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Outline

@ Overview of QCD at non-zero quark chemical potential
@ Formulation of QCD on S* x S3 using perturbation theory

@ Results for various observables for N =3 and N = oo, preliminary
N = 2 lattice results.



Conjectured phase diagram of QCD

Progress has been made towards obtaining the phase diagram of QCD at
non-zero density using lattice simulations as well as models of QCD.
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(Left) Conjectured phase diagram of QCD in the - T plane. (Right) Detailed
possible phase diagram from an NJL model (from Alford arXiv:0907.0200).




Partition Function of QCD

The partition function of QCD at finite temperature T = 1/, for Ny
quark flavors, each with a mass mys and coupled to a chemical potential ur
is:

Zqcp = / DADGDye o 97 #xLaco

where 1 and v are the fundamental and anti-fundamental fermion fields,
respectively, and A is the SU(N) gauge field, A, = A7 T°.

The Lagrangian is

Ny
1 -
Lqocp = @TTF (FpuwFuv) + Z%f (Pe(A) = vopr + me) vy,
F=1

with covariant derivative

Du(A) = 8, — A,.



What makes QCD at non-zero u so difficult?
The Sign Problem:

QCD at finite quark chemical potential ;1 has a complex action:

&SF — eXp/DzZque_ I3 dr [ & (B (A)—optm) v

o0

= logdet (P (A) — yop + m) ~ Z [e”ﬁ“eiaf" + e MBug=ibin

n=1

@ The boltzmann weight e~ is complex so it is not possible to perform

lattice simulations which use importance sampling.

@ The sign problem also complicates large N analysis: In the large N
limit the saddle point approximation becomes valid, but the stationary
point of a complex action with respect to the angles of the Polyakov
line P = ﬂefoﬁ dt Ao(x) — diag{eial, . eieN} lies in the space where
the angles are complex. Therefore the eigenvalues of the Polyakov
line lie off the unit circle on an arc in the complex plane.

—> Need to generalize our techniques to handle a complex action.



Region of validity of 1-loop calculations

Properties of SU(N) gauge theories on S! x S3
o Valid for min[Rs1, Rss] < Agep
» R3 x S, small St
* Good: Allows study at any N and in the limit of large 3-volume.
YM/QCD: m =0, = 0: Gross, Pisarski, Yaffe
(Rev.Mod.Phys.53:43,1981),

* Bad: Have to be in the limit of high temperatures (or small S')
» 53 x S1, small S3:
* Good: Allows study at any temperature (or any S*).
YM: Aharony et al (hep-th/0310285 (JHEP)),

* Bad: Must be in small 3-volume. Finite N studies are more
complicated.



1-loop Lagrangian

Introduce fluctuations around a background field: Ay = a + g%,
then gauge fix and retain the one-loop contributions:

Locp =— —% (D3 () + &) — —Ba(Do( ) +AMT)B?

- §Cia(Do(a) + A —2(D5(e) + AF))e

N¢
+ D br(Dp(a) = vopr + me)ir
f=1
where A =B+ C.

@ B; = transverse: V;B; =0
o (; = longitudinal: C; = V;f



1-loop partition function

Performing the Gaussian integrals the almost-cancellation of the scalar
field contributions simplifies the one loop effective partition function:

Z(a) =

dety/ (D3(a) + A®) det™ (~D3(a) + A“T)) det™ (Pr(a) — Yop + m)

Eigenvalues £, and degeneracies d of Laplacians on S3:

A(type)Qj,/,ml,m2(917 v l3) = _Estypepgj,l,ml,mg (01, ...,63)

Example: scalars
2 — (14 2)/R?

di) = (1 4+ 1)

where / = 0,1, ..., and R is the radius of S3.



1-loop partition function: S* contribution

The eigenvalues of the Dirac operator can be computed in frequency space
in terms of the Matsubara frequencies:

Do(a) — iw, — a,

where the Matsubara frequencies, for antiperiodic (thermal) boundary
conditions are

w, = (2n+1)7/p.
We define the Polyakov loop:

P = Pels dthld) — o _ diag{e™®, ..., e/}



1-loop effective action

Simplification of the effective partition function leads gives the effective
action

S(P)=— Iog Z(P)

Z (1 — zp(nB/R)) TraP"
n=1

+Z

) Neze(nf/R, mR) [ MOHTy Py e‘”ﬁ“Tr,:PT”} ,

where .
oo v _gelvD) n
2(B/R) = LZyd e " =23 (04 2)e /R
/=1
2(B/R.mR) = Y52, dDe 5™ — 237 (04 1)e PV EHEPEmRR

For the pure Yang-Mills theory the weak-coupling analogue of the
deconfinement transition temperature can be calculated in the large N
limit: TyR ~ 0.759 or B4/R ~ 1.317 [Aharony et al (hep-th/0310285)].



Important observables

At finite N we can calculate observables by numerically performing the
integrals over the gauge field angles 6;.

e—S
(0) = ”‘w]%, 7= /[da]e—s.

@ Polyakov loop order parameters for phase transitions: (TrP), (TrPT).
P = (TrP)
P_y = (TrPY)

» These should differ for N > 2.
Average Phase: <ei¢>pq =Z7Z/Zpq.
» This tells us where the sign problem is severe.
Average number N = (Nguarks — Nantiquarks)-
» Gives the net number of quarks allowed at a given value of .

Pressure: P

(]

Energy: E



Average fermion number 4" (N =3, Nf =1, mR = 0)
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Each level L starts at (uR)o = L+ 1/2 and has:

L
height : b = NN¢ Y 21(1 + 1); width: w = A(uR) =1



Classical non-linear O(2) sigma-model results from lattice
(Banerjee and Chandrasekharan, arXiv:1001.3648)
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Polyakov lines: & = (TrP) and &_; = (TrP") for m = 0
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@ There is a spike in &?; and &_; corresponding to each jump in the
average fermion number, 4.

@ Deconfinement occurs in between the levels, as they are being filled.

@ Given our notation, &7_; always preceeds &?; at each transition.



Polyakov lines: &, and &?_; with increasing u
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@ As p increases the peaks of &1 and &?_; get wider indicating that
the regions of deconfinement become larger with increasing p.



Average phase (e/?),, for m =0
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@ The average phase shows where the sign problem is severe.
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o (e'?),q is smallest (largest) when |22 — &_1| is largest (smallest).



Large N theory at low T

In the large N limit the saddle point method is valid and it is possible to
solve for several observables analytically. Considering a single level
transition and performing the sum over n the action reduces to

:——Zlogsm ( >+NZV

ij=1
V(0) = iNO — o log (1 + §ei6>

o N is a Lagrange multiplier necessary to satisfy the det P =1
constraint: SV, 6; = 0.

°oo=o0;=2(1+1)F
o {=exp(B(n—e))
o c=¢ =/m+([+1/2)2R2




Equation of Motion
The saddle point solution is found by solving the equation of motion
05/00; = 0. This becomes:

. I'Ofeie" o 1 0; —0;
IN_i—NZCOt<T>
J(#i)

14 et

Define the eigenvalues of the Polyakov line: z; = e/, Then the equation

of motion is
sz,' 1 zi + Zj

N —

thez Njghz—a

The trace of the Polyakov line is

Py = (TeP") = Zem@

= P_,# P} ((TrP~") # (TrP")*) for the saddle point solution.



Fermion number

Adding EOMs for all the ;s we find that the Lagrange multiplier is

1 oz T OlogZ
N— = =
N—oo N4=1+&z N2 Ou

1

which is the effective fermion number, N = JV/Nz, valid in the large N
limit.

Limits:
As £ -0 N — 0,
As £ — 0 N —o.

This is in agreement with the N = 3 results for a single level transition.



Small £ confined phase

As & (u) increases from 0 the eigenvalues are continuously distributed
along a closed contour C in the z-plane up to some critical value.

It is useful to consider a map between the theory on the unit circle and the
theory in the complex z-plane of the Polyakov line eigenvalues. To this end

—Z / 27{27“@()

The contour is given by the inverse map z(s), which can be obtained by
solving the differential equation

.ds
IE = 0(2)

subject to the initial condition z = e’ when & = 0.



Constraints

The distribution must satisfy the normalization condition

dz
—_— = 1
?é 22

and the det P = 1 constraint

/E (z)logz=0

o omi®



EOM for eigenvalues on a closed contour

Using

/\/Z / —}ﬁzmg@

we convert the EOM to an integral form

z+z rooy o0&z
V'(z) = ‘Bj{zm z2V'(z) =N —

-z’

where P indicates principal value and the integral over the closed contour
allows for evaluation of the right-hand side using Cauchy's theorem.



Distribution o(z) for eigenvalues on a closed contour C

We start from the distribution o(z) with z = re’® in the form of
delta-functions:

1Y 1o
N; - /drdqbﬁjz_;(Xr —1;)6(¢ — ¢;)
N

_ 7{ d_% > 6(6 — o) — ilog(r/r))

J=1

SO o N
o(2) = 25 " 66 — ¢ — ilog(r/1)
j=1

then we can solve the EOM assuming using this most general form to
obtain the form constrained by the potential:

g(z):—l—ﬁ+L/Czo<v'(z)

c
0z oz 1+4+€&z



Distribution o(z) in the small ¢ confined phase

The small ¢ confined phase with the pole —¢~1 outside. The EOM and
the normalization condition give

with V' = 0 as expected.

Solving the differential equation /% = o(z) leads to

e =z(1+¢2)°

which we invert to get the contour z(s). The Polyakov lines are

@12/;0(2)2207 @—1=/£Q(Z)l = 0§ .
c Tl C

27 z

where &_1 # &7 as advertised.



Extent of the small £ confined phase

As ¢ is increased the condition that the pole —¢71 lies outside C must
break down. Indeed as £ is increased there comes a point when o(z)

vanishes, z = £(1+o) This happens when
O.O'
N

and a gap opens up on the negative z-axis signaling a phase transition as
in the matrix model of Gross and Witten [Phys. Rev. D 21 (1980) 446].

In terms of u and e the line of transitions in the (u, T) plane is

p=¢ec—T[(1+0)log(l+0)—clogo]

valid in the low T limit.



Large & confined phase

The vanishing of the potential term in the action in the large & limit
requires that the contour closes here too. The analysis is similar to that of
the smal £ confined phase and we find that

_l1+o+¢&z
Q(Z)—m7

from the requirement that —¢~1 lies inside C. This gives V' = ¢ as
expected and the level is occupied.

The Polyakov line expectation values are

P = P_1=0.

é- 9
where comparing with the small £ confined phase &7, swaps over along
with the replacement & — £71.



Extent of the large £ confined phase

As ¢ is decreased the condition that the pole —£7! lies inside C must
break down. Indeed, as { is decreased there comes a point when o(z)

vanishes, z = _HTU' This happens when
1+o0)tte
(==
o

and a gap opens up again on the negative z-axis.

In terms of u and ¢ the line of transitions in the (u, T) plane is

p=ec+ T[(1+0)log(l+0c)—ologo]

valid in the low T limit.



The deconfined (open) phase: & < ¢ < &

In the deconfined phase the distribution has a gap and the eigenvalues lie
on an arc C in the complex z-plane with endpoints Z and z*. To solve for
the case where the contour is open it is necessary to use the resolvent /
spectral curve method. In anaolgy with the Gross-Witten-Wadia model the
resolvent is

1 z+z dz , ,z+ 7
w(z) = N;z—zj-_ /C27Tig(z)z—z’

which is continuous everywhere except on the contour which which lies on
a (square root) branch cut in the z-plane. It is clear that

lim w(z)=1, lim w(z)=-1.
|z|]—0 |z|]—o00

We take the resolvent to be everywhere continuous except over the branch
cut. Then from the Plemelj formulae the EOM is

zV'(z) = —%[w(z—ke)—i—w(z—e)] , zeC



The distribution of the eigenvalues in the deconfined phase
The spectral density of eigenvalues is obtained from
1
zo(z) = E[w(z—i-e)—w(z—e)} , zeC.
which implies that we can solve for various observables using an average of

the form
| sme@)F (@) = § ZwF )

2mi ¢ 4miz

Following the technique of Wadia [EFI-79/44-Chicago| we solve the EOM
for the resolvent and density of eigenvalues

w(z) = —zV'(2)+f(2)\/(z = 2)(z — 2*), zo(z) = f(2)\V(z - 2)(z — 2¥).

where

o
f(Z)_(l‘i‘fz—)‘%‘f‘z"
sz |:N2+1+U—NO’+2i\/N(U—N)(1+O') :



Fermion number and Polyakov lines
We impose the SU(N) condition
dz
émw(z)logz =0.
to obtain the effective fermion number N from
B (o _N)a—/\/(l —|—N)1+N
NN+ o - NN

The Polyakov lines are obtained from an expansion of the resolvent

wz)=-1-2) %@n
n=1

§

wz)=1+2) 2"2_,
n=1

For a single winding




Large N theory at low T

0.8r

0.4

@ The discontinuities in the effective fermion number and the Polyakov
lines mark the third-order Gross-Witten-Wadia transitions.



Distribution in the deconfined phase
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gives the distribution of
the eigenvalues of the
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(in blue) and the large
¢ closed phase (green).



Preliminary lattice results from 2-color QCD

N,=N,=2, 3°x64 lattice
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Simulation results for N = 2 QCD confirm the level structure of the
fermion number and the associated spikes in the Polyakov line at each
level transition. The curious smooth — sharp feature of the observables at
the transitions needs study to determine if it is a result of larger coupling,
or perhaps resulting from working on the 4-torus.



Strong coupling lattice results from 2-color QCD

N,=N,=2,3’x64 lattice
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Simulation results from N = 2 QCD considering larger coupling strength
(smaller 3 = 2N/g?) show that the spikes in the Polyakov line are scaled
down. A small spike in &7 is expected around p = 1.2 but more data is
needed to determine if it is there.



Conclusions

@ QCD at finite chemical potential on S! x S3 has a complex action
which results the stationary solution lying in the configuration space
of complexified gauge fields.

@ Expectation values for observables can be obtained at finite N by
numerically integrating over the gauge fields.

@ Observables and the distribution of the gauge field eigenvalues can be
calculated analytically in the large N limit using the saddle point
method of Gross, Witten, and Wadia generalized to deal with a
complex action.

@ For small mR, the fermion number as a function of the chemical
potential suggests a level-structure where the level transitions
correspond to spikes in the Polyakov line.

@ For large mR, a continuum limit is obtained and the observables
exhibit the “Silver blaze" feature, remaining zero until onset is
reached at ;x = m. The confinement-deconfinement transitions return
for sufficiently large p.



Outlook

@ Add more flavors and look for color-superconducting phases through
calculation of observables like 1), (11))?

@ Make a connection with Complex Langevin which is a
non-perturbative technique

@ Consider higher-loop corrections and go beyond the Gaussian
approximation to obtain effects from increased coupling strength

@ Formulate a related theory from the gravity side (eg. N =4 SYM +
fundamental flavor branes and chemical potential)

o Calculate the phase diagram for imaginary chemical potential and
compare with lattice simulations.



Continuum results (large mR)
Since all of our observables are a function only of 3/R, mR, or uR, then
we can obtain a continuum limit by taking:
@ (3/R small (high T perturbation theory),
@ 1R large (high density perturbation theory),
@ mR large (heavy quarks).
We take mR large. Then, in the vicinity of u = m:

z¢(nB/R,mR) =2 Il + 1)e~ V127 R24m?
1=0

:2/°°dy <y2_1>e—"§¢m
4
0

oo y2_|_l nﬂ
Y2 e N LN
R e +1 R

m

mR—oo

SR 2/00 0 <y2 B %) o n(B/R Y2t me R
0



JV fOI' m — o 300 -

integral 4"
@ For non-zero quark mass the S 4

expectation value .4 exhibits " Silver 200} 7
Blaze" behavior: Bulk observables are 5,1 i
zero until onset.

100 - B
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50 - bl

@ Onset occurs at the mass of the
lightest particle u >~ m.
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Each level L has:

L
height : hL_NNfZ2//+1)—>NNf/ dy 2(y? — 1/4)
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width:  A(uR) — <\/(y +dy)2+ m2R%2 — \/y? + m2R2> —0




AN, P, E approach the Stefan-Boltzmann limit
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@ The Stefan-Boltzmann limit is the zero interaction free fermion limit.
On S! x S3 we obtain it from the one-loop result taking all the
0; = 0, corresponding to the “deconfined” phase, e. g.

Nsg —— 2NN / dy(y? — 1/4)

ebu

eﬁlJf + e(rg/R) V y2+m2R2



Polyakov liness: &2 and &Z_1 for m — o

T
mR

——— integral &,

P
P
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nR

A1 and H_;1 as a function of

chemical potential for large quark

mass near onset at uR = mR =
300 N=3 Nr=1p3/R =230
(low T).

@ At low but non-zero

temperatures the
confinement-deconfinement
oscillations can be delayed by
taking mR — oc.

The transition in uR occurs
around onset at mR and
becomes sharper with
increasing mR.

The integral approximation to
z¢ (curves) breaks down
shortly after the onset
transition and the oscillations
return. The larger we take
mR, the farther in uR we can
go before breakdown.



Average phase (e/?) ,,
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Successful techniques that deal with or avoid the sign
problem
Lattice techniques valid for /T <1
@ Taylor expansion
o Reweighting
@ Imaginary i + analytic continuation
Infinite volume perturbation theory
@ chiral perturbation theory

@ large u perturbation theory
Using models

@ 2-color QCD

@ Random Matrix Theory

@ Nambu-Jona-Lasinio Models

o AdS/CFT
Other (New)

@ Complex Langevin

@ Finite spatial volume perturbation theory (this talk)
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