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Outline

Overview of QCD at non-zero quark chemical potential

Formulation of QCD on S1 × S3 using perturbation theory

Results for various observables for N = 3 and N =∞, preliminary
N = 2 lattice results.



Conjectured phase diagram of QCD

Progress has been made towards obtaining the phase diagram of QCD at
non-zero density using lattice simulations as well as models of QCD.
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(Left) Conjectured phase diagram of QCD in the µ - T plane. (Right) Detailed

possible phase diagram from an NJL model (from Alford arXiv:0907.0200).



Partition Function of QCD

The partition function of QCD at finite temperature T = 1/β, for Nf

quark flavors, each with a mass mf and coupled to a chemical potential µf

is:

ZQCD =

∫

DADψ̄Dψe−
R β

0 dτ
R

d3
xLQCD

where ψ and ψ̄ are the fundamental and anti-fundamental fermion fields,
respectively, and A is the SU(N) gauge field, Aµ = Aa

µT
a.

The Lagrangian is

LQCD =
1

4g2
TrF (FµνFµν) +

Nf
∑

f =1

ψ̄f ( /DF (A)− γ0µf + mf )ψf ,

with covariant derivative

Dµ(A) ≡ ∂µ − Aµ.



What makes QCD at non-zero µ so difficult?

The Sign Problem:
QCD at finite quark chemical potential µ has a complex action:

eSf = exp

∫

Dψ̄Dψe
−

R β

0 dτ
R

d3xψ̄
“

/D
F
(A)−γ0µ+m

”

ψ

= log det ( /DF (A)− γ0µ+ m) ∼
∞

∑

n=1

[

enβµe iθin + e−nβµe−iθin
]

The boltzmann weight e−S is complex so it is not possible to perform
lattice simulations which use importance sampling.

The sign problem also complicates large N analysis: In the large N

limit the saddle point approximation becomes valid, but the stationary
point of a complex action with respect to the angles of the Polyakov

line P = Pe
R β

0
dt A0(x) = diag{e iθ1 , ..., e iθN } lies in the space where

the angles are complex. Therefore the eigenvalues of the Polyakov
line lie off the unit circle on an arc in the complex plane.

=⇒ Need to generalize our techniques to handle a complex action.



Region of validity of 1-loop calculations

Properties of SU(N) gauge theories on S1 × S3

Valid for min[RS1 ,RS3 ]≪ Λ−1
QCD

◮ R
3 × S1, small S1:
⋆ Good: Allows study at any N and in the limit of large 3-volume.

YM/QCD: m = 0, µ = 0: Gross, Pisarski, Yaffe
(Rev.Mod.Phys.53:43,1981),

⋆ Bad: Have to be in the limit of high temperatures (or small S
1)

◮ S3 × S1, small S3:
⋆ Good: Allows study at any temperature (or any S

1).

YM: Aharony et al (hep-th/0310285 (JHEP)),
⋆ Bad: Must be in small 3-volume. Finite N studies are more

complicated.



1-loop Lagrangian

Introduce fluctuations around a background field: A0 = α+ gA0,
then gauge fix and retain the one-loop contributions:

LQCD =− 1

2
A

a
0 (D2

0 (α) + ∆(s))A a
0 −

1

2
Ba

i (D2
0 (α) + ∆(v ,T ))Ba

i

− 1

2
C a

i (D2
0 (α) + ∆(v ,L))C a

i − c̄(D2
0 (α) + ∆(s))c

+

Nf
∑

f =1

ψ̄f ( /DF (α)− γ0µf + mf )ψf

where Ai = Bi + Ci .

Bi = transverse: ∇iBi = 0

Ci = longitudinal: Ci = ∇i f



1-loop partition function
Performing the Gaussian integrals the almost-cancellation of the scalar
field contributions simplifies the one loop effective partition function:

Z (α) =

det
1/2
ℓ=0

(

D2
0 (α) + ∆(s)

)

det−1
(

−D2
0 (α) + ∆(v ,T )

)

detNf ( /DF (α)− γ0µ+ m)

Eigenvalues εl and degeneracies dl of Laplacians on S3:

∆(type)Ωj ,l ,m1,m2
(θ1, ..., θ3) = −ε(type)2

l Ωj ,l ,m1,m2
(θ1, ..., θ3)

Example: scalars

ε
(s)2
l = l(l + 2)/R2

d
(s)
l = (l + 1)2

where l = 0, 1, ..., and R is the radius of S3.



1-loop partition function: S1 contribution

The eigenvalues of the Dirac operator can be computed in frequency space
in terms of the Matsubara frequencies:

D0(α)→ iω−
n − α,

where the Matsubara frequencies, for antiperiodic (thermal) boundary
conditions are

ω−
n = (2n + 1)π/β.

We define the Polyakov loop:

P = Pe
R β

0
dt A0(x) = eβα = diag{e iθ1 , ..., e iθN }



1-loop effective action
Simplification of the effective partition function leads gives the effective
action

S(P) = − log Z (P)

=

∞
∑

n=1

1

n
(1− zb(nβ/R)) TrAPn

+
∞

∑

n=1

(−1)n

n
Nf zf (nβ/R ,mR)

[

enβµTrFPn + e−nβµTrFP†n
]

,

where

zb(β/R) =
∑∞

ℓ=1 d
(v ,T )
ℓ e−βε

(v,T )
ℓ = 2

∞
∑

ℓ=1

ℓ(ℓ+ 2)e−nβ(ℓ+1)/R

zf (β/R ,mR) =
∑∞

ℓ=1 d
(f )
ℓ e−βε

(f ,m)
ℓ = 2

∞
∑

ℓ=1

ℓ(ℓ+ 1)e
−β

q

(ℓ+ 1
2
)2+m2R2/R

For the pure Yang-Mills theory the weak-coupling analogue of the
deconfinement transition temperature can be calculated in the large N

limit: TdR ≃ 0.759 or βd/R ≃ 1.317 [Aharony et al (hep-th/0310285)].



Important observables
At finite N we can calculate observables by numerically performing the
integrals over the gauge field angles θi .

〈O〉 ≡
∫

[dθ]e−SO
Z

, Z =

∫

[dθ]e−S .

Polyakov loop order parameters for phase transitions: 〈TrP〉, 〈TrP†〉.

P1 = 〈TrP〉

P−1 = 〈TrP†〉
◮ These should differ for N > 2.

Average Phase: 〈e iφ〉pq ≡ Z/Zpq.
◮ This tells us where the sign problem is severe.

Average number N = 〈Nquarks − Nantiquarks 〉.
◮ Gives the net number of quarks allowed at a given value of µ.

Pressure: P
Energy: E



Average fermion number N (N = 3, Nf = 1, mR = 0)
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QCD on S1 × S3 with m = 0,
β/R = 30 (low T).

N =
1

β

(

∂ lnZ

∂µ

)

=
−1

βZ

∫

[dθ] e−S

(

∂S

∂µ

)

N −−−→
β→∞

2Nf

Z

∫

[dθ] e−S
∞
∑

l=1

N
∑

i=1

l(l + 1)

[

eβµ

eβµ + e−iθi+β(l+1/2)/R

]

Each level L starts at (µR)0 = L + 1/2 and has:

height : hL = NNf

L
∑

l=1

2l(l + 1); width : w = ∆(µR) = 1



Classical non-linear O(2) sigma-model results from lattice

(Banerjee and Chandrasekharan, arXiv:1001.3648)

0.75 1 1.25 1.5 1.75 2
µ

0

1

2

3

4

5

6

<
 N

 >

Average charge number

0 0.5 1 1.5
µ

0

1

2

3

4

<
 N

 >

L=2
L=4
L=6
L=8
L=12
L=16

Levels appear to go away with in-

creasing Ls = L, but this may not be

true if Lt/Ls is kept fixed at a large

value.



Polyakov lines: P1 = 〈TrP〉 and P−1 = 〈TrP†〉 for m = 0
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P1 ≡
∫

[dθ]e−S
∑N

i=1 e iθi

Z
,

P−1 ≡
∫

[dθ]e−S
∑N

i=1 e−iθi

Z
.

P1 6= P−1 because the non-zero chem-
ical potential led to
Sf ∼

∑∞
n=1

[

enβµe iθin + e−nβµe−iθin
]

There is a spike in P1 and P−1 corresponding to each jump in the
average fermion number, N .

Deconfinement occurs in between the levels, as they are being filled.

Given our notation, P−1 always preceeds P1 at each transition.



Polyakov lines: P1 and P−1 with increasing µ
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As µ increases the peaks of P1 and P−1 get wider indicating that
the regions of deconfinement become larger with increasing µ.



Average phase 〈e iφ〉pq for m = 0
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〈e iφ〉pq ≡
Z

Zpq
,

where the denominator is the “phase
quenched” (real action) partition
function:

Zpq =

∫

[dθ]
∣

∣

∣
e−S

∣

∣

∣
=

∫

[dθ]eRe[−S]

The average phase shows where the sign problem is severe.

〈e iφ〉pq is smallest (largest) when |P1 −P−1| is largest (smallest).



Large N theory at low T

In the large N limit the saddle point method is valid and it is possible to
solve for several observables analytically. Considering a single level
transition and performing the sum over n the action reduces to

S(θi) = −1

2

N
∑

i ,j=1

log sin2

(

θi − θj
2

)

+ N

N
∑

i=1

V (θi)

V (θ) = iN θ − σ log
(

1 + ξe iθ
)

N is a Lagrange multiplier necessary to satisfy the detP = 1
constraint:

∑N
i=1 θi = 0.

σ ≡ σl ≡ 2l(l + 1) N
Nf

ξ ≡ exp (β(µ− ε))
ε ≡ εl ≡

√

m2 + (l + 1/2)2R−2



Equation of Motion

The saddle point solution is found by solving the equation of motion
∂S/∂θi = 0. This becomes:

iN − iσξe iθi

1 + ξe iθi
=

1

N

∑

j(6=i)

cot

(

θi − θj
2

)

Define the eigenvalues of the Polyakov line: zi = e iθi . Then the equation
of motion is

N − σξzi

1 + ξzi

=
1

N

∑

j(6=i)

zi + zj

zi − zj

The trace of the Polyakov line is

Pn = 〈TrPn〉 = 1

N

N
∑

i=1

e inθi

=⇒ P−n 6= P∗
n (〈TrP−n〉 6= 〈TrPn〉∗) for the saddle point solution.



Fermion number

Adding EOMs for all the θis we find that the Lagrange multiplier is

N −−−−→
N→∞

1

N

∑

i

σξzi

1 + ξzi
=

T

N2

∂ log Z

∂µ

which is the effective fermion number, N = N /N2, valid in the large N

limit.

Limits:
As ξ → 0 N → 0,

As ξ →∞ N → σ.

This is in agreement with the N = 3 results for a single level transition.



Small ξ confined phase

As ξ (µ) increases from 0 the eigenvalues are continuously distributed
along a closed contour C in the z-plane up to some critical value.

It is useful to consider a map between the theory on the unit circle and the
theory in the complex z-plane of the Polyakov line eigenvalues. To this end

1

N

∑

i

−→
∫ π

−π

ds

2π
=

∮

C

dz

2πi
̺(z) ,

The contour is given by the inverse map z(s), which can be obtained by
solving the differential equation

i
ds

dz
= ̺(z)

subject to the initial condition z = e is when ξ = 0.



Constraints

The distribution must satisfy the normalization condition

∮

C

dz

2πi
̺(z) = 1

and the det P = 1 constraint
∫

C

dz

2πi
̺(z) log z = 0



EOM for eigenvalues on a closed contour

Using
1

N

∑

i

−→
∫ π

−π

ds

2π
=

∮

C

dz

2πi
̺(z)

we convert the EOM to an integral form

zV ′(z) = P

∮

C

dz ′

2πi
̺(z ′)

z + z ′

z − z ′
, zV ′(z) = N − σξz

1 + ξz
.

where P indicates principal value and the integral over the closed contour
allows for evaluation of the right-hand side using Cauchy’s theorem.



Distribution ̺(z) for eigenvalues on a closed contour C
We start from the distribution ̺(z) with z ≡ re iφ in the form of
delta-functions:

1

N

N
∑

j=1

=

∫

drdφ
1

N

N
∑

j=1

δ(r − rj)δ(φ − φj)

=

∮

dz

iz

1

N

N
∑

j=1

δ(φ − φj − i log(r/rj))

so

̺(z) =
2π

zN

N
∑

j=1

δ(φ − φj − i log(r/rj ))

then we can solve the EOM assuming using this most general form to
obtain the form constrained by the potential:

̺(z) =
c1

c2z
− N

c2z
+
σξ/c2

1 + ξz
∝ V ′(z)



Distribution ̺(z) in the small ξ confined phase

The small ξ confined phase with the pole −ξ−1 outside. The EOM and
the normalization condition give

̺(z) =
1

z
+

σξ

1 + ξz
.

with N = 0 as expected.

Solving the differential equation i ds
dz

= ̺(z) leads to

e is = z(1 + ξz)σ

which we invert to get the contour z(s). The Polyakov lines are

P1 =

∫

C

dz

2πi
̺(z)z = 0 , P−1 =

∫

C

dz

2πi
̺(z)

1

z
= σξ .

where P−1 6= P∗
1 as advertised.



Extent of the small ξ confined phase

As ξ is increased the condition that the pole −ξ−1 lies outside C must
break down. Indeed, as ξ is increased there comes a point when ̺(z)
vanishes, z = − 1

ξ(1+σ) . This happens when

ξ = ξ1 =
σσ

(1 + σ)1+σ

and a gap opens up on the negative z-axis signaling a phase transition as
in the matrix model of Gross and Witten [Phys. Rev. D 21 (1980) 446].

In terms of µ and ε the line of transitions in the (µ, T ) plane is

µ = ε− T
[

(1 + σ) log(1 + σ)− σ log σ
]

valid in the low T limit.



Large ξ confined phase

The vanishing of the potential term in the action in the large ξ limit
requires that the contour closes here too. The analysis is similar to that of
the smal ξ confined phase and we find that

̺(z) =
1 + σ + ξz

z(1 + ξz)
,

from the requirement that −ξ−1 lies inside C. This gives N = σ as
expected and the level is occupied.

The Polyakov line expectation values are

P1 =
σ

ξ
, P−1 = 0 .

where comparing with the small ξ confined phase P±1 swaps over along
with the replacement ξ → ξ−1.



Extent of the large ξ confined phase

As ξ is decreased the condition that the pole −ξ−1 lies inside C must
break down. Indeed, as ξ is decreased there comes a point when ̺(z)
vanishes, z = −1+σ

ξ . This happens when

ξ = ξ2 =
(1 + σ)1+σ

σσ
.

and a gap opens up again on the negative z-axis.

In terms of µ and ε the line of transitions in the (µ, T ) plane is

µ = ε+ T
[

(1 + σ) log(1 + σ)− σ log σ
]

valid in the low T limit.



The deconfined (open) phase: ξ1 ≤ ξ ≤ ξ2

In the deconfined phase the distribution has a gap and the eigenvalues lie
on an arc C in the complex z-plane with endpoints z̃ and z̃∗. To solve for
the case where the contour is open it is necessary to use the resolvent /
spectral curve method. In anaolgy with the Gross-Witten-Wadia model the
resolvent is

ω(z) = − 1

N

∑

j

z + zj

z − zj

= −
∫

C

dz ′

2πi
̺(z ′)

z + z ′

z − z ′

which is continuous everywhere except on the contour which which lies on
a (square root) branch cut in the z-plane. It is clear that

lim
|z |→0

ω(z) = 1 , lim
|z |→∞

ω(z) = −1 .

We take the resolvent to be everywhere continuous except over the branch
cut. Then from the Plemelj formulae the EOM is

zV ′(z) = −1

2

[

ω(z + ǫ) + ω(z − ǫ)
]

, z ∈ C



The distribution of the eigenvalues in the deconfined phase
The spectral density of eigenvalues is obtained from

z̺(z) =
1

2

[

ω(z + ǫ)− ω(z − ǫ)
]

, z ∈ C .

which implies that we can solve for various observables using an average of
the form

∫

C

dz

2πi
̺(z)F (z) =

∮

C̃

dz

4πiz
ω(z)F (z)

Following the technique of Wadia [EFI-79/44-Chicago] we solve the EOM
for the resolvent and density of eigenvalues

ω(z) = −zV ′(z)+f (z)
√

(z − z̃)(z − z̃∗) , z̺(z) = f (z)
√

(z − z̃)(z − z̃∗) .

where
f (z) =

σ

(1 + ξz)
∣

∣

1
ξ + z̃

∣

∣

,

z̃ =
−1

ξ (1 + σ −N )2

[

N 2 + 1 + σ −Nσ + 2i
√

N (σ −N ) (1 + σ)
]

.



Fermion number and Polyakov lines
We impose the SU(N) condition

∮

C̃

dz

4πiz
ω(z) log z = 0 .

to obtain the effective fermion number N from

ξ =
(σ −N )σ−N (1 +N )1+N

NN (1 + σ −N )1+σ−N
.

The Polyakov lines are obtained from an expansion of the resolvent

ω(z) = −1− 2
∞

∑

n=1

1

zn
Pn

ω(z) = 1 + 2

∞
∑

n=1

zn
P−n

For a single winding

P1 =
N

σ + 1−N
1

ξ
, P−1 =

σ −N
1 +N ξ



Large N theory at low T
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The discontinuities in the effective fermion number and the Polyakov
lines mark the third-order Gross-Witten-Wadia transitions.



Distribution in the deconfined phase
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gives the distribution of
the eigenvalues of the
Polyakov line, showing
the transition from the
small ξ closed phase (in
red), the open phase
(in blue) and the large
ξ closed phase (green).



Preliminary lattice results from 2-color QCD

Simulation results for N = 2 QCD confirm the level structure of the
fermion number and the associated spikes in the Polyakov line at each
level transition. The curious smooth → sharp feature of the observables at
the transitions needs study to determine if it is a result of larger coupling,
or perhaps resulting from working on the 4-torus.



Strong coupling lattice results from 2-color QCD

Simulation results from N = 2 QCD considering larger coupling strength
(smaller β = 2N/g2) show that the spikes in the Polyakov line are scaled
down. A small spike in P1 is expected around µ = 1.2 but more data is
needed to determine if it is there.



Conclusions

QCD at finite chemical potential on S1 × S3 has a complex action
which results the stationary solution lying in the configuration space
of complexified gauge fields.

Expectation values for observables can be obtained at finite N by
numerically integrating over the gauge fields.

Observables and the distribution of the gauge field eigenvalues can be
calculated analytically in the large N limit using the saddle point
method of Gross, Witten, and Wadia generalized to deal with a
complex action.

For small mR , the fermion number as a function of the chemical
potential suggests a level-structure where the level transitions
correspond to spikes in the Polyakov line.

For large mR , a continuum limit is obtained and the observables
exhibit the “Silver blaze” feature, remaining zero until onset is
reached at µ = m. The confinement-deconfinement transitions return
for sufficiently large µ.



Outlook

Add more flavors and look for color-superconducting phases through
calculation of observables like ψψ, (ψ̄ψ)2

Make a connection with Complex Langevin which is a
non-perturbative technique

Consider higher-loop corrections and go beyond the Gaussian
approximation to obtain effects from increased coupling strength

Formulate a related theory from the gravity side (eg. N = 4 SYM +
fundamental flavor branes and chemical potential)

Calculate the phase diagram for imaginary chemical potential and
compare with lattice simulations.



Continuum results (large mR)
Since all of our observables are a function only of β/R , mR , or µR , then
we can obtain a continuum limit by taking:

β/R small (high T perturbation theory),
µR large (high density perturbation theory),
mR large (heavy quarks).

We take mR large. Then, in the vicinity of µ = m:

zf (nβ/R ,mR) = 2

∞
∑

l=0

l(l + 1)e−nβ
√

(l+1/2)2R−2+m2

= 2

∫ ∞

0
dy

(

y2 − 1

4

)

e−
nβ

R

√
y2+m2R2

+ 4

∫ ∞

mR

dy
y2 + 1

4

e2πy + 1
sin

(

nβ

R

√

y2 −m2R2

)

−−−−−→
mR→∞

2

∫ ∞

0
dy

(

y2 − 1

4

)

e−n(β/R)
√

y2+m2R2



N for m→∞
For non-zero quark mass the
expectation value N exhibits ”Silver
Blaze” behavior: Bulk observables are
zero until onset.

Onset occurs at the mass of the
lightest particle µ ≃ m.
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N −−−→
β→∞

2Nf

Z

∫

[dθ] e−S

∫ ∞

0
dy(y2−1/4)

N
∑

i=1

[

eβµ

eβµ + e−iθi+(β/R)
√

y2+m2R2

]

Each level L has:

height : hL = NNf

L
∑

l=1

2l(l + 1)→ NNf

∫ L

0
dy 2(y2 − 1/4)

width : ∆(µR)→
(

√

(y + dy)2 + m2R2 −
√

y2 + m2R2

)

→ 0



N , P , E approach the Stefan-Boltzmann limit
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The Stefan-Boltzmann limit is the zero interaction free fermion limit.
On S1 × S3 we obtain it from the one-loop result taking all the
θi = 0, corresponding to the “deconfined” phase, e. g.

NSB −−−→
β→∞

2NNf

∫ ∞

0
dy(y2 − 1/4)

[

eβµ

eβµ + e(β/R)
√

y2+m2R2

]



Polyakov liness: P1 and P−1 for m→∞
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P1 and P
−1 as a function of

chemical potential for large quark

mass near onset at µR = mR =

30. N = 3, Nf = 1 β/R = 30

(low T ).

At low but non-zero
temperatures the
confinement-deconfinement
oscillations can be delayed by
taking mR →∞.

The transition in µR occurs
around onset at mR and
becomes sharper with
increasing mR .

The integral approximation to
zf (curves) breaks down
shortly after the onset
transition and the oscillations
return. The larger we take
mR , the farther in µR we can
go before breakdown.



Average phase 〈e iφ〉pq
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In the limit of large mR , spike
in the average phase as a
function of µR marks the
onset transition. This is
followed by a brief respite from
large phase fluctuations.

Again we find that 〈e iφ〉pq is
smallest (largest) when
|P1 −P−1| is largest
(smallest).



Successful techniques that deal with or avoid the sign

problem
Lattice techniques valid for µ/T < 1

Taylor expansion

Reweighting

Imaginary µ + analytic continuation

Infinite volume perturbation theory

chiral perturbation theory

large µ perturbation theory

Using models

2-color QCD

Random Matrix Theory

Nambu-Jona-Lasinio Models

AdS/CFT

Other (New)

Complex Langevin

Finite spatial volume perturbation theory (this talk)
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