Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity

Boundary conditions and consistency of effective theories

Alicja Siwek

IPHC, Université de Strasbourg

IP, Wroclaw University of Technology

J. Polonyi, A. Siwek, PRD 81, 085040 (2010)

 Δ -Meeting, Heidelberg, 08.05.2010

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity

Outline

Motivation

Quantum Mechanics

Linear spaces with indefinite norm Free particle dynamics Time reversal transformation

Reflection Positivity

Model with higher order time derivatives Lattice regularization Positivity of transfer matrix Boundary conditions Conclusion

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity

Consistency of Effective Theories - Motivation

Effective theories :

 \Rightarrow elimination of degrees of freedom - heavy particles

Consequences

- ► long range correlations ⇒ higher order derivative terms in the effective action
- Iow energy truncation of the gradient expansion Two issues :
 - \Rightarrow specification of states boundary conditions

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

 \Rightarrow unitarity of the effective theory

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity

Real Scalar Field - Example

Scalar field governed by the action

$$S[\phi] = \int dx \left[\phi \left(\sum_{n=0}^{n_d} c_n \Box^n \right) \phi(x) - V(\phi(x)) \right]$$

- time reversal invariant model
- ► coefficients c_n and potential $V(\phi)$ real and $(-1)^{n_d}c_{n_d} > 0$

Free propagator in momentum space

$$D(p) = \left(\sum_{n=0}^{n_d} (-1)^n c_n (p^2)^n\right)^{-1} = \sum_{j=1}^{n_d} \frac{Z_j}{p^2 - m_j^2}$$

 \Rightarrow at least one negative Z factor

negative norm states

Alicja Siwek

Motivation

Quantum Mechanics

Linear spaces with indefinite norm

Free particle dynamics Time reversal transformation

Reflection Positivity

Linear Space with Indefinite Norm

Linear space H with non-definite metric

1.
$$\langle u|v \rangle = \langle v|u \rangle^*$$

2. $\langle u|(a|v \rangle + b|w \rangle) = a \langle u|v \rangle + b \langle u|w \rangle$
3. $H = H_+ + H_-$ where $H_{\pm} = \{|u \rangle| \langle u|u \rangle \ge 0\}$ and $\langle H_+|H_- \rangle = 0$
4. $|u \rangle = |u_+ \rangle + |u_- \rangle, \ \langle u_{\pm}|u_{\pm} \rangle \ge 0$

▶ basis { $|n\rangle$ }, non-definite metric $\eta_{mn} = \langle m | n \rangle$ where $\eta^{\dagger} = \eta$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

► matrix elements A_{jk} of an operator A defined by $\langle m|A|n \rangle = \sum_k \eta_{mk} A_{kn}$

Alicja Siwek

Motivation

Quantum Mechanics

Linear spaces with indefinite norm Free particle dynamics

Time reversal transformation

Reflection Positivity

Self-adjoint and Skew-adjoint Operators

 \Rightarrow adjoint \overline{A} and Hermitian adjoint A^{\dagger} $\langle u|\overline{A}|v \rangle = \langle v|A|u \rangle^*$ so $\overline{A} = \eta^{-1}A^{\dagger}\eta \neq A^{\dagger}$

• Condition : $\bar{A} = \sigma_A A$

 \Rightarrow valid for self-adjoint operators, $\sigma_A = +1$, and skew-adjoint operators, $\sigma_A = -1$.

• Eigenvectors : $A|\lambda\rangle = \lambda|\lambda\rangle$, $A|\rho\rangle = \rho|\rho\rangle$

 \Rightarrow relation for the spectrum

$$(\lambda - \sigma_A \rho^*) \langle \rho | \lambda \rangle = 0$$

Alicja Siwek

Motivation

Quantum Mechanics

Linear spaces with indefinite norm

Free particle dynamics Time reversal transformation

Reflection Positivity

Free Particle Dynamics

Canonical pair of operators \hat{q}_{σ} and \hat{p}_{σ}

⇒ either self- or skew-adjoint ⇒ commutation relation $[\hat{q}_{\sigma}, \hat{p}_{\sigma}] = i$

Real spectrum

$$\Rightarrow \eta(m{q},m{q}') = \delta(m{q} - \sigmam{q}') ext{ and } \eta(m{p},m{p}') = \delta(m{p} - \sigmam{p}')$$

Closing relations in coordinate and momentum space

$$1 = \int dq |\sigma q \rangle \langle q | = \int dp |\sigma p \rangle \langle p |$$

Hamiltonian of harmonic oscillator

$$\hat{H}_{\sigma} = rac{\sigma}{2}(\hat{p}_{\sigma}^2 + \hat{q}_{\sigma}^2) = \sigma \bar{a}_{\sigma} a_{\sigma}$$

where operator $a_\sigma = (\hat{q}_\sigma + i \hat{p}_\sigma)/\sqrt{2}$ and $[a_\sigma, \bar{a}_\sigma] = \sigma$

Alicja Siwek

Motivation

Quantum Mechanics

Linear spaces with indefinite norm

Free particle dynamics Time reversal transformation

Reflection Positivity

Bounded Hamiltonian Conditions

Case of
$$\sigma = +1$$
 (for $\sigma = -1 \ a \leftrightarrow \bar{a}$)

- ▶ operators $b = a_+$, $\bar{b} = \bar{a}_+$
- eigenstate of self-adjoint operator $\bar{b}b$: $\bar{b}b|\lambda\rangle = \lambda|\lambda\rangle$
- double infinite series of states $\dots, b^2 |\lambda\rangle, b |\lambda\rangle, |\lambda\rangle, \overline{b} |\lambda\rangle, \overline{b}^2 |\lambda\rangle, \dots$ with corresponding eigenvalues $\dots, \lambda - 2, \lambda - 1, \lambda, \lambda + 1, \lambda + 2, \dots$ of $\overline{b}b$

Bounded Hamiltonian

Series limited on the left or on the right $\rightarrow \lambda$ integer $\langle \lambda | \bar{b}b | \lambda \rangle = \lambda \langle \lambda | \lambda \rangle$ and $\langle \lambda | b \bar{b} | \lambda \rangle = (\lambda + 1) \langle \lambda | \lambda \rangle$ \Rightarrow either $\lambda \ge 0$ or $\lambda \le -1$ \Rightarrow either sign $(\langle \lambda + 1 | \lambda + 1 \rangle) = sign(\langle \lambda | \lambda \rangle)$ or sign $(\langle \lambda - 1 | \lambda - 1 \rangle) = -sign(\langle \lambda | \lambda \rangle)$

Alicja Siwek

Motivation

```
Quantum Mechanics
Linear spaces with indefinite
norm
Free particle dynamics
Time reversal transformation
```

Reflection Positivity

Time Reversal Properties of Operators

Time reversal Θ (way to trace negative norm states)

$$\sigma=+1$$
, $\Theta: \hat{\pmb{q}}
ightarrow \hat{\pmb{q}}, \; \hat{\pmb{p}}
ightarrow -\hat{\pmb{p}}, \; \pmb{c}
ightarrow \pmb{c}^{*}$

 \hat{q} -type operators

- operators with well-defined time reversal parity : $\Theta A = \tau_A A$, with $\tau_A = \pm 1$
- ► Heisenberg representation Θ : $A(t) \rightarrow \bar{A}(-t)$ \Rightarrow for the time derivative $\tau_{\partial_0 A} = -\tau_A$ \Rightarrow self- or skew-adjoint operators Θ : $A \rightarrow \bar{A} = \sigma_A A$

Time parity and the signature of the linear space \Rightarrow

$$\tau_A = \sigma_A$$

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity

Model with higher order time derivatives

Lattice regularization Positivity of transfer matrix Boundary conditions Conclusion Yang-Mills-Higgs Model in Euclidean Space-time

Model with higher order derivatives \Rightarrow Yang-Mills and scalar fields, imaginary time $S[\phi, \phi^{\dagger}, A] = \int d^d x \left[K(D) - \phi^{\dagger} L(D^2) D^2 \phi + V(\phi^{\dagger} \phi) \right]$

- $D_{\mu} = \partial_{\mu} i A_{\mu}$ covariant derivative
- ▶ $A_{\mu} = A^{a}_{\mu} \tau^{a}$ gauge field
- $\blacktriangleright \ \tau^{\rm a}$ generators of the gauge group
- ► K, L bounded from below, polynomials of D of order at most 2n_d and 2n_d - 2, respectively

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• $V(\phi^{\dagger}\phi)$ - scalar field potential

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity

Model with higher order time derivatives

Lattice regularization Positivity of transfer matrix Boundary conditions Conclusion Appearance of higher order time derivatives

- \Rightarrow Solution in classical systems :
 - introduction of new coordinates for each higher order derivative except the last one

 $A_{j\mu}(x) = D_0^j A_{\mu}(x)$ and $\phi_j(x) = \partial_0^j \phi(x)$ for $j = 0, \dots, n_d - 1$

▶ time reversal parity of the coordinates

$$\mathcal{A}_{j\mu}(x): au=(-1)^{j+\delta_{\mu,0}}$$
 and $\phi_j(x): au=(-1)^j$

▶ applicable also in case of quantum fields by means of path integral for A_{jµ}(x) and φ_j(x)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity

Model with higher order time derivatives

Lattice regularization

Positivity of transfer matri Boundary conditions Conclusion

Theory on the Lattice

Aim

Finding fields with Green functions satisfying Wightman's axioms in real time

▶ reflection positivity ⇒ lattice regularization positivity of the transfer matrix in imaginary time

Lattice

- fields : φ(n) = aφ(x), φ[†](n) = aφ[†](x),
 U_μ(n) = U[†]_{-μ}(n + μ̂) = e^{igaA_μ(n)},
 a lattice spacing, μ̂ unit vector in direction μ
- ▶ gauge transformation : $\phi(n) \rightarrow \omega(n)\psi(n)$, $\phi^{\dagger}(n) \rightarrow \omega^{\dagger}(n)\psi^{\dagger}(n)$, $U_{\mu}(n) \rightarrow \omega(n+\hat{\mu})U_{\mu}(n)\omega^{\dagger}(n)$

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity

Model with higher order time derivatives

Lattice regularization

Positivity of transfer matr Boundary conditions Conclusion

Partition Function of the Model

Partition function

 $Z = \int D[U]D[\phi^{\dagger}]D[\phi]e^{-S_L}$

Lattice action

Sı

$$= \sum_{n} \sum_{\gamma'} a_{\gamma'} \operatorname{tr} U_{\gamma'}(n) + \sum_{n} \phi^{\dagger}(n) \sum_{\gamma} U_{\gamma}^{\dagger}(n) \phi(n+\gamma) b_{\gamma} + \sum_{n} V(\phi^{\dagger}(n)\phi(n))$$

 $\gamma',\,\gamma$ - closed and open paths respectively, up to n_d $U_\gamma(n)$ - the path ordered product of the link variables along this path

Action S_L real \Rightarrow for each γ , $\Theta\gamma$ included in the sums with $a_{\Theta\gamma'} = a_{\gamma'}^*$, $b_{\Theta\gamma} = b_{\gamma}^*$

Alicja Siwek

Motivation

- Quantum Mechanics
- Reflection Positivity
- Model with higher order time derivatives
- Lattice regularization
- Positivity of transfer matri Boundary conditions Conclusion

Identification of Lattice Field Varibles

Construction of n_d lattice field variables

 regroupment of n_d consecutive lattice sites in the time direction with their field variables into a single n_d-component field

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- \Rightarrow a single blocked time slice
- ► fields :
 - $\phi_j(t, \mathbf{n}) = \phi(n_d t + j, \mathbf{n}),$ $U_{j,\mu}(t, \mathbf{n}) = U_{\mu}(n_d t + j, \mathbf{n})$

with t integer, $j = 1, \cdots, n_d$

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity Model with higher order time derivatives Lattice regularization Positivity of transfer matrix

Boundary conditions Conclusion

Lattice Action in Terms of New Variables

Lattice action

$$S_L = \sum_t [L_s(t) + L_{km}(t) + L_{kg}(t)]$$

where :

$$L_{s}(t) = S_{s}[U(t), \phi^{\dagger}(t), \phi(t)]$$

$$L_{kg}(t) = S_{kg}[U(t), U(t+1)]$$

$$L_{km}(t) = \sum_{t,\mathbf{m},\mathbf{n}} \phi_{j}^{\dagger}(t+1, \mathbf{m}) \Delta_{j,k}(\mathbf{m}, \mathbf{n}; U(t), U(t+1)) \phi_{k}(t, \mathbf{n})$$

$$+c.c.$$

Positivity of transfer matrix condition

For any functional \mathcal{F} of physical fields for positive t

 $\langle 0 | \mathcal{F} \Theta[\mathcal{F}] | 0 \rangle \geq 0$

A D > A D > A D > A D >

Sac

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity Model with higher orde

time derivatives Lattice regularization Positivity of transfer matrix Roundary conditions

Conclusion

Time reversal of the functional \mathcal{F} $\Theta \mathcal{F}[\phi, \phi^{\dagger}, U] = \mathcal{F}[\Theta \phi, \Theta \phi^{\dagger}, \Theta U]$ with fields

Time Reversal of Field Variables

$$\begin{split} \Theta \phi_{j}(n) &= \phi_{\Theta j}^{\dagger}(\Theta n), \\ \Theta \phi_{j}^{\dagger}(n) &= \phi_{\Theta j}(\Theta n), \\ \Theta U_{j,\mu}(n) &= \begin{cases} U_{\Theta j,\mu}^{\dagger}(\Theta n) & \mu = 1, 2, 3, \\ U_{\Theta j-1,\mu}(\Theta n) & \mu = 0, j < n_{d}, \\ U_{j,\mu}(\Theta n - \hat{0}) & \mu = 0, j = n_{d}, \end{cases}$$

and space-time coordinate $n = (t, \mathbf{n})$

$$\Theta(t,\mathbf{n})=(-t,\mathbf{n})$$

 \Rightarrow site-inversion realization of time reversal $t \rightarrow -t$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity Model with higher order time derivatives

Positivity of transfer matrix

Boundary condition: Conclusion

Functionals with Well Defined Time Inversion Parity

Functionals of the type

 $\Theta \mathcal{F}[\phi(n), \phi^{\dagger}(n), U(n)] = \tau_{\mathcal{F}} \mathcal{F}[\phi(\Theta n), \phi^{\dagger}(\Theta n), U(\Theta n)]$ Combinations of local fields satisfying :

$$\begin{split} \phi_{\tau,j}(t,\mathbf{n}) &= \frac{1}{2} [\phi_j(t,\mathbf{n}) + \tau \phi_{\Theta j}^{\dagger}(t,\mathbf{n})], \\ \phi_{\tau,j}^{\dagger}(t,\mathbf{n}) &= \frac{1}{2} [\phi_j^{\dagger}(t,\mathbf{n}) + \tau \phi_{\Theta j}(t,\mathbf{n})], \\ U_{\tau,j,\mu}(t,\mathbf{n}) &= \frac{1}{2} [U_{j,\mu}(t,\mathbf{n}) + \tau U_{\Theta j,\mu}^{\dagger}(t,\mathbf{n})], \quad \mu = 1, 2, 3 \\ \text{with } j = 1, \dots, (n_d - 1)/2 \end{split}$$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Alicja Siwek

Motivation

- Quantum Mechanics
- Reflection Positivity

Model with higher order time derivatives Lattice regularization **Positivity of transfer matrix** Boundary conditions Conclusion

Gauge Invariance

Gauge fixing

gauge transformation

 $\omega(n_d t+j,\mathbf{n}) = [U_0(n_d t+j-1,\mathbf{n})\cdots U_0(n_d t+1,\mathbf{n})]^{\dagger}$ for $2 \leq j \leq n_d$ (on the original lattice, with simple time slices)

 cancellation of the time component of the gauge field within the block time slices and U_{j,0}(t, n) → 1 for j < n_d

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity Model with higher orde

time derivatives Lattice regularization **Positivity of transfer matrix** Boundary conditions

Conclusion

Proof of Positivity of Transfer Matrix

Lattice action split into three pieces

$$S_L = S_0 + S_+ + S_-$$

Time reversal invariance of microscopic dynammics $S_{\pm}[\Psi(t)] = \Theta[S_{\mp}[\Psi(t)]] = S_{\mp}[\Psi(\Theta t)]$ $S_0[\Psi] = S_0[\Psi(\Theta t)]$ Introducing $\Psi = (U, \phi^{\dagger}, \phi)$ $\langle 0|\mathcal{F}\Theta\mathcal{F}|0 \rangle = \int D[\Psi]e^{-S_0[\Psi]}e^{-S_+[\Psi]}\mathcal{F}[\Psi]e^{-S_-[\Psi]}\Theta[\mathcal{F}[\Psi]]$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity Model with higher order time derivatives Lattice regularization Positivity of transfer matrix Boundary conditions Conclusion

Proof of Positivity of Transfer Matrix - Continued

 $\Rightarrow \text{ Time reversal invariance of the vacuum state } \Theta |0\rangle = |0\rangle \\ \langle 0|\mathcal{F}\Theta\mathcal{F}|0\rangle = \int D[\Psi] e^{-S_0[\Psi]} e^{-S_+[\Psi]} \mathcal{F}[\Psi]\Theta \left[e^{-S_+[\Psi]} \mathcal{F}[\Psi]\right] \\ = \int D_{t=0}[\Psi] \int D_{t>0}[\Psi] e^{-\frac{S_0}{2} - S_+} \mathcal{F}\Theta\mathcal{F} \int D_{\Theta t>0}[\Psi] e^{-\frac{S_0}{2} - S_+}$

Assuming $au_{\mathcal{F}}$ - time-reversal parity of $\mathcal{F}[\Psi]$

$$\langle 0|\mathcal{F}\Theta\mathcal{F}|0\rangle = \tau_{\mathcal{F}} \left(\int D_{t\geq 0}[\Psi] e^{-\frac{1}{2}S_0[\Psi] - S_+[\Psi]} \mathcal{F}[\Psi]\right)^2$$

For $au_{\mathcal{F}}=1$

 $\langle 0 | \mathcal{F} \Theta \mathcal{F} | 0
angle \geq 0$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity Model with higher order time derivatives

Lattice regularization

Positivity of transfer mat

Boundary conditions

Conclusio

Boundary Conditions

Positivity of the transfer matrix

 \Rightarrow equations valid for each trajectory in the path integral

```
Boundary conditions :
```

 $\Psi(t_f) = \tau_{\Psi} \Psi(t_i)$

- periodic (antiperiodic) boundary conditions for time-reversal even (odd) variables
- generalized KMS conditions

Example :

$$egin{aligned} \phi_j(x) &= \partial_0^j \phi(x), \ au &= (-1)^j \ \phi_j(t_f, \mathbf{x}) &= (-1)^j \phi_j(t_i, \mathbf{x}) \end{aligned}$$

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity Model with higher order time derivatives Lattice regularization Positivity of transfer matri Boundary conditions **Conclusion** Conclusion

- Truncation of the gradient expansion of the effective theory (after elimination of heavy particle modes)
 ⇒ question of unitarity
- Reflection positivity demonstrated for the Yang-Mills-Higgs model with higher order derivatives, within the Fock space span by local, time-reversal invariant functionals of the fields acting on the time-reversal invariant vacuum
- Restriction : generalized KMS boundary conditions

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity Model with higher order time derivatives Lattice regularization Positivity of transfer matrix

Conclusion

Thank you for your attention !

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ