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Consistency of Effective Theories - Motivation

Effective theories :
⇒ elimination of degrees of freedom - heavy particles

Consequences

I long range correlations
⇒ higher order derivative terms in the effective
action

I low energy - truncation of the gradient expansion
Two issues :
⇒ specification of states - boundary conditions
⇒ unitarity of the effective theory
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Real Scalar Field - Example

Scalar field governed by the action

S [φ] =
∫

dx [φ (
∑nd

n=0 cn�n)φ(x)− V (φ(x))]

I time reversal invariant model

I coefficients cn and potential V (φ) real and
(−1)nd cnd

> 0

Free propagator in momentum space

D(p) =
(∑nd

n=0(−1)ncn(p
2)n

)−1
=

∑nd
j=1

Zj

p2−m2
j

⇒ at least one negative Z factor

I negative norm states
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Linear Space with Indefinite Norm

Linear space H with non-definite metric

1. 〈u|v〉 = 〈v |u〉∗

2. 〈u|(a|v〉+ b|w〉) = a〈u|v〉+ b〈u|w〉
3. H = H+ + H− where H± = {|u〉|〈u|u〉 ≷ 0} and
〈H+|H−〉 = 0

4. |u〉 = |u+〉+ |u−〉, 〈u±|u±〉 ≷ 0

I basis {|n〉}, non-definite metric ηmn = 〈m|n〉 where
η† = η

I matrix elements Ajk of an operator A defined by
〈m|A|n〉 =

∑
k ηmkAkn
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Self-adjoint and Skew-adjoint Operators

⇒ adjoint Ā and Hermitian adjoint A†

〈u|Ā|v〉 = 〈v |A|u〉∗ so Ā = η−1A†η 6= A†

I Condition : Ā = σAA

⇒ valid for self-adjoint operators, σA = +1, and
skew-adjoint operators, σA = −1.

I Eigenvectors : A|λ〉 = λ|λ〉, A|ρ〉 = ρ|ρ〉
⇒ relation for the spectrum

(λ− σAρ
∗)〈ρ|λ〉 = 0
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Free Particle Dynamics

Canonical pair of operators q̂σ and p̂σ

⇒ either self- or skew-adjoint
⇒ commutation relation [q̂σ, p̂σ] = i

Real spectrum

⇒ η(q, q′) = δ(q − σq′) and η(p, p′) = δ(p − σp′)

Closing relations in coordinate and momentum space

1 =
∫

dq|σq〉〈q| =
∫

dp|σp〉〈p|

Hamiltonian of harmonic oscillator

Ĥσ = σ
2 (p̂2

σ + q̂2
σ) = σāσaσ

where operator aσ = (q̂σ + i p̂σ)/
√

2 and [aσ, āσ] = σ
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Bounded Hamiltonian Conditions

Case of σ = +1 (for σ = −1 a ↔ ā)

I operators b = a+, b̄ = ā+

I eigenstate of self-adjoint operator b̄b : b̄b|λ〉 = λ|λ〉
I double infinite series of states
· · · , b2|λ〉, b|λ〉, |λ〉, b̄|λ〉, b̄2|λ〉, · · ·
with corresponding eigenvalues
· · · , λ− 2, λ− 1, λ, λ+ 1, λ+ 2, · · · of b̄b

Bounded Hamiltonian

Series limited on the left or on the right → λ integer

〈λ|b̄b|λ〉 = λ〈λ|λ〉 and 〈λ|bb̄|λ〉 = (λ+ 1)〈λ|λ〉
⇒ either λ ≥ 0 or λ ≤ −1
⇒ either sign(〈λ+ 1|λ+ 1〉) = sign(〈λ|λ〉)

or sign(〈λ− 1|λ− 1〉) = −sign(〈λ|λ〉)
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Time Reversal Properties of Operators

Time reversal Θ (way to trace negative norm states)

σ = +1, Θ : q̂ → q̂, p̂ → −p̂, c → c∗

q̂-type operators

I operators with well-defined time reversal parity :
ΘA = τAA, with τA = ±1

I Heisenberg representation Θ : A(t) → Ā(−t)
⇒ for the time derivative τ∂0A = −τA
⇒ self- or skew-adjoint operators Θ : A → Ā = σAA

Time parity and the signature of the linear space ⇒

τA = σA
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Yang-Mills-Higgs Model in Euclidean
Space-time

Model with higher order derivatives
⇒ Yang-Mills and scalar fields, imaginary time

S [φ, φ†,A] =
∫

ddx
[
K (D)− φ†L(D2)D2φ+ V (φ†φ)

]
I Dµ = ∂µ − iAµ - covariant derivative

I Aµ = Aa
µτ

a - gauge field

I τ a - generators of the gauge group

I K , L - bounded from below, polynomials of D of
order at most 2nd and 2nd − 2, respectively

I V (φ†φ) - scalar field potential
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Treatment of Higher Orders of Derivatives

Appearance of higher order time derivatives

⇒ Solution in classical systems :

I introduction of new coordinates for each higher order
derivative except the last one

Ajµ(x) = D j
0Aµ(x) and φj(x) = ∂j

0φ(x)

for j = 0, . . . , nd − 1

I time reversal parity of the coordinates

Ajµ(x) : τ = (−1)j+δµ,0 and φj(x) : τ = (−1)j

I applicable also in case of quantum fields
by means of path integral for Ajµ(x) and φj(x)
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Theory on the Lattice

Aim

Finding fields with Green functions satisfying Wightman’s
axioms in real time

I reflection positivity ⇒ lattice regularization -
positivity of the transfer matrix in imaginary time

Lattice

I fields : φ(n) = aφ(x), φ†(n) = aφ†(x),

Uµ(n) = U†
−µ(n + µ̂) = e igaAµ(n),

a - lattice spacing, µ̂ - unit vector in direction µ

I gauge transformation : φ(n) → ω(n)ψ(n),
φ†(n) → ω†(n)ψ†(n), Uµ(n) → ω(n + µ̂)Uµ(n)ω†(n)
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Partition Function of the Model

Partition function

Z =
∫

D[U]D[φ†]D[φ]e−SL

Lattice action

SL =
∑
n

∑
γ′

aγ′trUγ′(n) +
∑
n

φ†(n)
∑

γ

U†
γ(n)φ(n + γ)bγ

+
∑
n

V (φ†(n)φ(n))

γ′, γ - closed and open paths respectively, up to nd

Uγ(n) - the path ordered product of the link variables
along this path

Action SL real
⇒ for each γ, Θγ included in the sums with aΘγ′ = a∗γ′ ,
bΘγ = b∗γ
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Identification of Lattice Field Varibles

Construction of nd lattice field variables

I regroupment of nd consecutive lattice sites in the
time direction with their field variables into a single
nd -component field
⇒ a single blocked time slice

I fields :
φj(t,n) = φ(nd t + j ,n),
Uj ,µ(t,n) = Uµ(nd t + j ,n)

with t integer, j = 1, · · · , nd
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Lattice Action in Terms of New Variables

Lattice action

SL =
∑

t [Ls(t) + Lkm(t) + Lkg (t)]

where :

Ls(t) = Ss [U(t), φ†(t), φ(t)]

Lkg (t) = Skg [U(t),U(t + 1)]

Lkm(t) =
∑

t,m,n
φ†j (t+1,m)∆j ,k(m,n;U(t),U(t+1))φk(t,n)

+c .c .

Positivity of transfer matrix condition

For any functional F of physical fields for positive t

〈0|FΘ[F ]|0〉 ≥ 0
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Time Reversal of Field Variables

Time reversal of the functional F
ΘF [φ, φ†,U] = F [Θφ,Θφ†,ΘU]

with fields

Θφj(n) = φ†Θj(Θn),

Θφ†j (n) = φΘj(Θn),

ΘUj ,µ(n) =


U†

Θj ,µ(Θn) µ = 1, 2, 3,

UΘj−1,µ(Θn) µ = 0, j < nd ,

Uj ,µ(Θn − 0̂) µ = 0, j = nd ,

and space-time coordinate n = (t,n)

Θ(t,n) = (−t,n)

⇒ site-inversion realization of time reversal t → −t
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Functionals with Well Defined Time Inversion
Parity

Functionals of the type

ΘF [φ(n), φ†(n),U(n)] = τFF [φ(Θn), φ†(Θn),U(Θn)]

Combinations of local fields satisfying :

φτ,j(t,n) =
1

2
[φj(t,n) + τφ†Θj(t,n)],

φ†τ,j(t,n) =
1

2
[φ†j (t,n) + τφΘj(t,n)],

Uτ,j ,µ(t,n) =
1

2
[Uj ,µ(t,n) + τU†

Θj ,µ(t,n)], µ = 1, 2, 3

with j = 1, . . . , (nd − 1)/2
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Gauge Invariance

Gauge fixing

I gauge transformation

ω(nd t + j ,n) = [U0(nd t + j−1,n) · · ·U0(nd t +1,n)]†

for 2 ≤ j ≤ nd (on the original lattice, with simple
time slices)

I cancellation of the time component of the gauge
field within the block time slices and Uj ,0(t,n) → 1

for j < nd
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Proof of Positivity of Transfer Matrix

Lattice action split into three pieces

SL = S0 + S+ + S−

Time reversal invariance of microscopic dynammics

S±[Ψ(t)] = Θ[S∓[Ψ(t)]] = S∓[Ψ(Θt)]

S0[Ψ] = S0[Ψ(Θt)]

Introducing Ψ = (U, φ†, φ)

〈0|FΘF|0〉 =
∫

D[Ψ]e−S0[Ψ]e−S+[Ψ]F [Ψ]e−S−[Ψ]Θ[F [Ψ]]
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Proof of Positivity of Transfer Matrix -
Continued

⇒ Time reversal invariance of the vacuum state Θ|0〉 = |0〉

〈0|FΘF|0〉 =
∫

D[Ψ]e−S0[Ψ]e−S+[Ψ]F [Ψ]Θ
[
e−S+[Ψ]F [Ψ]

]
=

∫
Dt=0[Ψ]

∫
Dt>0[Ψ]e−

S0
2
−S+FΘF

∫
DΘt>0[Ψ]e−

S0
2
−S+

Assuming τF - time-reversal parity of F [Ψ]

〈0|FΘF|0〉 = τF

(∫
Dt≥0[Ψ]e−

1
2
S0[Ψ]−S+[Ψ]F [Ψ]

)2

For τF = 1
〈0|FΘF|0〉 ≥ 0
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Boundary Conditions

Positivity of the transfer matrix

⇒ equations valid for each trajectory in the path integral

Boundary conditions :

Ψ(tf ) = τΨΨ(ti )

I periodic (antiperiodic) boundary conditions for
time-reversal even (odd) variables

I generalized KMS conditions

Example :

φj(x) = ∂j
0φ(x), τ = (−1)j

φj(tf , x) = (−1)jφj(ti , x)



Boundary conditions
and consistency of
effective theories

Alicja Siwek

Motivation

Quantum Mechanics

Reflection Positivity

Model with higher order
time derivatives

Lattice regularization

Positivity of transfer matrix

Boundary conditions

Conclusion

Conclusion

I Truncation of the gradient expansion of the effective
theory (after elimination of heavy particle modes)
⇒ question of unitarity

I Reflection positivity demonstrated for the Yang-
Mills-Higgs model with higher order derivatives,
within the Fock space span by local, time-reversal
invariant functionals of the fields acting on the
time-reversal invariant vacuum

I Restriction : generalized KMS boundary conditions
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Thank you for your attention !
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