urs Wenger Baryonic matter in the GN model



Introduction and Motivation
Introduction and Motivation

The Gross-Neveu model
Lattice formulations of the GN model

Summary and Outlook

Staggered and overlap fermions
Lattice techniques
Homogeneous mean field results
Baryonic matter in the lattice GN model

Crystal phase results

Phase diagram with crystal phase:
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Summary

The breakdown of translational invariance of the ground
state requires a revision of the GN model phase diagram.

Besides the massive and massless Fermi gas phase, a
new phase of baryonic matter emerges:
⇒it forms a baryon crystal

The transition to the new phase is always second order.
We are investigating the new phase on the lattice:

crystal phase disappears at strong coupling, topological
excitations fall through the lattice,
large volumes are necessary,
poses potential obstacle for simulations at finite density.
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Outlook

Crystal phase is caused by topological excitations
⇒ look for effect in other models

’t Hooft model in 1+1 dimensions (chiral spiral)
NJL model in 2+1 dimensions (with continuous chiral
symmetry)
QCD wit Nf = 2 in 3+1 dimensions:
⇒SU(Nf = 2) symmetry allows topological Skyrmion
solutions

Other related work:
large-Nc QCD in 3+1 dimension [Deryagin, Grigoriev, Rubakov ’92]
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Gross-Neveu model at finite N

Most natural formulation in terms of Majorana fermions.
For the Wilson lattice discretisation:

L =
1
2
ξTC(γµ∂̃µ + m − 1

2
∂∗∂)ξ − g2

4

(

ξTCξ
)2
.

For even N each pair of Majorana fermions may be
considered as on Dirac fermion

ψ =
1√
2

(ξ1 + iξ2), ψ̄ =
1√
2

(ξT
1 − iξT

2 )C.

Integrating the fermions yields the Pfaffian

Z = Pf[C(γµ∂̃µ + m − 1
2
∂∗∂)].
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Gross-Neveu model at finite N

Expanding the Grassmannian Boltzmann factor one
obtains a loop representation in terms of monomers and
dimers.
Partition function sum is over all non-oriented, self-avoiding
loops

Z =
∑

{k(x,µ)}∈L

ρ[k ], L ∈ {L00,L10,L01,L11}.

This is equivalent to a special case of the 8-vertex model

Z8−vertex =
∑

l∈L

∏

x∈l

w(x).
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Examples of 8-vertex models

Ising model on the dual lattice,

Ising model in high-temperature expansion,

close packed dimer problem,

QED2 at β = 0 with Wilson fermions,

GN model with Majorana Wilson fermions.

Urs Wenger Baryonic matter in the GN model



Introduction and Motivation
Introduction and Motivation

The Gross-Neveu model
Lattice formulations of the GN model

Summary and Outlook

Summary
Outlook

Numerical simulation of 8-vertex models

Very powerful ’Worm’-type algorithms can be applied:
amounts to enlarging the configuration space by open
loops,
corresponds to sampling directly the correlation function.

Critical slowing-down much suppressed.

I see no objections to adapt this to d > 2.
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