Cold Quark Matter,

or "neutron" stars to 3 loops

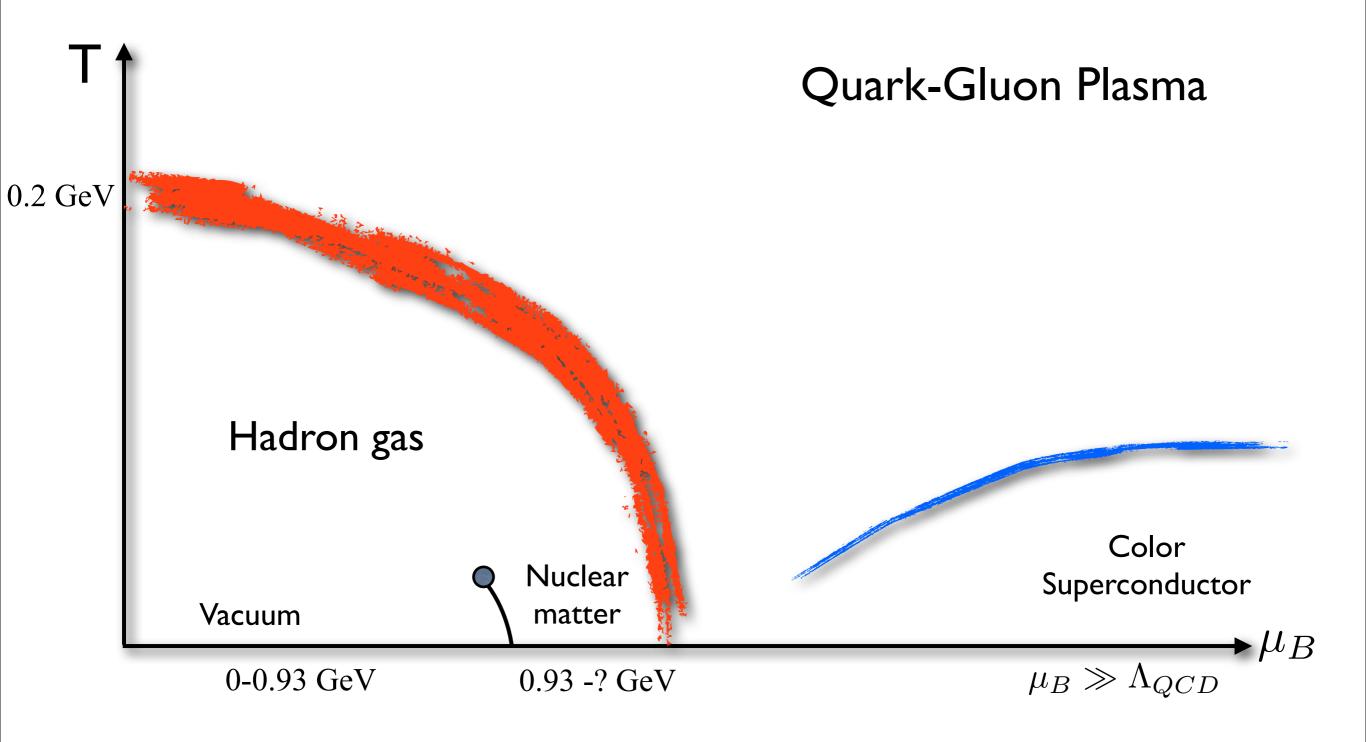
Aleksi Kurkela ETH Zürich,

with Paul Romatschke and Aleksi Vuorinen arXiv: 0912.1856

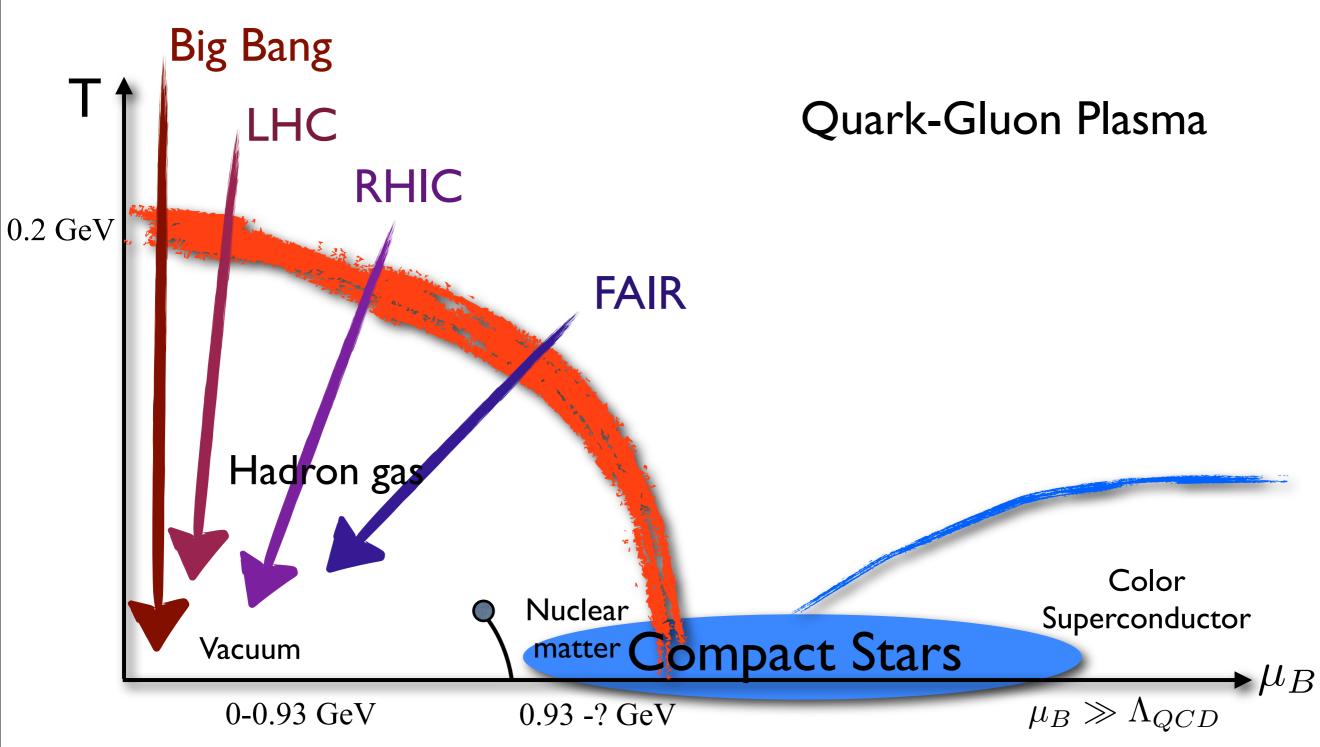
8.5. Heidelberg

Saturday, May 8, 2010

Ultimate goal to understand strongly interacting matter throughout the phase diagram:



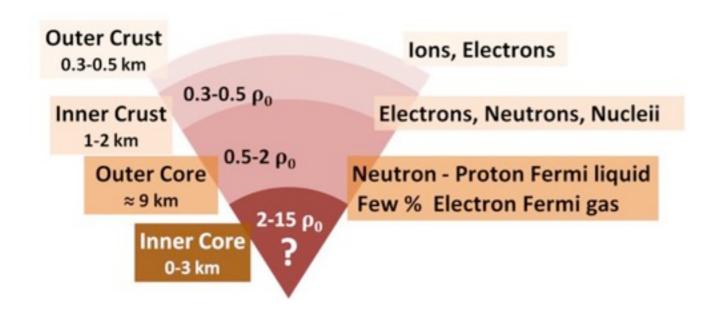
Ultimate goal to understand strongly interacting matter throughout the phase diagram:

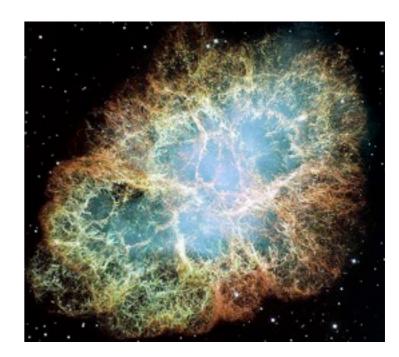


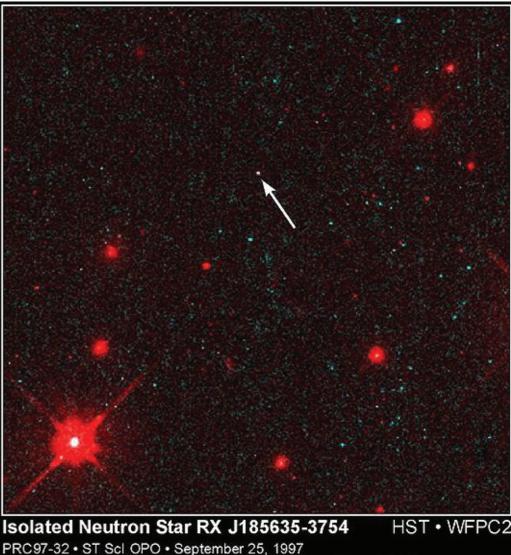
Compact Stars:

Results from a core collapse of a star with $M\gtrsim 10 M_{\odot}$

- Masses $\leq 2.0 M_{\odot}$
- Radii $\sim 15 \rm km$
- $T < 10^{6} \text{K} < \text{KeV} (T_0 \sim 30 \text{MeV})$
- $n \leq 15\rho_0$ ($\rho_0 = 0.16 \text{fm}^{-3}$)







F. Walter (State University of New York at Stony Brook) and NASA

Outline:

- Introduction
- Computation of the grand potential to three loops with m_s
- Phase transition between hadronic and quark matter phases
 - Hybrid EoS's with $P_{hadronic}(\mu_{pt}) = P_{quark}(\mu_{pt})$
- Strange quark matter hypothesis
 - How unstable am I?
- Mass-Radius sequences from TOV-equations
 - Connection to observations

Introduction:

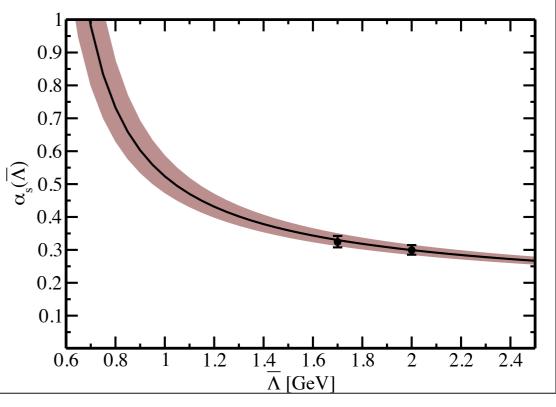
• At $T \neq 0$ and $\mu < T$: Lattice is the definitive non-perturbative method for thermodynamics = $p(T, \mu)$.

Introduction:

- At $T \neq 0$ and $\mu < T$: Lattice is the definitive non-perturbative method for thermodynamics = $p(T, \mu)$.
- At $\mu > T$: Simulations become impossible due to sign problem.
 - Resort to approximations (T = 0):
 - At low densities (ρ_B < 0.16 fm⁻³, μ_B ~ 1GeV):
 Quantum many-body theory. Dynamics of nucleons, hyperons, etc..
 - At (asymptotically) high densities:

 $\alpha_s(\mu) \sim 1/\log(\mu^2)$

Perturbation theory



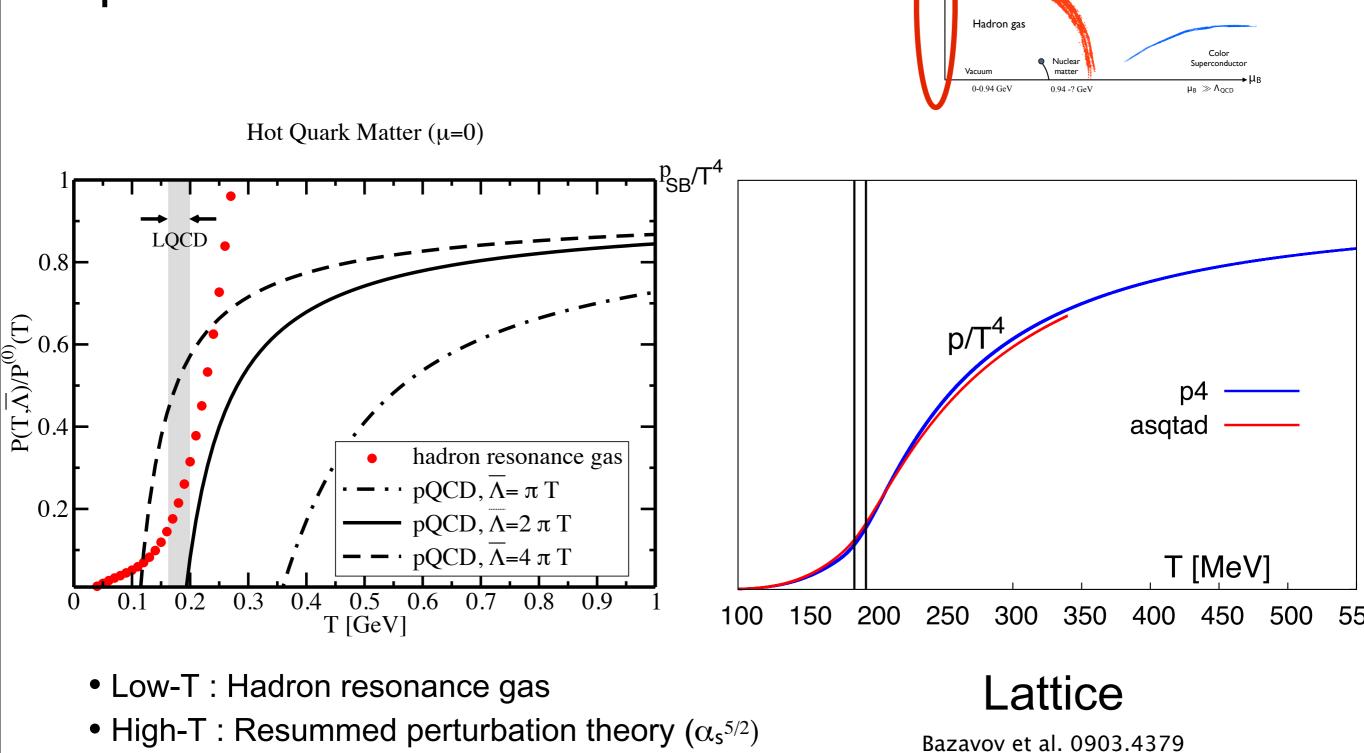
Introduction:

- At $T \neq 0$ and $\mu < T$: Lattice is the definitive non-perturbative method for thermodynamics = $p(T, \mu)$.
- At $\mu > T$: Simulations become impossible due to sign problem.
 - Resort to approximations (T = 0):
 - At low densities (ρ_B < 0.16 fm⁻³, μ_B ~ 1GeV):
 Quantum many-body theory. Dynamics of nucleons, hyperons, etc..
 - At (asymptotically) high densities:

 $\alpha_s(\mu) \sim 1/\log(\mu^2)$

Perturbation theory

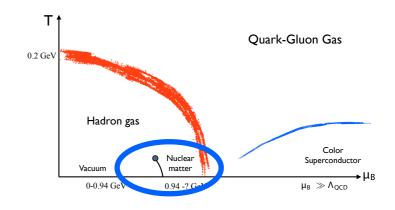
- Strategy: Interpolate between high and low densities to get a unified description of EoS.
 - Relies on not having exotic phase between!

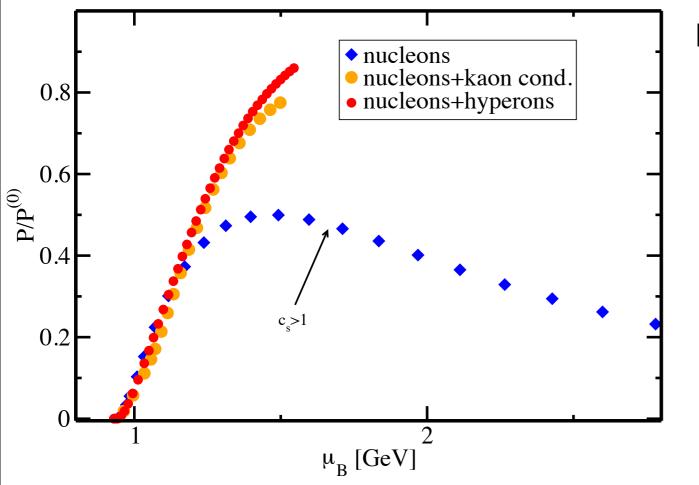


Quark-Gluon Gas

Inspiration from finite-T case:

At low densities:





Nucleons (=APR nucl-th/9804027):

- •Input:
 - 2-body: Argonne v18
 - 3-body: Urbana IX
- Variational Chain Summation:
 - EoS for PNM and SNM
- Interpolate the correct neutron/proton fraction using Skyrme-model ansatz

Outline:

- Introduction
- Computation of the grand potential to three loops with m_s
- Phase transition between hadronic and quark matter phases
 - Hybrid EoS's with $P_{hadronic}(\mu_{pt}) = P_{quark}(\mu_{pt})$
- Strange quark matter hypothesis
 - How unstable am I?
- Mass-Radius sequences from TOV-equations
 - Connection to observations

Perturbative evaluation of the EoS:

Thermodynamics defined by the grand potential

$$\Omega(\mu_u, \mu_d, \mu_s, m_s) = -T \log \int \mathcal{D}\bar{\psi} \mathcal{D}\psi \mathcal{D}A_{\mu} e^{-\int d^4 x \mathcal{L}_{\text{QCD}}}$$
$$\mathcal{L}_{\text{QCD}} = \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \bar{\psi}_i (\gamma_\mu D_\mu + m_i - \mu_i \gamma_0) \psi_i.$$

Tt

Hadron gas

Vacuum

0-0.94 GeV

Nuclea

matter

0.94 -? GeV

0.2 GeV

Ouark-Gluon Gas

Color

 $\mu_B \gg \Lambda_{QCD}$

→μ_B

• All thermodynamical quantities derived from $\Omega(\mu_u, \mu_d, \mu_s, m_s)$

$$pV = -\Omega(\mu_u, \mu_d, \mu_s, m_s)$$

$$n_i = -\partial_{\mu_i}\Omega(\mu_u, \mu_d, \mu_s, m_s)$$

$$\varepsilon = -p + n_i \mu_i$$

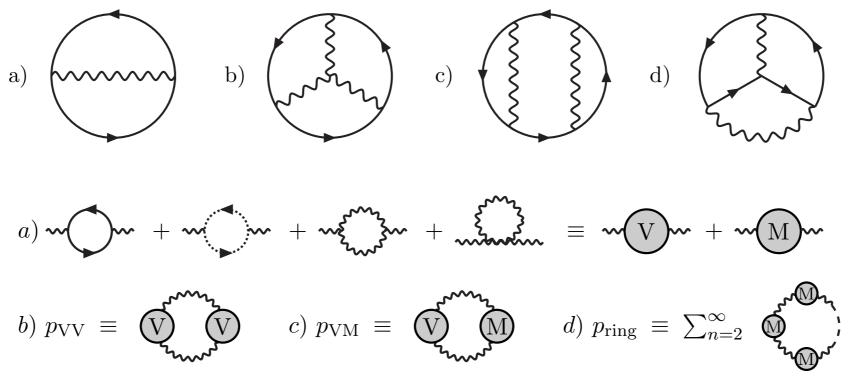
 ${\bullet}$

Perturbative evaluation of the EoS:

- $T \qquad Quark-Gluon Gas$ 0.2 GeV
 Hadron gas
 Vacuum
 0-0.94 GeV
 0.94 -? GeV $\mu_B \gg \Lambda_{QCD}$
- Thermodynamics defined by the grand potential

$$\Omega(\mu_u, \mu_d, \mu_s, m_s) = -T \log \int \mathcal{D}\bar{\psi} \mathcal{D}\psi \mathcal{D}A_{\mu} e^{-\int d^4 x \mathcal{L}_{\text{QCD}}}$$
$$\mathcal{L}_{\text{QCD}} = \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \bar{\psi}_i (\gamma_\mu D_\mu + m_i - \mu_i \gamma_0) \psi_i.$$

• $\Omega(\mu_u, \mu_d, \mu_s, m_s)$ available through 1PI diagrams:



• Electric neutrality and beta-equilibrium fix all but one chemical potentials:

$$p(\mu_u(\mu), \mu_d(\mu), \mu_s(\mu)) = p(\mu)$$

• Electric neutrality and beta-equilibrium fix all but one chemical potentials:

$$p(\mu_u(\mu), \mu_d(\mu), \mu_s(\mu)) = p(\mu)$$

• Any perturbative computation will have a dependence on the renormalization scale

$$p(\mu) = p(\mu, \bar{\Lambda})$$

• Electric neutrality and beta-equilibrium fix all but one chemical potentials:

$$p(\mu_u(\mu), \mu_d(\mu), \mu_s(\mu)) = p(\mu)$$

• Any perturbative computation will have a dependence on the renormalization scale

$$p(\mu) = p(\mu, \bar{\Lambda})$$

• Any computation gives the pressure only up to an additive constant

$$p(\mu) = p^{(\text{pert})}(\mu, \bar{\Lambda}) - B$$

• Define $p(\mu = 0) = 0$, outside perturbative reach obviously...

Electric neutrality and beta-equilibrium fix all but one chemical potentials:

$$p(\mu_u(\mu), \mu_d(\mu), \mu_s(\mu)) = p(\mu)$$

• Any perturbative computation will have a dependence on the renormalization scale

$$p(\mu) = p(\mu, \bar{\Lambda})$$

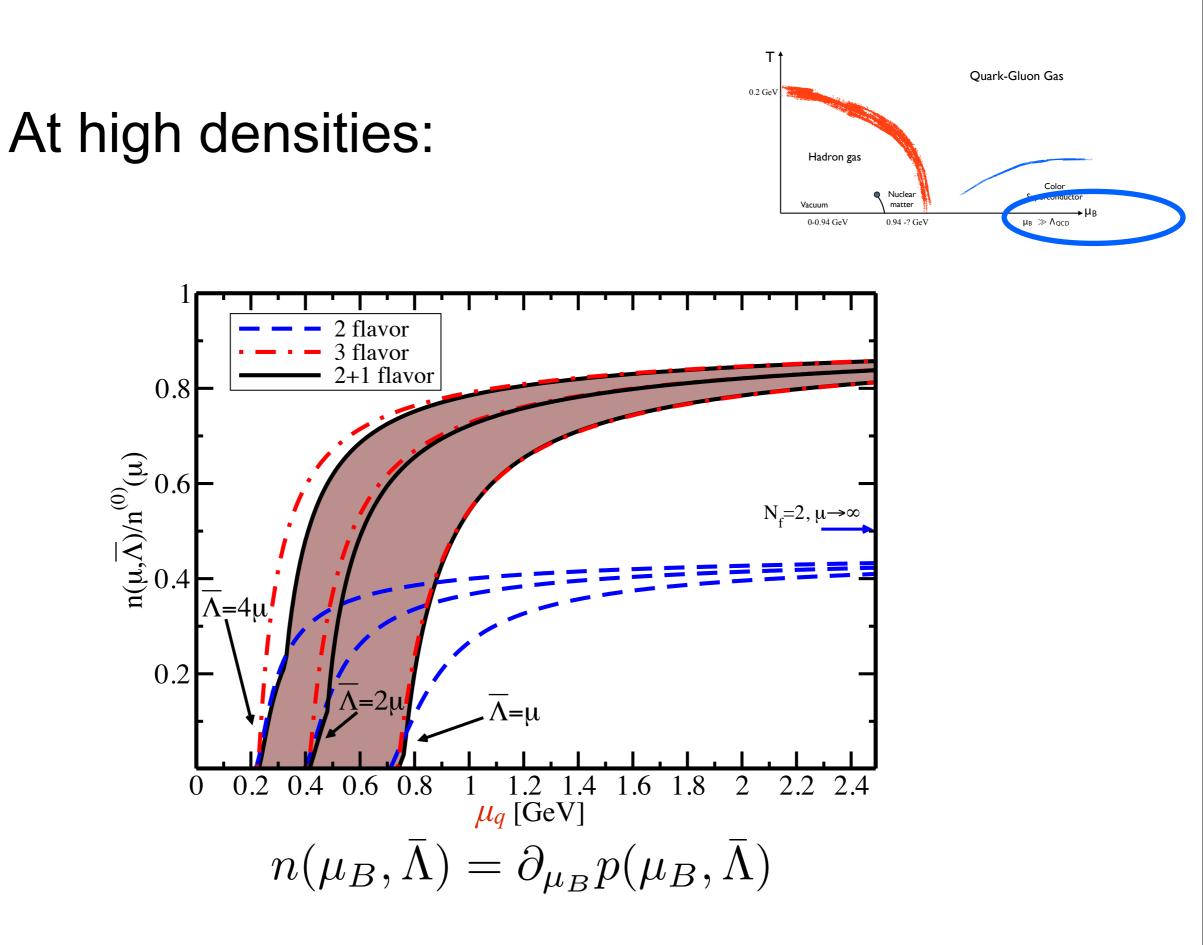
• Any computation gives the pressure only up to an additive constant

$$p(\mu) = p^{(\text{pert})}(\mu, \bar{\Lambda}) - \boldsymbol{B}$$

- Define $p(\mu = 0) = 0$, outside perturbative reach obviously...
- The theory has a pairing instability \rightarrow Non-perturbative term in $p(\mu)$

$$p(\mu) = p^{(\text{pert})}(\mu, \bar{\Lambda}) - \mathbf{B} + \frac{\Delta^2 \mu_B^2}{3\pi^2}$$

With $\Delta = 0,...,100$ MeV ($\Delta << k_F$) And vary *B* for all allowed values



Saturday, May 8, 2010

Outline:

- Introduction
- Computation of the grand potential to three loops with m_s
- Phase transition between hadronic and quark matter phases
 - Hybrid EoS's with $P_{hadronic}(\mu_{pt}) = P_{quark}(\mu_{pt})$
- Strange quark matter hypothesis
 - How unstable am I?
- Mass-Radius sequences from TOV-equations
 - Connection to observations

If there are no exotic phases, there will be a phase transition between hadronic and quark matter phases at some μ_{pt}

• Extrapolate the low- and high-density EoS to the intermediate region

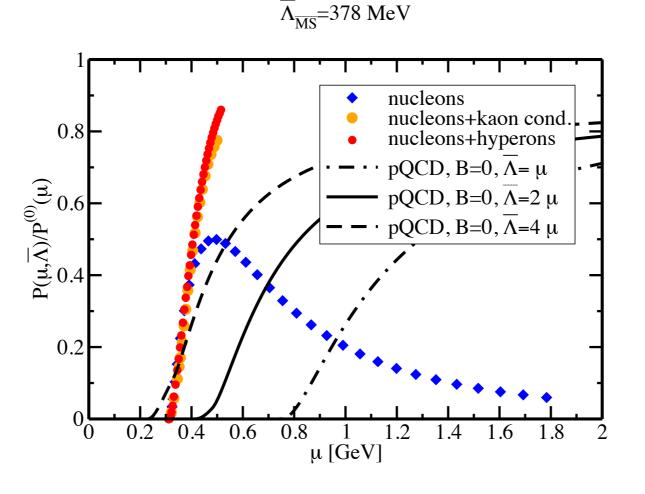
T1

Hadron gas

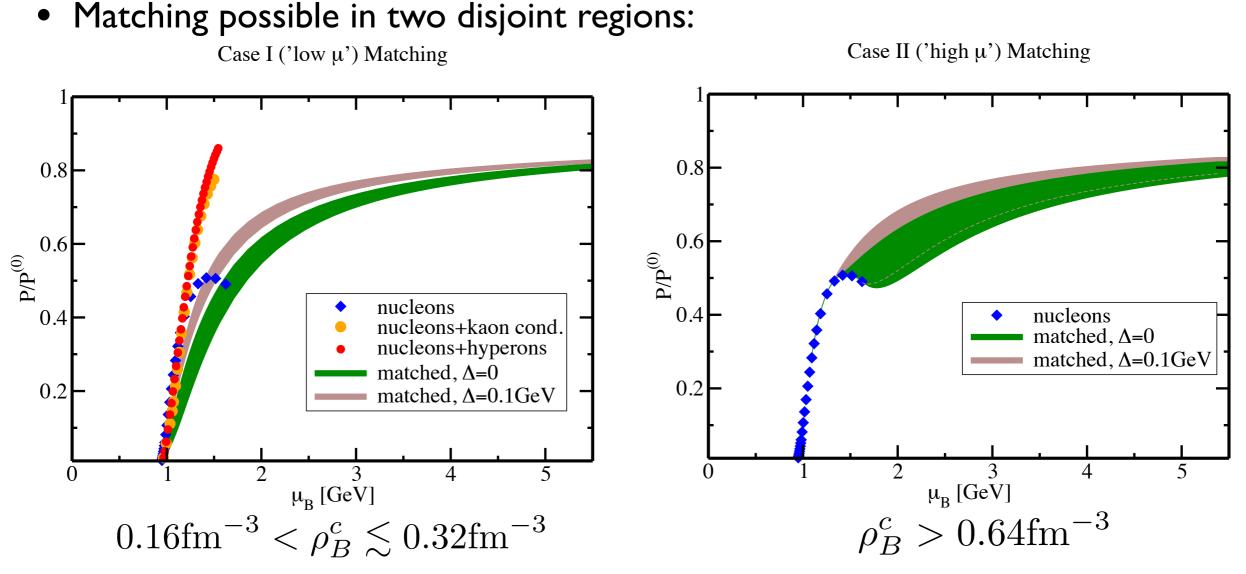
0.2 GeV

Quark-Gluon Gas

- Catalog all possible self consistent EoS's ($B(\mu_{pt}), \overline{\Lambda}$)
 - Equal pressure at phase transition
 - Monotonically increasing energy density



If there are no exotic phases, there will be a phase transition between hadronic and quark matter phases at some μ_{pt}



Τí

Hadron gas

0.2 GeV

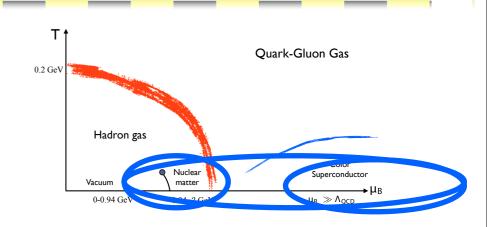
Ouark-Gluon Gas

Represents the best educated guess available for the true EoS on full μ -range The location of μ_{pt} not available via perturbation theory, only via matching.

Outline:

- Introduction
- Computation of the grand potential to three loops with m_s
- Phase transition between hadronic and quark matter phases
 - Hybrid EoS's with $P_{hadronic}(\mu_{pt}) = P_{quark}(\mu_{pt})$
- Strange quark matter hypothesis
 - How unstable am I?
- Mass-Radius sequences from TOV-equations
 - Connection to observations

Strange quark matter hypothesis:



If the energy per baryon in quark matter is less than

$$E/A = 3\mu_c = 0.93 \text{GeV} \qquad {}^{56}\text{Fe}$$

then quark matter is the true ground state \rightarrow Nuclear matter metastable.

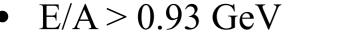
Life time:

- Nucleons \rightarrow 2 Flavor quark matter:
 - Equilibration through Strong interactions $\rightarrow t_{eq} \sim 1/\Lambda_{QCD}$
 - Short lived. Ruled out by "experiment"
- Nucleons → strange quark matter:
 - Equilibration through Weak interactions $t_{eq} \sim 10^{60}$ years for A > 6
 - Adding d.o.f's increases pressure \rightarrow more likely to be stable
 - Experimentally plausible, lets find out what the theory says!

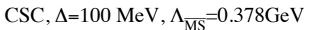
Strange quark matter hypothesis:

Strategy: Find out if SQM stable in the parameter space ($B, \overline{\Lambda}$) with

• $n_{\rm s} > 0$, quark mass essential!



Normal Quark matter, $\Delta=0$, $\Lambda_{\overline{MS}}=0.378$ GeV

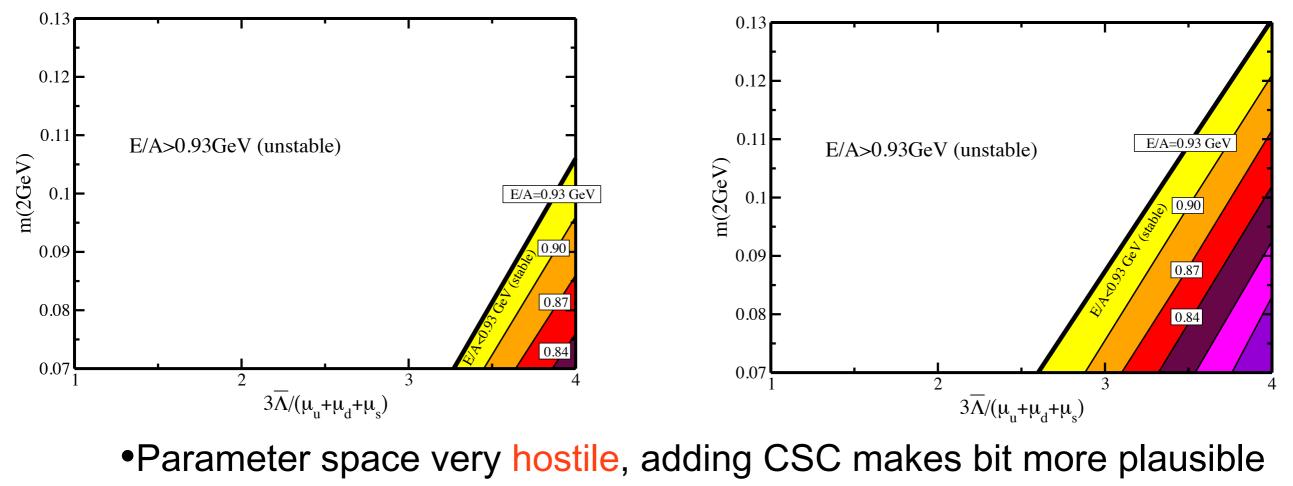


Ouark-Gluon Gas

T1

Hadron gas

0.2 GeV



•Absolutely stable SQM disfavored but not ruled out

Saturday, May 8, 2010

Outline:

- Introduction
- Computation of the grand potential to three loops with m_s
- Phase transition between hadronic and quark matter phases
 - Hybrid EoS's with $P_{hadronic}(\mu_{pt}) = P_{quark}(\mu_{pt})$
- Strange quark matter hypothesis
 - How unstable am I?
- Mass-Radius sequences from TOV-equations
 - Connection to observations

Compact stars:

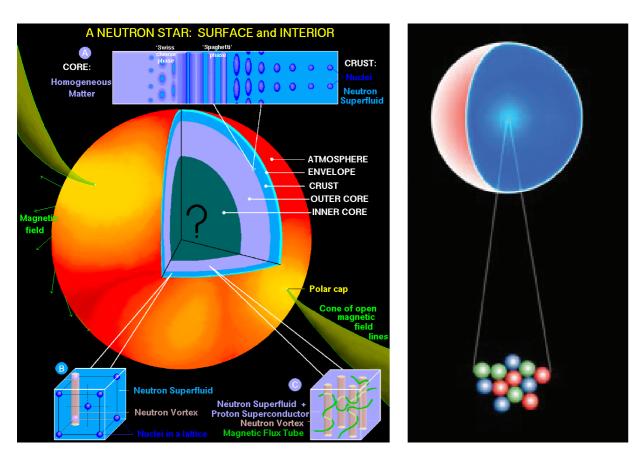
- Compact stars formed of degenerate matter form a sequence in M-R plane (unlike white dwarfs)
- The M-R relation is very sensitive to the EoS
- M-R relation solved from the TOV-equations:

$$dM(r) = 4\pi r^2 \varepsilon(r) dr,$$

$$dP(r) = -\frac{G(P(r) + \varepsilon(r)) \left(M(r) + 4\pi r^3 P(r)\right)}{r \left(r - 2GM(r)\right)} dr,$$

we set (*n*) as input

Takes ε(p) as input



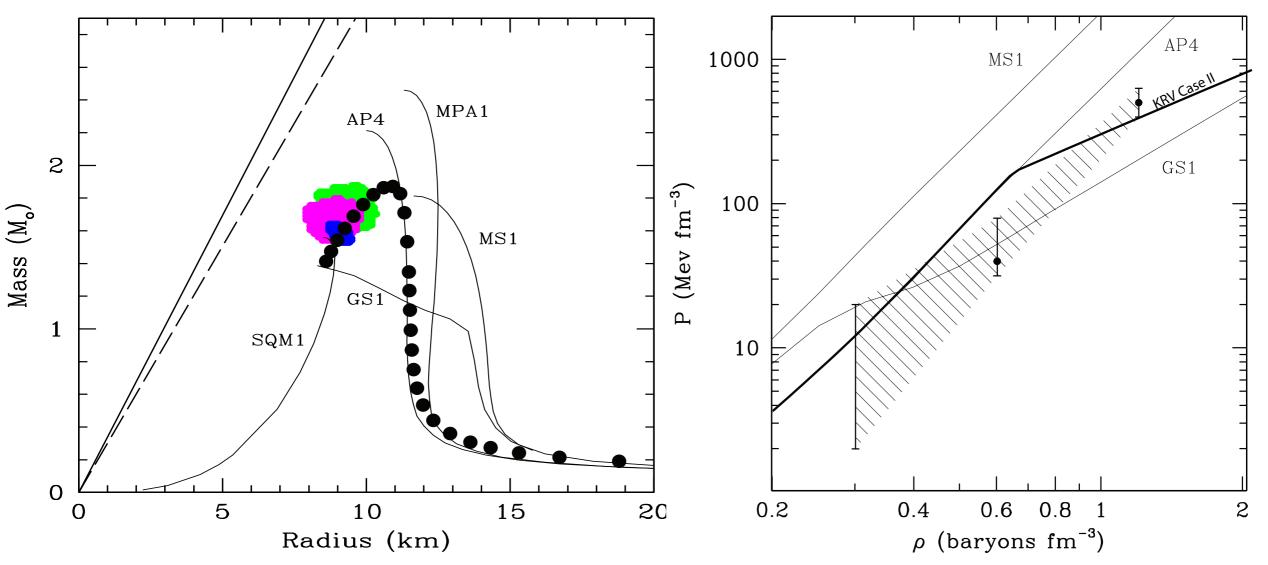
Let's consider compact stars made of:

- Pure Nuclear matter
- Pure Quark matter
- Hybrid stars with
 - large quark core with thin nucleonic crust (case I)
 - small quark core with thick nucleonic crust (case II)

Normal Quark Matter (Δ =0) CSC, Δ =100 MeV 2.5 2.5 2 Ter 5 I+J PSR J1903+0327 $M/M_{\rm solar}$ $M/M_{\rm solar}$.5 1.5 PSR J1909-3744. ~ PSR B1913+16 nucleons nucl.+kaon cond nucl.+hyperons Case I hybrids Case II hybrids strange stars 0.5 0.5 18 20 10 12 18 10 12 14 16 20 16 8 14 8 R [km] R [km]

- Effect of CSC very small.
- Hyperonic/Kaonic EoS ruled out
- For neutron/hybrid stars $M_{\text{max}} \sim 2M_{\text{solar}}$
- Cannot exclude very massive strange stars
 - Dense quark stars ruled out

New observations from February:



- Case II agrees with the data better than any of the standard EoS
- Overestimates the radius
 - \rightarrow Accounting for the (possible) 2-component admixture in the transition:
 - Reduces radius, doesn't affect the maximum mass.
 - Smoothens EoS around transition
- Superconductivity reduces radius → Improve the treatment of CFL

Conclusions:

- The grand potential of QCD at finite density with finite m_s computed to α_s^2 .
 - Needed to create new perturbation theory machinery to overcome technical challenges
- Modeled the EoS in full range of μ_B (three logical possibilites):
 - Hadron / quark matter transition:
 - Realistic description for full range of $\mu_{\rm B}$
 - Absolutely stable strange quark matter
 - is disfavored but not ruled out
 - ...but an observation of a $M > 2M_{solar}$ would be a strong evidence in the opposite direction.
 - Exotic (non-CSC) phases between hadrons and quark matter
 - Well, at least we improved the perturbative side

Conclusions:

- The grand potential of QCD at finite density with finite m_s computed to α_s^2 .
 - Needed to create new perturbation theory machinery to overcome technical challenges
- Modeled the EoS in full range of μ_B (three logical possibilites):
 - Hadron / quark matter transition:
 - Realistic description for full range of $\mu_{\rm B}$
 - Absolutely stable strange quark matter
 - is disfavored but not ruled out
 - ...but an observation of a $M > 2M_{solar}$ would be a strong evidence in the opposite direction.
 - Exotic (non-CSC) phases between hadrons and quark matter
 - Well, at least we improved the perturbative side

Our Case II matching seems to perform better than any of the standard EoS in describing the recent experimental data.

Outlook:

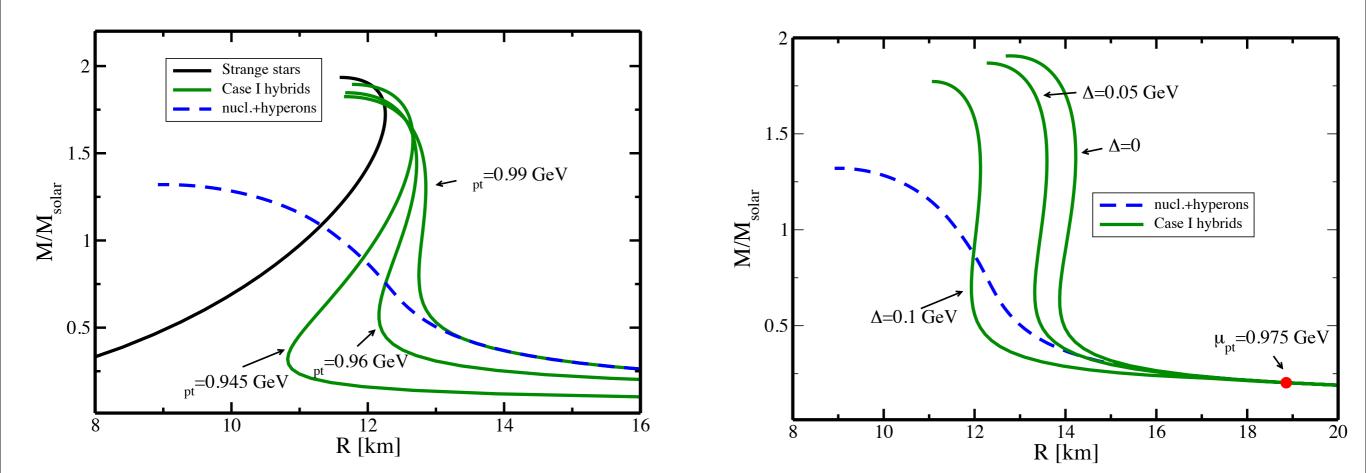
- Improve the modeling of the effects of CSC:
 - By computing the mismatch of the fermi spheres
 - Assessing the different possibilities for CSC: CFL, 2CS...
- Improve the perturbative calculation:
 - $\alpha_s^2 \log(\alpha_s)$: Only ring diagrams involved
 - $\alpha_s^{3:}$ Major undertaking
- Improve the astrophysical modeling:
 - Two-component mixtures of hadronic and quark matter
 - Moment of inertia, glitches
 - Neutron star oscillations
 - Rotating stars, r-modes
 - Cooling rates and transport effects

Outlook:

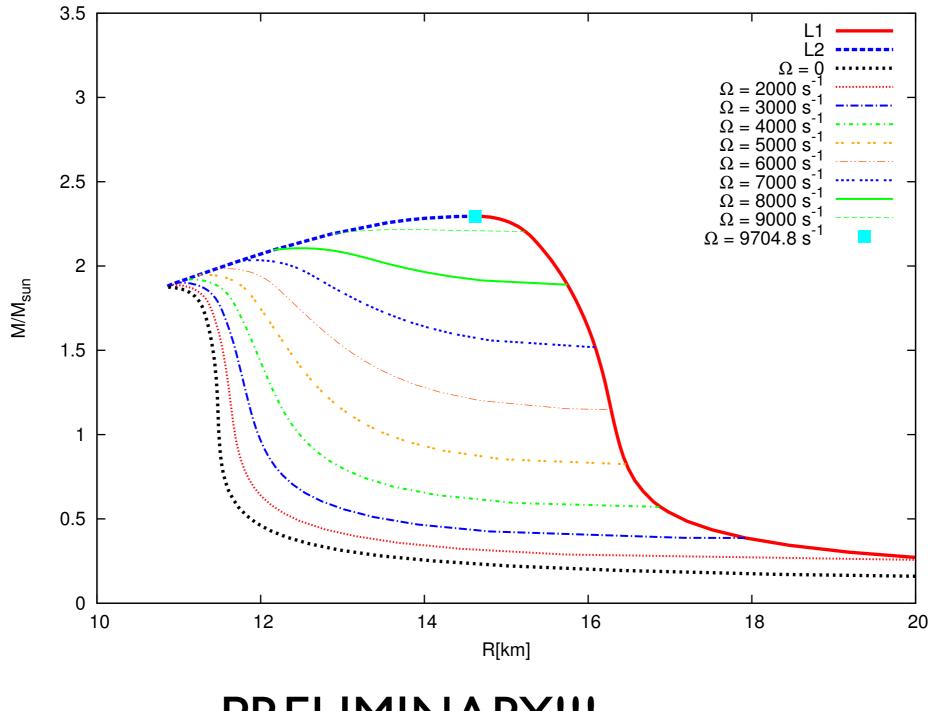
- Improve the modeling of the effects of CSC:
 - By computing the mismatch of the fermi spheres
 - Assessing the different possibilities for CSC: CFL, 2CS...
- Improve the perturbative calculation:
 - $\alpha_s^2 \log(\alpha_s)$: Only ring diagrams involved
 - $\alpha_s^{3:}$ Major undertaking
- Improve the astrophysical modeling:
 - Two-component mixtures of hadronic and quark matter
 - Moment of inertia, glitches
 - Neutron star oscillations
 - Rotating stars, r-modes
 - Cooling rates and transport effects

and of course: the observations are advancing very fast, new data expected to come anytime!!

Effect of the matching density and CSC:



Effect of rotation to the MR-curves (Case II matching)



PRELIMINARY !!! With Bin Wu