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Chiral Phase Transition Chiral Phase Transition in QCD

Spontaneous Chiral Symmetry Breaking in QCD

QCD-Lagrangian exhibits chiral
symmetry for mu,md ,ms → 0

at low temperatures,
chiral symmetry is
spontaneously broken:

SU(Nf )L × SU(Nf )R → SU(Nf )V

at Tc chiral symmetry is restored

order parameter is the
chiral condensate:

〈q̄q〉 = −T

V

∂

∂mq
logZ, 〈q̄q〉 6= 0 for T < Tc

quark masses mu, md , ms break chiral symmetry explicitly, but χSB still provides
good approximation to low energy QCD (pions as pseudo-Goldstone bosons)
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Chiral Phase Transition Chiral Phase Transition in QCD

The QCD phase transitions at zero density

Columbia Plot: quark mass dependence of the order of the transition for 2+1 flavors

at physical quark masses,
a crossover is expected

for sufficiently small quark masses
(both mu,d and ms) the transition
is of first order

critical lines of second order
transition - limiting cases:
Nf = 2: O(4) universality class
Nf = 3: Ising universality class

location of mtric
s not known

- below or above mphys
s ?

(implications for nonzero density?)

In this talk: interested in the chiral limit
limmq → 0 at ms fixed to physical value.
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The Goldstone Effect and Critical Scaling in O(N) Spin Models Goldstone Effect

Goldstone Effect in O(N) Spin Model for d=3 and d=4

QCD at low energies may be described effectively by O(N) symmetric spin models:

isomorphism: SU(2)L × SU(2)R ' O(4)

with πi ∼ iψ̄γ5t
iψ, σ ∼ −q̄q, vector (~π, σ) is O(4) invariant

external field H corresponds to quark mass mq, order parameter: Σ = 〈σ〉
description is valid below and in the vicinity of the chiral phase transition

Goldstone effect:

N − 1 transverse Goldstone modes give corrections to Σ for H 6= 0

calculation via chiral pert. theory from expectation value of
〈
πiπj

〉
yields:

d = 3 : ΣH = Σ0

(
1 +

N − 1

8π

(Σ0H)1/2

F 3
0

+O(H)

)

d = 4 : ΣH = Σ0

(
1−

N − 1

16π2

Σ0H

F 4
0

ln

(
Σ0H

F 2
0 ΛΣ

)
+O(H2)

)

[J. Gasser, H. Leutwyler - Ann. Phys. 158 (1984)]

[P. Hasenfratz, H. Leutwyler - Nucl. Phys Proc. B343 (1990)]
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The Goldstone Effect and Critical Scaling in O(N) Spin Models Magnetic Equation of State

O(N) Critical Scaling at T ∼= Tc

Question: Is Goldstone scaling below Tc consistent with critical scaling at Tc?

below Tc : ΣH = c0(T ) + c1(T )H1/2

T ' Tc : scaling laws governed by critical exponents:

ΣH=0 ∼ tβ , ΣH(t = 0) ∼ H1/δ, t = T−Tc
Tc

, β, δ =

{
0.349, 4.780
0.380, 4.824

O(2)
O(4)

Critical scaling in vicinity of Tc can be described via scaling functions:

rescaled scaling variable, now: t = 1
t0

T−Tc
Tc

, h = H
h0

z = t/h1/βδ invariant under rescaling t0 → b−1/βt0, h0 → b−δh0

scaling function fG (z) describes order parameter via magnetic equation of state:

Σ(t, h) = h1/δfG (z)

normalization conditions:

fG (0) = 1 and lim
z→−∞

fG (z)

(−z)β
= 1
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The Goldstone Effect and Critical Scaling in O(N) Spin Models Magnetic Equation of State

The Magnetic Equation of State
Goldstone scaling is encoded within the O(N) scaling function fG (z)

magnetic equation of state in low temperature regime (from ε-expansion):

Σ(h, t) = h1/δfG (z), fG (z) ' (−z)β(1 + c̃2β(−z)−βδ/2) for z → −∞

[D. J. Wallace, R, K. P. Zia - Phys. Rev. B12 (1975)]

also corresponding susceptibility χ ≡ ∂Σ
∂H

is described by scaling function fχ(z),
which is related to fG (z)

χ(h, t < 0) ∼ c1(t)h−1/2 χ(h, t = 0) ∼ h1/δ−1
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The Goldstone Effect and Critical Scaling in O(N) Spin Models Magnetic Equation of State

Evidence From the Lattice

Goldstone effect in O(2)/O(4) and consistency with critical scaling numerically well
established

[J. Engels, T. Mendes - Nucl. Phys Proc. Suppl. 83 (2000)]

shown recently: our lattice data for Nf = 2 + 1 staggered fermions is well described
by the scaling function fG (z) for small quark masses on a coarse lattice (Nτ = 4)

[S. Ejiri et al - Phys. Rev. D80 (2009)]
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Goldstone Scaling and Critical Scaling in (Staggered) QCD

Motivation for Scaling Analysis in QCD

precise determination of Tc still open issue

new Nτ = 8 data: shift of chiral transition
region of -5 MeV as
ml/ms = 1/10→ ml/ms = 1/20

small effect: scale setting, i.e. value of r0
a

(β)
with Sommer scale r0 = 0.469(7) fm,
T = 1

Nτ r0

r0
a

(β)

main effect: strong quark mass dependence

[Cheng et al - Phys. Rev. D81 (2010)]

location of mtric
s crucial for influence of critical surface on physical point

is a chiral CEP at finite µ really ruled out?

Wolfgang Unger, Universität Bielefeld () Magnetic Equation of State in QCD Heidelberg, 8. May 2010 9 / 30



Goldstone Scaling and Critical Scaling in (Staggered) QCD

Motivation for Scaling Analysis in QCD

precise determination of Tc still open issue

new Nτ = 8 data: shift of chiral transition
region of -5 MeV as
ml/ms = 1/10→ ml/ms = 1/20

small effect: scale setting, i.e. value of r0
a

(β)
with Sommer scale r0 = 0.469(7) fm,
T = 1

Nτ r0

r0
a

(β)

main effect: strong quark mass dependence

[Cheng et al - Phys. Rev. D81 (2010)]

location of mtric
s crucial for influence of critical surface on physical point

is a chiral CEP at finite µ really ruled out?

Wolfgang Unger, Universität Bielefeld () Magnetic Equation of State in QCD Heidelberg, 8. May 2010 9 / 30



Goldstone Scaling and Critical Scaling in (Staggered) QCD Goldstone Modes in QCD

Goldstone Modes in QCD

QCD with Nf = 2 + 1 flavors: chiral condensate now in principle depends on two
masses, mq = mu,d and ms

finite temperature QCD: 3+1 dim. system with T controlled via temporal extent

pressure of the ideal relativistic pion gas:

P(T ,Mπ) =
N2
f − 1

2

[
π2T 4

45
−

T 2M2
π

12
+

TM3
π

6π
−

M4
π

16π2
log

Λ

Mπ
+ . . .

]

[H. E. Haber, H. A. Weldon - Phys. Rev. Lett. 46 (1981)]

Gell-Mann/Oakes/Renner:

Mπ =
√

2mqB with B = − lim
mq→0

〈0|q̄q|0〉
NfF 2

π

chiral condensate from pressure:

〈q̄q〉 = 〈0|q̄q|0〉
{

1 +
N2
f − 1

Nf

[
−

(T/Fπ)2

12
+

1

4π

TMπ

F 2
π

+O(M2
π)

]}
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Goldstone Scaling and Critical Scaling in (Staggered) QCD Goldstone Scaling in the Chiral Susceptibility

Connected and Disconnected Chiral Susceptibility
Susceptibilities measure the fluctuations of the order parameter:

σ

π

δ

Tc
T

M

con

Tc
T

χ

full

in QCD: also (quark-line) connected diagrams
contribute to chiral susceptiblity

χfull = χcon + χdis

χdis = N2
f

(〈
(q̄q)2

〉
− 〈q̄q〉2

)
χcon = Nf

〈
q̄(x)q(x)q̄(0)q(0)

〉

if UA(1) is effectively restored: the scalar isovector
δ-meson (a0) and the pion become mass
degenerated

to lowest order: χcon ∼ 1
M2

δ
and χfull ∼ 1

M2
σ

[K. Rajagopal, F. Wilczek - Nucl. Phys. B399 (1993)]
[M. Marci, E. Meggiolaro - Nucl. Phys. B665 (2003)]

⇒ if UA(1) is not effectively restored at the chiral transition (in the chiral limit),
the connected susceptibility cannot contribute to the scaling function!
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Goldstone Scaling and Critical Scaling in (Staggered) QCD Goldstone Scaling in the Chiral Susceptibility

IR Divergences of Connected and Disconnected Susceptibility
Goldstone divergences for T < Tc obtained from chiral perturbation theory
to one loop for Nf degenerated flavors:

IR-Part of Connected Susceptibilities at Mπ � T � Tc :

χIR,3D
con =

N2
f − 4

8π2

T√
2mq

(
Σ

F 2
π

)3/2

IR-Part of Full Susceptibilities at Mπ � T � Tc :

χIR,3D
full =

N2
f − 1

4π2

T√
2mq

(
Σ

F 2
π

)3/2

From χIR
con and χIR

full one also gets χIR
dis:

χIR,3D
dis =

N2
f + 2

8π2

T√
2mq

(
Σ

F 2
π

)3/2

i.e. χIR
con = 0 for Nf = 2 (+1)

→ no Goldstone effect expected for χcon in the continuum

[A. V. Smilga, J. Stern - Phys. Lett. B318 (1993)]
[A. Smilga, J. J. M. Verbaarschot - Phys. Rev. D54 (1996)]
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Goldstone Scaling and Critical Scaling in (Staggered) QCD Goldstone Scaling in the Chiral Susceptibility

Taste Breaking

Lee-Sharpe Lagrangian:

Leff = Lcont
eff + a2

∑
i

CiOi (U)

taste-index: t ∈ {P,A,T ,V , I} corresponds to taste channels defined via Euclidean
gamma matrices. ξt ∈ {γ5, iγµγ5, iγµγν , γµ, 1}
impact of taste breaking on meson masses:

M2
f ,f ′,t = B(mf + mf ′) + a2∆t

with taste-violations: ∆P = 0 and ∆t 6= 0 for t 6= P

remaining axial U(1) symmetry even for finite lattice spacing

resulting in a pseudo-Goldstone boson Mπ,5 in the pseudo taste channel
→ O(2) instead of O(4) scaling expected

taste violation contribution for Nf = 2 + 1 (mq → 0, a fixed):

χcon,IR
SχPT = B IR

a0
(0) ∼

1/16

Mπ,5

χdis,IR
SχPT = B IR

f0
(0)− B IR

a0
(0) ∼

1/16

Mπ,5
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Lattice Results on Critical Scaling and Goldstone Scaling Setup of Lattice

Setup of Lattice Calculations

preliminary data of the RBC-Bielefeld collaboration for Nf = 2 + 1:

fermion action: p4fat3 (fattening reduces taste breaking)

susceptibilities measured with up to 20 random vectors (noisy estimator)

statistics (measurements separated by 10 trajectories):

lattice dim. mq/ms statistics lattice dim. mq/ms statistics
323 × 4 1/80 O(20000)
323 × 4 1/40 O(20000)
163 × 4 1/40 O(30000) 323 × 8 1/40 just started
163 × 4 1/20 O(40000) 323 × 8 1/20 O(20000)
163 × 4 1/10 O(40000) 323 × 8 1/10 O(30000)
163 × 4 1/5 O(40000) 323 × 8 1/5 O(30000)
163 × 4 2/5 O(40000)

β = 3.2800, . . . 3.3300 β = 3.4800, . . . 3.5400

with ms fixed to physical value, msa = 0.065 for Nτ = 4 and msa = 0.024 for Nτ = 8

(→ Mss̄ ' 669 MeV) we find:

mq/ms = 1/20 : → Mπ,5 ' 150 MeV
mq/ms = 1/80 : → Mπ,5 ' 75 MeV

thermodynamic limit well under control, for smallest mass: Mπ,5Nσ ' 3

in particular: no evidence for finite size scaling → crossover region
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Lattice Results on Critical Scaling and Goldstone Scaling Goldstone Scaling

Goldstone Scaling of Chiral Condensate

data indicate Goldstone Effect below Tc

fit ansatz
〈
ψψ̄
〉

= a + b
(

mq

ms

)1/2

+ c
(

mq

ms

)
describes data well

prediction of chiral limit can be improved a lot by taking into account taste breaking

chiral condensate over quark mass, arrows indicate full susceptibility as its mass derivative
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Lattice Results on Critical Scaling and Goldstone Scaling Goldstone Scaling

Goldstone Scaling of Chiral Susceptibilities

disconnected part: Goldstone effect extends into peak region

connected part (corrected for UV-divergent constant): also Goldstone scaling found

rescaled chiral susceptibility - left: disconnected part, right: connected part

Remark on Goldstone Fits

usually: first go to continuum limit, then to chiral limit (not feasable)

or: understand the chiral limit for finite lattice spacing systematically

indeed, we observe agreement with predictions of staggered chiral perturbation theory!
Wolfgang Unger, Universität Bielefeld () Magnetic Equation of State in QCD Heidelberg, 8. May 2010 16 / 30



Lattice Results on Critical Scaling and Goldstone Scaling Goldstone Scaling

Binder Cumulant

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016

(Nσ/Nτ)
3δ/(1+δ) h,   h=ml/ms/h0

Binder Cumulant for light Chiral Condensate - 2+1 flavor
measured at fixed β close to βc: β=3.3000 (Nτ=4), β=3.5150 (Nτ=8)

Nτ = 4, Nτ = 16
Nτ = 4, Nτ = 32
Nτ = 8, Nτ = 32
Z(2), B4=1.604

O(2), B4
r=1.242 (x 3/2)

O(4), B4
r=1.092 (x 2)

From the cumulants

Mk =
∂k

∂hk
Fs(h,V

−1)

with λ = Ld , one obtains for the
Binder Cumulant:

B4(zh) =
f

(4)
h (zh)

f
(2)
h (zh)

, zh = Ldahh

Note:

B4 is an RG-invariant number at h = 0, and independent of volume V = Ld

simulations performed at h > 0, criticality only reached in chiral limit

universal value of B4 altered by group integration factors as O(N) field is always
aligned to longitudinal magnetization (here s || ∼ q̄q)

B r
4 =

〈
S||

4
〉

〈
S||2

〉2
=

〈
|~S|4
〉 ∫ 1
−1

dxx4fN (x)〈
|~S|2
〉2 (∫ 1

−1
dxx2fN (x)

)2
= B4 ×

 1 for N = 1
3
2 for N = 2
2 for N = 4

fN (x) = cN

∫ π

0

dθN−1 sinN−2
θN−1δ(x − cos θN−1)
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Lattice Results on Critical Scaling and Goldstone Scaling Magnetic Equation of State

Magnetic Equation of State for Chiral Condensates

determination of the critical temperature Tc and the normalization constants h0, t0

O(2) slightly preferred, however, by reparametrizing z → 1.2z , O(2) moves on O(4)
scaling functions almost indistinguishable
→ not possible to discriminate O(2) from O(4) here

z0 = t0h
−1/βδ
0 is invariant under rescaling (h0, t0 are not!)

un-subtracted and subtracted condensate (to remove UV-div. ∼ ml/a
2) are fitted:

M0 = ms 〈q̄q〉l /T
4, M = ms(〈q̄q〉l −ml/ms 〈q̄q〉s)/T

4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-2 -1  0  1  2  3

M0/h1/δ

z

βc= 3.2964(7)
h0=0.0022(2)
t0=0.0039(1)
z0=6.6(4)

χ2=13.99

ml/ms=1/2
ml/ms=1/5

ml/ms=1/10
ml/ms=1/20
ml/ms=1/40
ml/ms=1/40
ml/ms=1/80

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-2 -1  0  1  2  3

M/h1/δ

z

βc= 3.2979(8)
h0=0.0035(4)
t0=0.0044(1)
z0=7.6(6)

χ2=24.33O(2)
O(4)

fits for condensates via magnetic equation of state (only mq = 1/80, 1/40ms)
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Lattice Results on Critical Scaling and Goldstone Scaling Magnetic Equation of State

Magnetic Equation of State for Condensates, Deviations from Scaling

quark masses with mq/ms ≤ 1/20 well described by scaling function

for mq/ms > 1/20 scaling deviations become substantial

fit ansatz for scaling deviations: M(t, h) = fT (t, h)|t|β + +at(T − Tc)H + b1H

problem for Nτ = 8 data: fits without scaling deviations not possible
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Lattice Results on Critical Scaling and Goldstone Scaling Magnetic Equation of State

Magnetic Equation of State for Condensates, Deviations from Scaling

quark masses with mq/ms ≤ 1/20 well described by scaling function

for mq/ms > 1/20 scaling deviations become substantial

fit ansatz for scaling deviations: M(t, h) = fT (t, h)|t|β + at(T −Tc)H + b1H + b3H
3

problem for Nτ = 8 data: fits without scaling deviations not possible
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Lattice Results on Critical Scaling and Goldstone Scaling Magnetic Equation of State

Magnetic Equation of State for Condensates, Deviations from Scaling

quark masses with mq/ms ≤ 1/20 well described by scaling function

for mq/ms > 1/20 scaling deviations become substantial

fit ansatz for scaling deviations: M(t, h) = fT (t, h)|t|β + at(T − Tc)H + b1H

problem for Nτ = 8 data: fits without scaling deviations not possible
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Lattice Results on Critical Scaling and Goldstone Scaling Magnetic Equation of State

Magnetic Equation of State for Condensates, Deviations from Scaling

question: is the range 1/20 ≤ mq/ms enough to determine βc , t0 and h0?

yes, for Nτ = 4 βc and z0 is recovered within errors

assumption: should then also work for Nτ = 8
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z0 is specific to QCD and in the continuum should only depend on ms

on the lattice: cut-off dependence should be seen in z0, due to O(2) → O(4)
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Lattice Results on Critical Scaling and Goldstone Scaling Magnetic Equation of State

Magnetic Equation of State for Susceptibilities

full susceptibilities quite well described by fχ(z) = 1
δ

(
fG (z)− z

β
d
dz
fG (z)

)
in principle, O(2) and O(4) scaling should be distinguishable in fχ for lattice data,
however, statistics might not be sufficient

Nτ = 4

usual susceptibility susceptibility for subtracted condensate
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Lattice Results on Critical Scaling and Goldstone Scaling Magnetic Equation of State

Magnetic Equation of State for Susceptibilities

full susceptibilities quite well described by fχ(z) = 1
δ

(
fG (z)− z

β
d
dz
fG (z)

)
in principle, O(2) and O(4) scaling should be distinguishable in fχ for lattice data,
however, statistics might not be sufficient

Nτ = 8

usual susceptibility susceptibility for subtracted condensate
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Lattice Results on Critical Scaling and Goldstone Scaling Magnetic Equation of State

Magnetic Equation of State for Susceptibilities

full susceptibilities quite well described by fχ(z) = 1
δ

(
fG (z)− z

β
d
dz
fG (z)

)
in principle, O(2) and O(4) scaling should be distinguishable in fχ for lattice data,
however, statistics might not be sufficient

connected and disconnected part, Nτ = 4:

connected susceptibility disconnected susceptibility

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-4 -2  0  2  4  6

χ0
con/h1/δ-1

z

βc= 3.2978(5)
h0=0.0031(2)
t0=0.0041(0)
z0=7.6(4)
b1=2.14(17)
at=2.58(219)              

ml/ms
1/2
1/5

1/10
1/20
1/40
1/40
1/80

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-4 -2  0  2  4  6

χ0
dis/h1/δ-1

z

βc= 3.2978(5)
h0=0.0031(2)
t0=0.0041(0)
z0=7.6(4)
b1=2.14(17)
at=2.58(219)              

O(2)

connected part should not contribute substantially to the scaling function, but
lattice data are somewhat ambiguous

it grows due to UA(1)(1) physics, but this should not contribute to fχWolfgang Unger, Universität Bielefeld () Magnetic Equation of State in QCD Heidelberg, 8. May 2010 25 / 30



Lattice Results on Critical Scaling and Goldstone Scaling Magnetic Equation of State

Magnetic Equation of State for Susceptibilities

full susceptibilities quite well described by fχ(z) = 1
δ

(
fG (z)− z

β
d
dz
fG (z)

)
in principle, O(2) and O(4) scaling should be distinguishable in fχ for lattice data,
however, statistics might not be sufficient

connected and disconnected part, Nτ = 8:

renormalized order parameter un-renormalized order parameter
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stronger contribution of connected part due to UV-divergent constant ca2, but
becomes suppressed in chiral limit

need to rely on subtracted order parameter for continuum limitWolfgang Unger, Universität Bielefeld () Magnetic Equation of State in QCD Heidelberg, 8. May 2010 26 / 30



Lattice Results on Critical Scaling and Goldstone Scaling Magnetic Equation of State

Determination of z0

z0 decreases in the continuum limit

Comprison of Nτ=4 and Nτ=8

 3

 3.5

 4

 4.5

 5

 0  0.02  0.04  0.06  0.08  0.1

(1/N Σi=1
N  (ml,i/ms)

-1)-1

t0 x 103

Nτ=4, M0
Nτ=4, M

Nτ=8, M0
Nτ=8, M

 0

 1

 2

 3

 4

 5

 6

 0  0.02  0.04  0.06  0.08  0.1

(1/N Σi=1
N  (ml,i/ms)

-1)-1

h0 x 103

Nτ=4, M0
Nτ=4, M

Nτ=8, M0
Nτ=8, M

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  0.02  0.04  0.06  0.08  0.1

(1/N Σi=1
N  (ml,i/ms)

-1)-1

z0

z0 for Nτ=4, M0
z0 for Nτ=4, M

z0 for Nτ=8, M0
z0 for Nτ=8, M

Wolfgang Unger, Universität Bielefeld () Magnetic Equation of State in QCD Heidelberg, 8. May 2010 27 / 30



Lattice Results on Critical Scaling and Goldstone Scaling Determination of Tpc

Consequences for Determination of Tpc for physical quark masses

now believed:

for staggered fermions, the pseudocritical temperature Tpc of the physical point
(ml ,ms) is strongly influenced by critical scaling (deviations from scaling still small)

z0 together with

peak position of fχ: zp = 1.56(10) for O(2), zp = 1.33(5) for O(4)

allows to determine the pseudocritical line

with approximation mq/ms ∼ 0.52(Mπ,5/MK )2:

Tpc(Mπ,5)− Tc

Tc
= 0.68

zp
z0

(
Mπ,5

MK

)2/βδ

dependence of Tpc on Mπ,5 is weak:

Nτ = 4 : 0.68zp/z0 ∼ 0.15(5), Nτ = 8 : 0.68zp/z0 ∼ 0.20(8)

interesting whether z0 remains finite in continuum limit

decrease might be related to multiplicity of Goldstone modes as O(2) → O(4)
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Lattice Results on Critical Scaling and Goldstone Scaling Determination of Tpc

Dependence of z0 on the strange quark mass:
reweighting in the strange quark mass, quark mass ratio fixed:

z0 increases for decreasing ms (both Nτ = 4 and Nτ = 8)
→ weaker dependence of Tpc on Mπ,5

might be related to transition to Ising-like scaling
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Conclusion and Outlook

Conclusions and Outlook
Conclusions:

evidence for Goldstone and critical scaling seen in 〈q̄q〉 and χdis

Goldstone scaling also seen in χcon, unphysically induced by lattice artifacts

evidence for O(2) or O(4) critical scaling up to physical quark masses
mq/ms ≤ 1/20, both for Nτ = 4 and Nτ = 8

Nτ = 4: O(2) scaling slightly preferrred
Nτ = 8: O(4) scaling slightly preferrred

exclusion of Z2 scaling subtle issue, due to additional parameter mc
q

BUT: deviations from Goldstone scaling expected for Z2 (here, fG does NOT
incorporate Goldstone scaling)

interesting quantity: QCD-invariant z0(ms , a
2)

Outlook:

Nτ = 8 data are continuously improved in statistics, smaller masses will not be
possible in near future

in preparation: determination of slope ∂2

∂µ2
B
Tpc(µB)

∣∣∣
µB=0

for Nτ = 8

also: clarify whether the connected part might contribute to the scaling function,
carefull analysis of UA(1)-induced quark mass dependence in χcon above Tc needed
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Goldstone scaling also seen in χcon, unphysically induced by lattice artifacts

evidence for O(2) or O(4) critical scaling up to physical quark masses
mq/ms ≤ 1/20, both for Nτ = 4 and Nτ = 8

Nτ = 4: O(2) scaling slightly preferrred
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exclusion of Z2 scaling subtle issue, due to additional parameter mc
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