Magnetic equation of state in 2+1 flavour QCD: Towards the continuum limit

Wolfgang Unger, Universität Bielefeld RBC-Bielefeld Collaboration Internat. Research Training Group - GRK 881

 Δ Meeting Heidelberg, 8. May 2010

Chiral Phase Transition

- 2 The Goldstone Effect and Critical Scaling in O(N) Spin Models
- 3 Goldstone Scaling and Critical Scaling in (Staggered) QCD
- 4 Lattice Results on Critical Scaling and Goldstone Scaling
- **5** Conclusion and Outlook

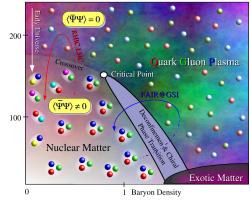
T [MeV]

Spontaneous Chiral Symmetry Breaking in QCD

- QCD-Lagrangian exhibits chiral symmetry for $m_u, m_d, m_s \rightarrow 0$
- at low temperatures, chiral symmetry is spontaneously broken:

$$\mathrm{SU}(N_f)_L \times \mathrm{SU}(N_f)_R \to \mathrm{SU}(N_f)_V$$

- at T_c chiral symmetry is restored
- order parameter is the chiral condensate:



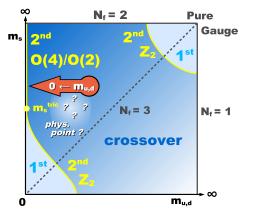
$$\langle \bar{q}q \rangle = -\frac{T}{V} \frac{\partial}{\partial m_q} \log \mathcal{Z}, \qquad \langle \bar{q}q \rangle \neq 0 \quad \text{for} \quad T < T_c$$

• quark masses m_u , m_d , m_s break chiral symmetry explicitly, but χ SB still provides good approximation to low energy QCD (pions as pseudo-Goldstone bosons)

The QCD phase transitions at zero density

Columbia Plot: quark mass dependence of the order of the transition for 2+1 flavors

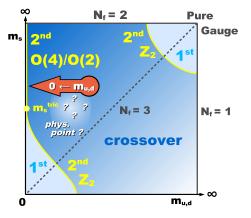
- at physical quark masses, a crossover is expected
- for sufficiently small quark masses (both $m_{u,d}$ and m_s) the transition is of first order
- critical lines of second order transition - limiting cases: $N_{\rm f} = 2$: O(4) universality class $N_{\rm f} = 3$: Ising universality class
- location of m^{tric}_s not known
 below or above m^{phys}_s? (implications for nonzero density?)



The QCD phase transitions at zero density

Columbia Plot: quark mass dependence of the order of the transition for 2+1 flavors

- at physical quark masses, a crossover is expected
- for sufficiently small quark masses (both $m_{u,d}$ and m_s) the transition is of first order
- critical lines of second order transition - limiting cases: $N_{\rm f} = 2$: O(4) universality class $N_{\rm f} = 3$: Ising universality class
- location of m^{tric}_s not known
 below or above m^{phys}_s?
 (implications for nonzero density?)



In this talk: interested in the chiral limit

 ${\sf lim}\ m_q \to 0$ at m_s fixed to physical value.

Goldstone Effect in O(N) Spin Model for d=3 and d=4

QCD at low energies may be described effectively by O(N) symmetric spin models:

- isomorphism: $SU(2)_L \times SU(2)_R \simeq O(4)$
- with $\pi^i \sim i \bar{\psi} \gamma_5 t^i \psi$, $\sigma \sim -\bar{q}q$, vector $(\vec{\pi}, \sigma)$ is O(4) invariant
- external field H corresponds to quark mass m_q , order parameter: $\Sigma = \langle \sigma \rangle$
- description is valid below and in the vicinity of the chiral phase transition

Goldstone Effect in O(N) Spin Model for d=3 and d=4

QCD at low energies may be described effectively by O(N) symmetric spin models:

- isomorphism: $SU(2)_L \times SU(2)_R \simeq O(4)$
- with $\pi^i \sim i \bar{\psi} \gamma_5 t^i \psi$, $\sigma \sim -\bar{q}q$, vector $(\vec{\pi}, \sigma)$ is O(4) invariant
- external field H corresponds to quark mass m_q , order parameter: $\Sigma = \langle \sigma \rangle$
- description is valid below and in the vicinity of the chiral phase transition

Goldstone effect:

- N-1 transverse Goldstone modes give corrections to Σ for $H \neq 0$
- calculation via chiral pert. theory from expectation value of $\langle \pi^i \pi^j \rangle$ yields:

$$d = 3: \qquad \Sigma_H = \Sigma_0 \left(1 + \frac{N-1}{8\pi} \frac{(\Sigma_0 H)^{1/2}}{F_0^3} + \mathcal{O}(H) \right)$$

$$d = 4: \qquad \Sigma_H = \Sigma_0 \left(1 - \frac{N-1}{16\pi^2} \frac{\Sigma_0 H}{F_0^4} \ln \left(\frac{\Sigma_0 H}{F_0^2 \Lambda_{\Sigma}} \right) + \mathcal{O}(H^2) \right)$$

[J. Gasser, H. Leutwyler - Ann. Phys. 158 (1984)] [P. Hasenfratz, H. Leutwyler - Nucl. Phys Proc. B343 (1990)]

O(N) Critical Scaling at $T \cong T_c$

Question: Is Goldstone scaling below T_c consistent with critical scaling at T_c ?

- below T_c : $\Sigma_H = c_0(T) + c_1(T)H^{1/2}$
- $T \simeq T_c$: scaling laws governed by critical exponents:

$$\Sigma_{H=0} \sim t^{eta}, \quad \Sigma_{H}(t=0) \sim H^{1/\delta}, \quad t = rac{T-T_{c}}{T_{c}}, \quad eta, \delta = \left\{ egin{array}{c} 0.349, 4.780 & O(2) \ 0.380, 4.824 & O(4) \end{array}
ight.$$

O(N) Critical Scaling at $T \cong T_c$

Question: Is Goldstone scaling below T_c consistent with critical scaling at T_c ?

- below T_c : $\Sigma_H = c_0(T) + c_1(T)H^{1/2}$
- $T \simeq T_c$: scaling laws governed by critical exponents:

$$\Sigma_{H=0} \sim t^{eta}, \quad \Sigma_{H}(t=0) \sim H^{1/\delta}, \quad t = rac{T-T_c}{T_c}, \quad eta, \delta = \left\{egin{array}{c} 0.349, 4.780 & O(2) \ 0.380, 4.824 & O(4) \end{array}
ight.$$

Critical scaling in vicinity of T_c can be described via scaling functions:

- rescaled scaling variable, now: $t = \frac{1}{t_0} \frac{T T_c}{T_c}$, $h = \frac{H}{h_0}$
- $z = t/h^{1/\beta\delta}$ invariant under rescaling $t_0 o b^{-1/\beta} t_0, \quad h_0 o b^{-\delta} h_0$
- scaling function $f_G(z)$ describes order parameter via magnetic equation of state:

$$\Sigma(t,h) = h^{1/\delta} f_G(z)$$

• normalization conditions:

$$f_G(0) = 1$$
 and $\lim_{z \to -\infty} rac{f_G(z)}{(-z)^{eta}} = 1$

The Magnetic Equation of State

Goldstone scaling is encoded within the O(N) scaling function $f_G(z)$

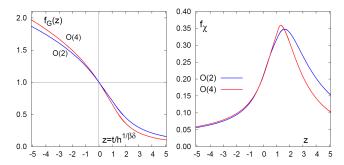
• magnetic equation of state in low temperature regime (from ϵ -expansion):

$$\Sigma(h,t) = h^{1/\delta} f_G(z), \qquad f_G(z) \simeq (-z)^{\beta} (1 + \tilde{c}_2 \beta (-z)^{-\beta \delta/2}) \qquad ext{for} \quad z o -\infty$$

[D. J. Wallace, R, K. P. Zia - Phys. Rev. B12 (1975)]

• also corresponding susceptibility $\chi \equiv \frac{\partial \Sigma}{\partial H}$ is described by scaling function $f_{\chi}(z)$, which is related to $f_G(z)$

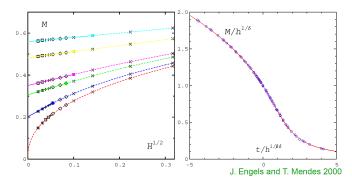
$$\chi(h,t<0)\sim c_1(t)h^{-1/2}\qquad \chi(h,t=0)\sim h^{1/\delta-1}$$



Wolfgang Unger, Universität Bielefeld

Evidence From the Lattice

• Goldstone effect in O(2)/O(4) and consistency with critical scaling numerically well established



[J. Engels, T. Mendes - Nucl. Phys Proc. Suppl. 83 (2000)]

• shown recently: our lattice data for $N_f = 2 + 1$ staggered fermions is well described by the scaling function $f_G(z)$ for small quark masses on a coarse lattice $(N_\tau = 4)$

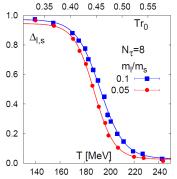
[S. Ejiri et al - Phys. Rev. D80 (2009)]

Motivation for Scaling Analysis in QCD

precise determination of T_c still open issue

- new $N_{ au} = 8$ data: shift of chiral transition region of -5 MeV as $m_l/m_s = 1/10 \rightarrow m_l/m_s = 1/20$
- small effect: scale setting, i.e. value of $\frac{r_0}{a}(\beta)$ with Sommer scale $r_0 = 0.469(7)$ fm, $T = \frac{1}{N_m r_0} \frac{r_0}{a}(\beta)$
- main effect: strong quark mass dependence

[Cheng et al - Phys. Rev. D81 (2010)]

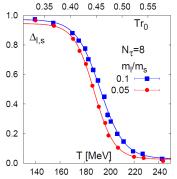


Motivation for Scaling Analysis in QCD

precise determination of T_c still open issue

- new $N_{\tau} = 8$ data: shift of chiral transition region of -5 MeV as $m_l/m_s = 1/10 \rightarrow m_l/m_s = 1/20$
- small effect: scale setting, i.e. value of $\frac{r_0}{a}(\beta)$ with Sommer scale $r_0 = 0.469(7)$ fm, $T = \frac{1}{N} \frac{r_0}{a}(\beta)$
- main effect: strong quark mass dependence

[Cheng et al - Phys. Rev. D81 (2010)]



- location of m_s^{tric} crucial for influence of critical surface on physical point
- is a *chiral* CEP at finite μ really ruled out?

Goldstone Modes in QCD

- QCD with $N_{\rm f} = 2 + 1$ flavors: chiral condensate now in principle depends on two masses, $m_q = m_{u,d}$ and m_s
- $\bullet\,$ finite temperature QCD: 3+1 dim. system with ${\cal T}$ controlled via temporal extent
- pressure of the ideal relativistic pion gas:

$$P(T, M_{\pi}) = \frac{N_{\rm f}^2 - 1}{2} \left[\frac{\pi^2 T^4}{45} - \frac{T^2 M_{\pi}^2}{12} + \frac{T M_{\pi}^3}{6\pi} - \frac{M_{\pi}^4}{16\pi^2} \log \frac{\Lambda}{M_{\pi}} + \ldots \right]$$

[H. E. Haber, H. A. Weldon - Phys. Rev. Lett. 46 (1981)]

• Gell-Mann/Oakes/Renner:

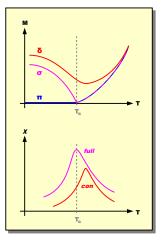
$$M_{\pi} = \sqrt{2m_q B}$$
 with $B = -\lim_{m_q \to 0} rac{\langle 0 | ar{q} q | 0
angle}{N_{
m f} F_{\pi}^2}$

• chiral condensate from pressure:

$$\langle \bar{q}q \rangle = \langle 0|\bar{q}q|0\rangle \left\{ 1 + \frac{N_{\rm f}^2 - 1}{N_{\rm f}} \left[-\frac{(T/F_{\pi})^2}{12} + \frac{1}{4\pi} \frac{TM_{\pi}}{F_{\pi}^2} + \mathcal{O}(M_{\pi}^2) \right] \right\}$$

Connected and Disconnected Chiral Susceptibility

Susceptibilities measure the fluctuations of the order parameter:



• in QCD: also (quark-line) connected diagrams contribute to chiral susceptiblity

$$\begin{array}{lll} \chi_{\rm full} & = & \chi_{\rm con} + \chi_{\rm dis} \\ \chi_{\rm dis} & = & N_{\rm f}^2 \left(\left\langle \left(\bar{q} q \right)^2 \right\rangle - \left\langle \bar{q} q \right\rangle^2 \right) \\ \chi_{\rm con} & = & N_{\rm f} \left\langle \overline{\bar{q}}(x) q(x) \overline{\bar{q}}(0) q(0) \right\rangle \end{array}$$

- if U_A(1) is effectively restored: the scalar isovector δ-meson (a₀) and the pion become mass degenerated
- to lowest order: $\chi_{\rm con} \sim \frac{1}{M_{\delta}^2}$ and $\chi_{\rm full} \sim \frac{1}{M_{\sigma}^2}$

[K. Rajagopal, F. Wilczek - Nucl. Phys. B399 (1993)]
 [M. Marci, E. Meggiolaro - Nucl. Phys. B665 (2003)]

 \Rightarrow if $U_A(1)$ is not effectively restored at the chiral transition (in the chiral limit), the connected susceptibility cannot contribute to the scaling function!

Wolfgang Unger, Universität Bielefeld

IR Divergences of Connected and Disconnected Susceptibility

Goldstone divergences for $T < T_c$ obtained from chiral perturbation theory to one loop for N_f degenerated flavors:

• IR-Part of Connected Susceptibilities at $M_{\pi} \ll T \ll T_c$:

$$\chi_{\rm con}^{\rm IR,3D} = \frac{N_{\rm f}^2 - 4}{8\pi^2} \frac{T}{\sqrt{2m_q}} \left(\frac{\Sigma}{F_\pi^2}\right)^{3/2}$$

• IR-Part of Full Susceptibilities at $M_{\pi} \ll T \ll T_c$:

$$\chi_{\rm full}^{\rm IR,3D} = \frac{N_{\rm f}^2 - 1}{4\pi^2} \frac{T}{\sqrt{2m_q}} \left(\frac{\Sigma}{F_\pi^2}\right)^{3/2}$$

 $\bullet~{\rm From}~\chi_{\rm con}^{\rm IR}$ and $\chi_{\rm full}^{\rm IR}$ one also gets $\chi_{\rm dis}^{\rm IR}$

$$\chi_{\rm dis}^{\rm IR,3D} = \frac{N_{\rm f}^2 + 2}{8\pi^2} \frac{T}{\sqrt{2m_q}} \left(\frac{\Sigma}{F_\pi^2}\right)^{3/2}$$

i.e. $\chi_{con}^{IR} = 0$ for $N_{f} = 2(+1)$

 \rightarrow no Goldstone effect expected for $\chi_{\rm con}$ in the continuum

[A. V. Smilga, J. Stern - Phys. Lett. B318 (1993)] [A. Smilga, J. J. M. Verbaarschot - Phys. Rev. D54 (1996)]

Taste Breaking

• Lee-Sharpe Lagrangian:

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{eff}}^{ ext{cont}} + a^2 \sum_i C_i \mathcal{O}_i(U)$$

- taste-index: $t \in \{P, A, T, V, I\}$ corresponds to taste channels defined via Euclidean gamma matrices. $\xi_t \in \{\gamma_5, i\gamma_\mu\gamma_5, i\gamma_\mu\gamma_\nu, \gamma_\mu, 1\}$
- impact of taste breaking on meson masses:

$$M_{f,f',t}^2 = B(m_f + m_{f'}) + a^2 \Delta_t$$

with taste-violations: $\Delta_P = 0$ and $\Delta_t \neq 0$ for $t \neq P$

Taste Breaking

• Lee-Sharpe Lagrangian:

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{eff}}^{\mathrm{cont}} + a^2 \sum_i C_i \mathcal{O}_i(U)$$

- taste-index: $t \in \{P, A, T, V, I\}$ corresponds to taste channels defined via Euclidean gamma matrices. $\xi_t \in \{\gamma_5, i\gamma_\mu\gamma_5, i\gamma_\mu\gamma_\nu, \gamma_\mu, 1\}$
- impact of taste breaking on meson masses:

$$M_{f,f',t}^2 = B(m_f + m_{f'}) + a^2 \Delta_t$$

with taste-violations: $\Delta_P = 0$ and $\Delta_t \neq 0$ for $t \neq P$

remaining axial U(1) symmetry even for finite lattice spacing

resulting in a pseudo-Goldstone boson $M_{\pi,5}$ in the pseudo taste channel \rightarrow O(2) instead of O(4) scaling expected

Taste Breaking

• Lee-Sharpe Lagrangian:

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{eff}}^{\mathrm{cont}} + a^2 \sum_i C_i \mathcal{O}_i(U)$$

- taste-index: $t \in \{P, A, T, V, I\}$ corresponds to taste channels defined via Euclidean gamma matrices. $\xi_t \in \{\gamma_5, i\gamma_\mu\gamma_5, i\gamma_\mu\gamma_\nu, \gamma_\mu, 1\}$
- impact of taste breaking on meson masses:

$$M_{f,f',t}^2 = B(m_f + m_{f'}) + a^2 \Delta_t$$

with taste-violations: $\Delta_P = 0$ and $\Delta_t \neq 0$ for $t \neq P$

remaining axial U(1) symmetry even for finite lattice spacing

resulting in a pseudo-Goldstone boson $M_{\pi,5}$ in the pseudo taste channel \rightarrow O(2) instead of O(4) scaling expected

• taste violation contribution for $N_{\rm f}=2+1$ ($m_q
ightarrow$ 0, a fixed):

$$\begin{split} \chi^{\text{con,IR}}_{5\chi\text{PT}} &= B^{\text{IR}}_{a_0}(0) \sim \frac{1/16}{M_{\pi,5}} \\ \chi^{\text{dis,IR}}_{5\chi\text{PT}} &= B^{\text{IR}}_{f_0}(0) - B^{\text{IR}}_{a_0}(0) \sim \frac{1/16}{M_{\pi,5}} \end{split}$$

Setup of Lattice Calculations

preliminary data of the RBC-Bielefeld collaboration for $N_{\rm f} = 2 + 1$:

- fermion action: p4fat3 (fattening reduces taste breaking)
- susceptibilities measured with up to 20 random vectors (noisy estimator)
- statistics (measurements separated by 10 trajectories):

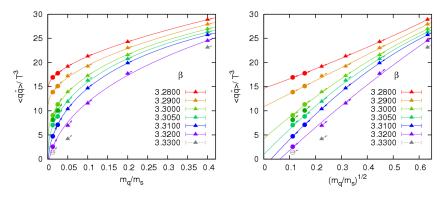
lattice dim.	m_q/m_s	statistics	lattice dim.	m_q/m_s	statistics
$32^3 \times 4$	1/80	O(20000)			
$32^3 \times 4$	1/40	O(20000)			
$16^3 imes 4$	1/40	$\mathcal{O}(30000)$	$32^3 imes 8$	1/40	just started
$16^3 imes 4$	1/20	O(40000)	$32^3 \times 8$	1/20	O(20000)
$16^3 imes 4$	1/10	O(40000)	$32^3 \times 8$	1/10	$\mathcal{O}(30000)$
$16^3 imes 4$	1/5	O(40000)	$32^3 imes 8$	1/5	$\mathcal{O}(30000)$
$16^3 imes 4$	2/5	O(40000)			
$\beta = 3.2800,$		3.3300	$\beta =$ 3.4800,		3.5400

• with m_s fixed to physical value, $m_s a = 0.065$ for $N_\tau = 4$ and $m_s a = 0.024$ for $N_\tau = 8$ ($\rightarrow M_{s\bar{s}} \simeq 669$ MeV) we find:

- $m_q/m_s=1/20:$ ightarrow $M_{\pi,5}\simeq 150$ MeV
- $m_q/m_s=1/80:$ ightarrow $M_{\pi,5}\simeq 75~{
 m MeV}$
- thermodynamic limit well under control, for smallest mass: $M_{\pi,5}N_\sigma\simeq 3$
- ullet in particular: no evidence for finite size scaling \longrightarrow crossover region

Goldstone Scaling of Chiral Condensate

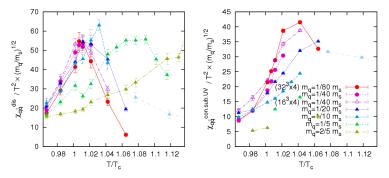
- data indicate Goldstone Effect below T_c
- fit ansatz $\left<\psi\bar{\psi}\right> = a + b\left(rac{m_q}{m_s}
 ight)^{1/2} + c\left(rac{m_q}{m_s}
 ight)$ describes data well
- prediction of chiral limit can be improved a lot by taking into account taste breaking



chiral condensate over quark mass, arrows indicate full susceptibility as its mass derivative

Goldstone Scaling of Chiral Susceptibilities

- disconnected part: Goldstone effect extends into peak region
- connected part (corrected for UV-divergent constant): also Goldstone scaling found



rescaled chiral susceptibility - left: disconnected part, right: connected part

Remark on Goldstone Fits

- usually: first go to continuum limit, then to chiral limit (not feasable)
- or: understand the chiral limit for finite lattice spacing systematically
- indeed, we observe agreement with predictions of staggered chiral perturbation theory!

Binder Cumulant

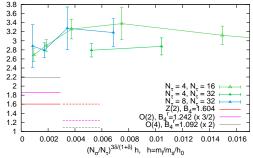
From the cumulants

$$M_k = \frac{\partial^k}{\partial h^k} \mathcal{F}_s(h, V^{-1})$$

with $\lambda = L^d$, one obtains for the Binder Cumulant:

$$B_4(z_h) = \frac{f_h^{(4)}(z_h)}{f_h^{(2)}(z_h)}, \qquad z_h = L^{da_h}h$$

Binder Cumulant for light Chiral Condensate - 2+1 flavor measured at fixed β close to $\beta_c,\beta=3.3000~(N_{\tau}=4),~\beta=3.5150~(N_{\tau}=8)$



Binder Cumulant

From the cumulants

$$M_k = \frac{\partial^k}{\partial h^k} \mathcal{F}_s(h, V^{-1})$$

with $\lambda = L^d$, one obtains for the Binder Cumulant:

$$B_4(z_h) = rac{f_h^{(4)}(z_h)}{f_h^{(2)}(z_h)}, \qquad z_h = L^{da_h}h$$

measured at fixed β close to β_c : β =3.3000 (N_r=4), β =3.5150 (N_r=8) 3.8 3.6 3.4 3.2 3 2.8 2.6 2.4 2.2 2 = 4. N = 161.8 1.6 1.4 O(2), $B_4 = 1.242$ (x 1.2 $O(4) B_{1}=1.092 (x 2)$ 1 0.002 0.006 0.016 0 0.004 0.008 0.01 0.012 0.014 $(N_{-}/N_{-})^{3\delta/(1+\delta)}$ h. h=m/m_/h_

Binder Cumulant for light Chiral Condensate - 2+1 flavor

Note:

- B_4 is an RG-invariant number at h = 0, and independent of volume $V = L^d$
- simulations performed at h > 0, criticality only reached in chiral limit
- universal value of B_4 altered by group integration factors as O(N) field is always aligned to longitudinal magnetization (here $s^{||} \sim \bar{q}q$)

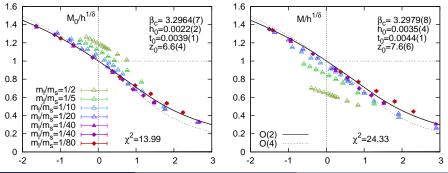
$$B_{4}^{r} = \frac{\left\langle S^{||\,4} \right\rangle}{\left\langle S^{||\,2} \right\rangle^{2}} = \frac{\left\langle |\vec{S}|^{4} \right\rangle \int_{-1}^{1} dxx^{4} f_{N}(x)}{\left\langle |\vec{S}|^{2} \right\rangle^{2} \left(\int_{-1}^{1} dxx^{2} f_{N}(x) \right)^{2}} = B_{4} \times \begin{cases} 1 & \text{for} \quad N = 1 \\ \frac{3}{2} & \text{for} \quad N = 2 \\ 2 & \text{for} \quad N = 4 \end{cases}$$
$$f_{N}(x) = c_{N} \int_{0}^{\pi} d\theta_{N-1} \sin^{N-2} \theta_{N-1} \delta(x - \cos \theta_{N-1})$$

Wolfgang Unger, Universität Bielefeld

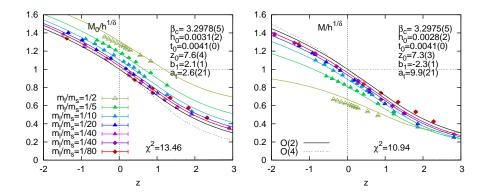
Magnetic Equation of State for Chiral Condensates

- determination of the critical temperature T_c and the normalization constants h_0 , t_0
- O(2) slightly preferred, however, by reparametrizing $z \rightarrow 1.2z$, O(2) moves on O(4) scaling functions almost indistinguishable
 - $\rightarrow~$ not possible to discriminate O(2) from O(4) here
- $z_0 = t_0 h_0^{-1/\beta\delta}$ is invariant under rescaling (h_0 , t_0 are not!)
- un-subtracted and subtracted condensate (to remove UV-div. $\sim m_l/a^2$) are fitted:

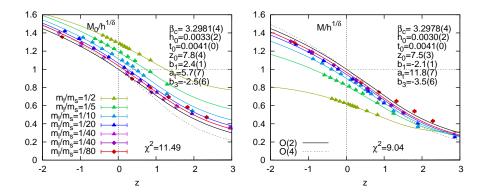
$$M_0 = m_s \langle \bar{q}q \rangle_I / T^4, \qquad M = m_s (\langle \bar{q}q \rangle_I - m_I / m_s \langle \bar{q}q \rangle_s) / T$$



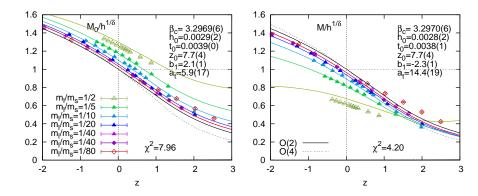
- \bullet quark masses with $m_q/m_s \leq 1/20$ well described by scaling function
- $\bullet\,$ for $m_q/m_s>1/20$ scaling deviations become substantial
- fit ansatz for scaling deviations: $M(t, h) = f_T(t, h)|t|^{\beta} + a_t(T T_c)H + b_1H$
- problem for $N_{\tau} = 8$ data: fits without scaling deviations not possible



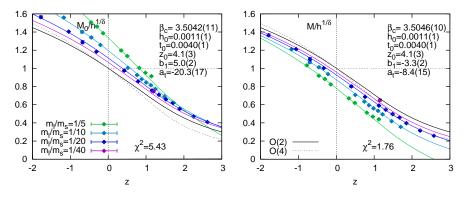
- \bullet quark masses with $m_q/m_s \leq 1/20$ well described by scaling function
- $\bullet\,$ for $m_q/m_s>1/20$ scaling deviations become substantial
- fit ansatz for scaling deviations: $M(t, h) = f_T(t, h)|t|^\beta + a_t(T T_c)H + b_1H + b_3H^3$
- problem for $N_{\tau} = 8$ data: fits without scaling deviations not possible



- \bullet quark masses with $m_q/m_s \leq 1/20$ well described by scaling function
- $\bullet\,$ for $m_q/m_s>1/20$ scaling deviations become substantial
- fit ansatz for scaling deviations: $M(t,h) = f_T(t,h)|t|^{\beta} + a_t(T T_c)H + b_1H$
- problem for $N_{\tau} = 8$ data: fits without scaling deviations not possible



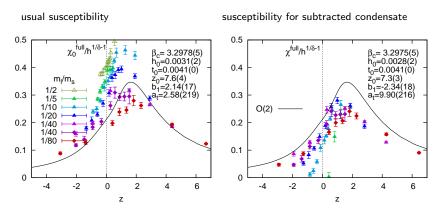
- question: is the range $1/20 \le m_q/m_s$ enough to determine β_c , t_0 and h_0 ?
- yes, for $N_{ au}=4$ eta_c and z_0 is recovered within errors
- assumption: should then also work for $N_{ au}=8$



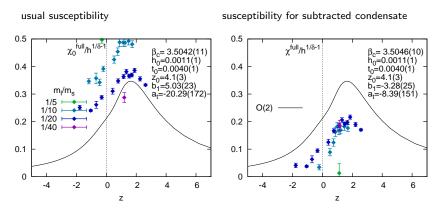
• z_0 is specific to QCD and in the continuum should only depend on m_s

 \bullet on the lattice: cut-off dependence should be seen in ${\it z}_0,$ due to $O(2) \to O(4)$

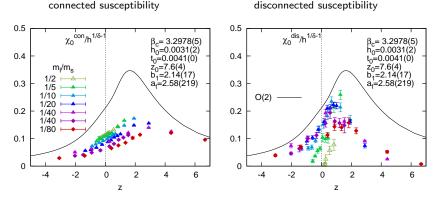
- full susceptibilities quite well described by $f_{\chi}(z) = \frac{1}{\delta} \left(f_G(z) \frac{z}{\beta} \frac{d}{dz} f_G(z) \right)$
- in principle, O(2) and O(4) scaling should be distinguishable in f_{χ} for lattice data, however, statistics might not be sufficient
- N_τ = 4



- full susceptibilities quite well described by $f_{\chi}(z) = \frac{1}{\delta} \left(f_G(z) \frac{z}{\beta} \frac{d}{dz} f_G(z) \right)$
- in principle, O(2) and O(4) scaling should be distinguishable in f_{χ} for lattice data, however, statistics might not be sufficient
- $N_{\tau} = 8$

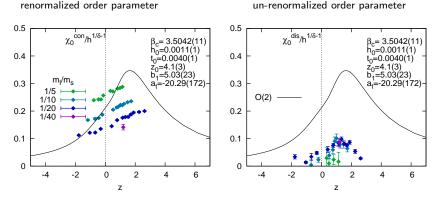


- full susceptibilities quite well described by $f_{\chi}(z) = \frac{1}{\delta} \left(f_G(z) \frac{z}{\beta} \frac{d}{dz} f_G(z) \right)$
- in principle, O(2) and O(4) scaling should be distinguishable in f_{χ} for lattice data, however, statistics might not be sufficient
- connected and disconnected part, $N_{\tau} = 4$:



• connected part should not contribute substantially to the scaling function, but lattice data are somewhat ambiguous

- full susceptibilities quite well described by $f_{\chi}(z) = \frac{1}{\delta} \left(f_G(z) \frac{z}{\beta} \frac{d}{dz} f_G(z) \right)$
- in principle, O(2) and O(4) scaling should be distinguishable in f_{χ} for lattice data, however, statistics might not be sufficient
- connected and disconnected part, $N_{\tau} = 8$:

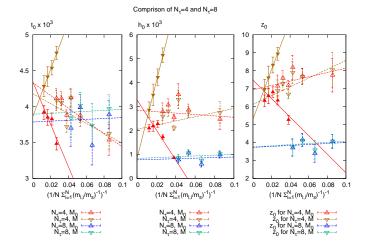


• stronger contribution of connected part due to UV-divergent constant *ca*², but becomes suppressed in chiral limit

Wolfgang Unger, Universität Bielefeld

Determination of z_0

• z₀ decreases in the continuum limit



Consequences for Determination of T_{pc} for physical quark masses

now believed:

- for staggered fermions, the pseudocritical temperature T_{pc} of the physical point (m_l, m_s) is strongly influenced by critical scaling (deviations from scaling still small)
- *z*₀ together with

peak position of f_{χ} : $z_p = 1.56(10)$ for O(2), $z_p = 1.33(5)$ for O(4)

allows to determine the pseudocritical line

• with approximation $m_q/m_s \sim 0.52 (M_{\pi,5}/M_K)^2$:

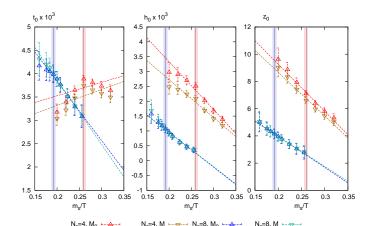
$$\frac{T_{pc}(M_{\pi,5}) - T_c}{T_c} = 0.68 \frac{z_p}{z_0} \left(\frac{M_{\pi,5}}{M_K}\right)^{2/\beta\delta}$$

- dependence of T_{pc} on $M_{\pi,5}$ is weak: $N_{\tau} = 4: \quad 0.68z_p/z_0 \sim 0.15(5), \qquad N_{\tau} = 8: \quad 0.68z_p/z_0 \sim 0.20(8)$
- interesting whether z_0 remains finite in continuum limit
- $\bullet\,$ decrease might be related to multiplicity of Goldstone modes as O(2) $\rightarrow\,$ O(4)

Dependence of z_0 on the strange quark mass:

reweighting in the strange quark mass, quark mass ratio fixed:

- z_0 increases for decreasing m_s (both $N_{\tau} = 4$ and $N_{\tau} = 8$)
 - \rightarrow weaker dependence of T_{pc} on $M_{\pi,5}$
- might be related to transition to Ising-like scaling



Conclusions and Outlook

Conclusions:

- ullet evidence for Goldstone and critical scaling seen in $\langle \bar{q}q \rangle$ and $\chi^{\rm dis}$
- $\bullet\,$ Goldstone scaling also seen in $\chi^{\rm con},$ unphysically induced by lattice artifacts
- evidence for O(2) or O(4) critical scaling up to physical quark masses $m_q/m_s \leq 1/20$, both for $N_\tau = 4$ and $N_\tau = 8$
 - $N_{ au} =$ 4: O(2) scaling slightly preferred
 - $N_{ au} = 8$: O(4) scaling slightly preferred
- exclusion of Z_2 scaling subtle issue, due to additional parameter m_q^c
- BUT: deviations from Goldstone scaling expected for Z₂ (here, f_G does NOT incorporate Goldstone scaling)
- interesting quantity: QCD-invariant $z_0(m_s, a^2)$

Conclusions and Outlook

Conclusions:

- ullet evidence for Goldstone and critical scaling seen in $\langle \bar{q}q \rangle$ and $\chi^{\rm dis}$
- $\bullet\,$ Goldstone scaling also seen in $\chi^{\rm con},$ unphysically induced by lattice artifacts
- evidence for O(2) or O(4) critical scaling up to physical quark masses $m_q/m_s \le 1/20$, both for $N_\tau=4$ and $N_\tau=8$
 - $N_{ au} =$ 4: O(2) scaling slightly preferred
 - $N_{ au} = 8$: O(4) scaling slightly preferred
- exclusion of Z_2 scaling subtle issue, due to additional parameter m_q^c
- BUT: deviations from Goldstone scaling expected for Z₂ (here, f_G does NOT incorporate Goldstone scaling)
- interesting quantity: QCD-invariant $z_0(m_s, a^2)$

Outlook:

- $N_{\tau} = 8$ data are continuously improved in statistics, smaller masses will not be possible in near future
- in preparation: determination of slope $\left. \frac{\partial^2}{\partial \mu_B^2} T_{pc}(\mu_B) \right|_{\mu_B=0}$ for $N_{\tau}=8$
- also: clarify whether the connected part might contribute to the scaling function, carefull analysis of $U_A(1)$ -induced quark mass dependence in χ^{con} above \mathcal{T}_c needed