Boundary conditions and consistency of effective theories

Alicja Siwek
IPHC, Université de Strasbourg
IP, Wroclaw University of Technology
J. Polonyi, A. Siwek, PRD 81, 085040 (2010)
Δ-Meeting, Heidelberg, 08.05.2010

Alicja Siwek

Outline

Motivation

Quantum Mechanics
Linear spaces with indefinite norm
Free particle dynamics
Time reversal transformation

Reflection Positivity
Model with higher order time derivatives
Lattice regularization
Positivity of transfer matrix
Boundary conditions
Conclusion

Boundary conditions

 and consistency of effective theoriesAlicja Siwek

Consistency of Effective Theories - Motivation

Effective theories :
\Rightarrow elimination of degrees of freedom - heavy particles

Consequences

- long range correlations
\Rightarrow higher order derivative terms in the effective action
- low energy - truncation of the gradient expansion Two issues:
\Rightarrow specification of states - boundary conditions
\Rightarrow unitarity of the effective theory

Boundary conditions

 and consistency of effective theoriesAlicja Siwek

Real Scalar Field - Example

Motivation

Scalar field governed by the action
$S[\phi]=\int d x\left[\phi\left(\sum_{n=0}^{n_{d}} c_{n} \square^{n}\right) \phi(x)-V(\phi(x))\right]$

- time reversal invariant model
- coefficients c_{n} and potential $V(\phi)$ real and $(-1)^{n_{d}} c_{n_{d}}>0$

Free propagator in momentum space
$D(p)=\left(\sum_{n=0}^{n_{d}}(-1)^{n} c_{n}\left(p^{2}\right)^{n}\right)^{-1}=\sum_{j=1}^{n_{d}} \frac{Z_{j}}{p^{2}-m_{j}^{2}}$
\Rightarrow at least one negative Z factor

- negative norm states

Boundary conditions and consistency of effective theories

Alicja Siwek

Motivation

Quantum Mechanics
Linear spaces with indefinite norm
Free particle dynamics

Linear Space with Indefinite Norm

Linear space H with non-definite metric

1. $\langle u \mid v\rangle=\langle v \mid u\rangle^{*}$
2. $\langle u|(a|v\rangle+b|w\rangle)=a\langle u \mid v\rangle+b\langle u \mid w\rangle$
3. $H=H_{+}+H_{-}$where $H_{ \pm}=\{|u\rangle \mid\langle u \mid u\rangle \gtrless 0\}$ and $\left\langle H_{+} \mid H_{-}\right\rangle=0$
4. $|u\rangle=\left|u_{+}\right\rangle+\left|u_{-}\right\rangle,\left\langle u_{ \pm} \mid u_{ \pm}\right\rangle \gtrless 0$

- basis $\{|n\rangle\}$, non-definite metric $\eta_{m n}=\langle m \mid n\rangle$ where $\eta^{\dagger}=\eta$
- matrix elements $A_{j k}$ of an operator A defined by $\langle m| A|n\rangle=\sum_{k} \eta_{m k} A_{k n}$

Boundary conditions

 and consistency of effective theoriesAlicja Siwek

Motivation

Self-adjoint and Skew-adjoint Operators

\Rightarrow adjoint \bar{A} and Hermitian adjoint A^{\dagger}

$$
\langle u| \bar{A}|v\rangle=\langle v| A|u\rangle^{*} \text { so } \bar{A}=\eta^{-1} A^{\dagger} \eta \neq A^{\dagger}
$$

- Condition : $\bar{A}=\sigma_{A} A$
\Rightarrow valid for self-adjoint operators, $\sigma_{A}=+1$, and skew-adjoint operators, $\sigma_{A}=-1$.
- Eigenvectors : $A|\lambda\rangle=\lambda|\lambda\rangle, A|\rho\rangle=\rho|\rho\rangle$
\Rightarrow relation for the spectrum

$$
\left(\lambda-\sigma_{A} \rho^{*}\right)\langle\rho \mid \lambda\rangle=0
$$

Boundary conditions

 and consistency of effective theoriesAlicja Siwek

Motivation

Free Particle Dynamics

Canonical pair of operators \hat{q}_{σ} and \hat{p}_{σ}

\Rightarrow either self- or skew-adjoint
\Rightarrow commutation relation $\left[\hat{q}_{\sigma}, \hat{p}_{\sigma}\right]=i$
Real spectrum
$\Rightarrow \eta\left(q, q^{\prime}\right)=\delta\left(q-\sigma q^{\prime}\right)$ and $\eta\left(p, p^{\prime}\right)=\delta\left(p-\sigma p^{\prime}\right)$
Closing relations in coordinate and momentum space
$\mathbb{1}=\int d q|\sigma q\rangle\langle q|=\int d p|\sigma p\rangle\langle p|$
Hamiltonian of harmonic oscillator
$\hat{H}_{\sigma}=\frac{\sigma}{2}\left(\hat{p}_{\sigma}^{2}+\hat{q}_{\sigma}^{2}\right)=\sigma \bar{a}_{\sigma} a_{\sigma}$
where operator $a_{\sigma}=\left(\hat{q}_{\sigma}+i \hat{p}_{\sigma}\right) / \sqrt{2}$ and $\left[a_{\sigma}, \bar{a}_{\sigma}\right]=\sigma$

Boundary conditions

 and consistency of effective theories
Alicja Siwek

Motivation

Quantum Mechanics
Linear spaces with indefinite norm

Bounded Hamiltonian Conditions

Case of $\sigma=+1$ (for $\sigma=-1 a \leftrightarrow \bar{a}$)

- operators $b=a_{+}, \bar{b}=\bar{a}_{+}$
- eigenstate of self-adjoint operator $\bar{b} b: \bar{b} b|\lambda\rangle=\lambda|\lambda\rangle$
- double infinite series of states $\cdots, b^{2}|\lambda\rangle, b|\lambda\rangle,|\lambda\rangle, \bar{b}|\lambda\rangle, \bar{b}^{2}|\lambda\rangle, \cdots$
with corresponding eigenvalues

$$
\cdots, \lambda-2, \lambda-1, \lambda, \lambda+1, \lambda+2, \cdots \text { of } \bar{b} b
$$

Bounded Hamiltonian

Series limited on the left or on the right $\rightarrow \lambda$ integer
$\langle\lambda| \bar{b} b|\lambda\rangle=\lambda\langle\lambda \mid \lambda\rangle$ and $\langle\lambda| b \bar{b}|\lambda\rangle=(\lambda+1)\langle\lambda \mid \lambda\rangle$
\Rightarrow either $\lambda \geq 0$ or $\lambda \leq-1$
\Rightarrow either $\operatorname{sign}(\langle\lambda+1 \mid \lambda+1\rangle)=\operatorname{sign}(\langle\lambda \mid \lambda\rangle)$

$$
\text { or } \operatorname{sign}(\langle\lambda-1 \mid \lambda-1\rangle)=-\operatorname{sign}(\langle\lambda \mid \lambda\rangle)
$$

Boundary conditions

 and consistency of effective theoriesAlicja Siwek

Motivation

Time Reversal Properties of Operators

Time reversal Θ (way to trace negative norm states)
$\sigma=+1, \Theta: \hat{q} \rightarrow \hat{q}, \hat{p} \rightarrow-\hat{p}, c \rightarrow c^{*}$
\hat{q}-type operators

- operators with well-defined time reversal parity : $\Theta A=\tau_{A} A$, with $\tau_{A}= \pm 1$
- Heisenberg representation $\Theta: A(t) \rightarrow \bar{A}(-t)$
\Rightarrow for the time derivative $\tau_{\partial_{0} A}=-\tau_{A}$
\Rightarrow self- or skew-adjoint operators $\Theta: A \rightarrow \bar{A}=\sigma_{A} A$
Time parity and the signature of the linear space \Rightarrow

$$
\tau_{A}=\sigma_{A}
$$

Boundary conditions

 and consistency of effective theoriesAlicja Siwek

Motivation

Quantum Mechanics
Reflection Positivity
Model with higher order time derivatives
Lattice regularization

Yang-Mills-Higgs Model in Euclidean

 Space-timeModel with higher order derivatives
\Rightarrow Yang-Mills and scalar fields, imaginary time
$S\left[\phi, \phi^{\dagger}, A\right]=\int d^{d} x\left[K(D)-\phi^{\dagger} L\left(D^{2}\right) D^{2} \phi+V\left(\phi^{\dagger} \phi\right)\right]$

- $D_{\mu}=\partial_{\mu}-i A_{\mu}$ - covariant derivative
- $A_{\mu}=A_{\mu}^{a} \tau^{a}$ - gauge field
- τ^{a} - generators of the gauge group
- K, L - bounded from below, polynomials of D of order at most $2 n_{d}$ and $2 n_{d}-2$, respectively
- $V\left(\phi^{\dagger} \phi\right)$ - scalar field potential

Boundary conditions

 and consistency of effective theoriesAlicja Siwek

Motivation

Quantum Mechanics
Reflection Positivity
Model with higher order time derivatives

Treatment of Higher Orders of Derivatives

Appearance of higher order time derivatives
\Rightarrow Solution in classical systems :

- introduction of new coordinates for each higher order derivative except the last one

$$
\begin{aligned}
& A_{j \mu}(x)=D_{0}^{j} A_{\mu}(x) \text { and } \phi_{j}(x)=\partial_{0}^{j} \phi(x) \\
& \text { for } j=0, \ldots, n_{d}-1
\end{aligned}
$$

- time reversal parity of the coordinates

$$
A_{j \mu}(x): \tau=(-1)^{j+\delta_{\mu, 0}} \text { and } \phi_{j}(x): \tau=(-1)^{j}
$$

- applicable also in case of quantum fields by means of path integral for $A_{j \mu}(x)$ and $\phi_{j}(x)$

Boundary conditions

 and consistency of effective theoriesAlicja Siwek

Theory on the Lattice

Aim

Finding fields with Green functions satisfying Wightman's axioms in real time

- reflection positivity \Rightarrow lattice regularization positivity of the transfer matrix in imaginary time

Lattice

- fields : $\phi(n)=a \phi(x), \phi^{\dagger}(n)=a \phi^{\dagger}(x)$, $U_{\mu}(n)=U_{-\mu}^{\dagger}(n+\hat{\mu})=e^{i g a A_{\mu}(n)}$,
a - lattice spacing, $\hat{\mu}$ - unit vector in direction μ
- gauge transformation : $\phi(n) \rightarrow \omega(n) \psi(n)$, $\phi^{\dagger}(n) \rightarrow \omega^{\dagger}(n) \psi^{\dagger}(n), U_{\mu}(n) \rightarrow \omega(n+\hat{\mu}) U_{\mu}(n) \omega^{\dagger}(n)$

Boundary conditions

 and consistency of effective theoriesAlicja Siwek

Motivation

Quantum Mechanics
Reflection Positivity
Model with higher order time derivatives
Lattice regularization

Partition Function of the Model

Partition function
$Z=\int D[U] D\left[\phi^{\dagger}\right] D[\phi] e^{-S_{L}}$
Lattice action

$$
\begin{aligned}
S_{L}= & \sum_{n} \sum_{\gamma^{\prime}} a_{\gamma^{\prime}} \operatorname{tr} U_{\gamma^{\prime}}(n)+\sum_{n} \phi^{\dagger}(n) \sum_{\gamma} U_{\gamma}^{\dagger}(n) \phi(n+\gamma) b_{\gamma} \\
& +\sum_{n} V\left(\phi^{\dagger}(n) \phi(n)\right)
\end{aligned}
$$

γ^{\prime}, γ - closed and open paths respectively, up to n_{d}
$U_{\gamma}(n)$ - the path ordered product of the link variables along this path
Action S_{L} real
\Rightarrow for each $\gamma, \Theta \gamma$ included in the sums with $a_{\Theta \gamma^{\prime}}=a_{\gamma^{\prime}}^{*}$, $b_{\Theta \gamma}=b_{\gamma}^{*}$

Boundary conditions

 and consistency of effective theories
Identification of Lattice Field Varibles

- regroupment of n_{d} consecutive lattice sites in the time direction with their field variables into a single n_{d}-component field \Rightarrow a single blocked time slice
- fields :

$$
\begin{aligned}
& \phi_{j}(t, \mathbf{n})=\phi\left(n_{d} t+j, \mathbf{n}\right), \\
& U_{j, \mu}(t, \mathbf{n})=U_{\mu}\left(n_{d} t+j, \mathbf{n}\right)
\end{aligned}
$$

with t integer, $j=1, \cdots, n_{d}$

Boundary conditions

 and consistency of effective theoriesAlicja Siwek

Motivation

Quantum Mechanics
Reflection Positivity
Model with higher order time derivatives

Lattice Action in Terms of New Variables

Lattice action

$$
S_{L}=\sum_{t}\left[L_{s}(t)+L_{k m}(t)+L_{k g}(t)\right]
$$

where :

$$
\begin{aligned}
& L_{s}(t)=S_{s}\left[U(t), \phi^{\dagger}(t), \phi(t)\right] \\
& L_{k g}(t)=S_{k g}[U(t), U(t+1)] \\
& L_{k m}(t)=\sum_{t, \mathbf{m}, \mathbf{n}} \phi_{j}^{\dagger}(t+1, \mathbf{m}) \Delta_{j, k}(\mathbf{m}, \mathbf{n} ; U(t), U(t+1)) \phi_{k}(t, \mathbf{n}) \\
& +c . c \text {. }
\end{aligned}
$$

Positivity of transfer matrix condition

For any functional \mathcal{F} of physical fields for positive t

$$
\langle 0| \mathcal{F} \Theta[\mathcal{F}]|0\rangle \geq 0
$$

Boundary conditions

 and consistency of effective theories
Alicja Siwek

Motivation

Quantum Mechanics

Time Reversal of Field Variables

Time reversal of the functional \mathcal{F}
$\Theta \mathcal{F}\left[\phi, \phi^{\dagger}, U\right]=\mathcal{F}\left[\Theta \phi, \Theta \phi^{\dagger}, \Theta U\right]$
with fields

$$
\begin{aligned}
\Theta \phi_{j}(n) & =\phi_{\Theta j}^{\dagger}(\Theta n), \\
\Theta \phi_{j}^{\dagger}(n) & =\phi_{\Theta j}(\Theta n), \\
\Theta U_{j, \mu}(n) & = \begin{cases}U_{\Theta j, \mu}^{\dagger}(\Theta n) & \mu=1,2,3, \\
U_{\Theta j-1, \mu}(\Theta n) & \mu=0, j<n_{d}, \\
U_{j, \mu}(\Theta n-\hat{0}) & \mu=0, j=n_{d},\end{cases}
\end{aligned}
$$

and space-time coordinate $n=(t, \mathbf{n})$

$$
\Theta(t, \mathbf{n})=(-t, \mathbf{n})
$$

\Rightarrow site-inversion realization of time reversal $t \rightarrow-t$

Boundary conditions

 and consistency of effective theoriesAlicja Siwek

Motivation

Quantum Mechanics

Functionals with Well Defined Time Inversion

Parity

Functionals of the type
$\Theta \mathcal{F}\left[\phi(n), \phi^{\dagger}(n), U(n)\right]=\tau_{\mathcal{F}} \mathcal{F}\left[\phi(\Theta n), \phi^{\dagger}(\Theta n), U(\Theta n)\right]$
Combinations of local fields satisfying :

$$
\begin{aligned}
& \phi_{\tau, j}(t, \mathbf{n})=\frac{1}{2}\left[\phi_{j}(t, \mathbf{n})+\tau \phi_{\Theta j}^{\dagger}(t, \mathbf{n})\right], \\
& \phi_{\tau, j}^{\dagger}(t, \mathbf{n})=\frac{1}{2}\left[\phi_{j}^{\dagger}(t, \mathbf{n})+\tau \phi_{\Theta j}(t, \mathbf{n})\right], \\
& U_{\tau, j, \mu}(t, \mathbf{n})=\frac{1}{2}\left[U_{j, \mu}(t, \mathbf{n})+\tau U_{\Theta j, \mu}^{\dagger}(t, \mathbf{n})\right], \quad \mu=1,2,3 \\
& \text { with } j=1, \ldots,\left(n_{d}-1\right) / 2
\end{aligned}
$$

Boundary conditions

 and consistency of effective theoriesAlicja Siwek

Motivation

Quantum Mechanics

Gauge Invariance

Gauge fixing

- gauge transformation
$\omega\left(n_{d} t+j, \mathbf{n}\right)=\left[U_{0}\left(n_{d} t+j-1, \mathbf{n}\right) \cdots U_{0}\left(n_{d} t+1, \mathbf{n}\right)\right]^{\dagger}$
for $2 \leq j \leq n_{d}$ (on the original lattice, with simple time slices)
- cancellation of the time component of the gauge field within the block time slices and $U_{j, 0}(t, \mathbf{n}) \rightarrow \mathbb{1}$ for $j<n_{d}$

Boundary conditions

 and consistency of effective theoriesAlicja Siwek

Motivation

Quantum Mechanics

Proof of Positivity of Transfer Matrix

Lattice action split into three pieces

$$
S_{L}=S_{0}+S_{+}+S_{-}
$$

Time reversal invariance of microscopic dynammics

$$
\begin{aligned}
& S_{ \pm}[\Psi(t)]=\Theta\left[S_{\mp}[\Psi(t)]\right]=S_{\mp}[\Psi(\Theta t)] \\
& S_{0}[\Psi]=S_{0}[\Psi(\Theta t)]
\end{aligned}
$$

Introducing $\Psi=\left(U, \phi^{\dagger}, \phi\right)$
$\langle 0| \mathcal{F} \Theta \mathcal{F}|0\rangle=\int D[\Psi] e^{-S_{0}[\Psi]} e^{-S_{+}[\Psi]} \mathcal{F}[\Psi] e^{-S_{-}[\Psi]} \Theta[\mathcal{F}[\Psi]]$

Boundary conditions

 and consistency of effective theoriesAlicja Siwek

Motivation

Quantum Mechanics
Reflection Positivity
Model with higher order time derivatives

Proof of Positivity of Transfer Matrix Continued

\Rightarrow Time reversal invariance of the vacuum state $\Theta|0\rangle=|0\rangle$

$$
\langle 0| \mathcal{F} \Theta \mathcal{F}|0\rangle=\int D[\Psi] e^{-S_{0}[\Psi]} e^{-S_{+}[\Psi]} \mathcal{F}[\Psi] \Theta\left[e^{-S_{+}[\Psi]} \mathcal{F}[\Psi]\right]
$$

$$
=\int D_{t=0}[\Psi] \int D_{t>0}[\Psi] e^{-\frac{S_{0}}{2}-S_{+}} \mathcal{F} \Theta \mathcal{F} \int D_{\Theta t>0}[\Psi] e^{-\frac{s_{0}}{2}-S_{+}}
$$

Assuming $\tau_{\mathcal{F}}$ - time-reversal parity of $\mathcal{F}[\Psi]$

$$
\langle 0| \mathcal{F} \Theta \mathcal{F}|0\rangle=\tau_{\mathcal{F}}\left(\int D_{t \geq 0}[\Psi] e^{-\frac{1}{2} S_{0}[\Psi]-S_{+}[\Psi]} \mathcal{F}[\Psi]\right)^{2}
$$

For $\tau_{\mathcal{F}}=1$

$$
\langle 0| \mathcal{F} \Theta \mathcal{F}|0\rangle \geq 0
$$

Boundary conditions

 and consistency of effective theoriesAlicja Siwek

Boundary Conditions

Positivity of the transfer matrix

\Rightarrow equations valid for each trajectory in the path integral
Boundary conditions :

$$
\Psi\left(t_{f}\right)=\tau_{\Psi} \Psi\left(t_{i}\right)
$$

- periodic (antiperiodic) boundary conditions for time-reversal even (odd) variables
- generalized KMS conditions

Example :

$$
\begin{gathered}
\phi_{j}(x)=\partial_{0}^{j} \phi(x), \tau=(-1)^{j} \\
\phi_{j}\left(t_{f}, \mathbf{x}\right)=(-1)^{j} \phi_{j}\left(t_{i}, \mathbf{x}\right)
\end{gathered}
$$

Conclusion

- Truncation of the gradient expansion of the effective theory (after elimination of heavy particle modes) \Rightarrow question of unitarity
- Reflection positivity demonstrated for the Yang-Mills-Higgs model with higher order derivatives, within the Fock space span by local, time-reversal invariant functionals of the fields acting on the time-reversal invariant vacuum
- Restriction : generalized KMS boundary conditions

Boundary conditions and consistency of effective theories

Alicja Siwek

Motivation

Quantum Mechanics
Reflection Positivity
Model with higher order time derivatives
Lattice regularization
Positivity of transfer matrix
Boundary conditions
Conclusion

Thank you for your attention!

