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Consider the action that was derived on the fist lecture,

SE[q] =

∫
dt

{
1

2
mq̇2 + V (q)

}
, (1)

with q = q(t) and t ∈ [0, T ]. For numerical simulations typically q will be stored as an
array, whose elements will be accessed like q[n], where n is an integer. Therefore, one
needs to discretise the time coordinate. Usually this is done by partitioning the interval
[0, T ] in N parts of equal size a with the discrete times t→ tn = na.

In conseuqence, the derivatives in the kinetic term in SE have to be substituted with
derivatives, as discussed in detail in the lecture from 26th of October. This leads us,
e.g., to

q̇ → q(tn + a)− q(tn)

a
, (2)

the right derivative discussed in the lecture for a scalar field, or

q̇ → q(tn + a)− q(tn − a)

2a
, (3)

the symmetric derivative. In the limit a → 0 the differences between these definitions
disappear, if the limit is well-defined. The differences in eq. (2) and eq. (3) can be
computed numerically as (q[n+1] - q[n])/a or (q[n+1] - q[n-1])/2*a, respectively.

Exercise 1: Taylor expansions

• Assume now that q(t) is defined for t ∈ R. Use the right-hand side of the two
expressions above, and compute the Taylor expansion about tn up to the second
order.

• How does each of them differ from the actual q̇?

Bonus: Can you think of other discretisations? How do they compare with those
above?
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Exercise 2: Dispersion relation and continuum limit

Consider now the action of the quantum harmonic oscillator

SE =

∫
dt

[
q̇2 +

1

2
mq2

]
, (4)

and its discretised version

SE = a
∑
n

(
1

a

[
1 + β

2
q(tn + a)− 1− β

2
q(tn − a)− βq(tn)

])2

+
m

2
q2 , (5)

where β ∈ [0, 1]. This interpolates the kinetic term between the two discretisations
shown above: for β = 0 one has eq. (3) and for β = 1 one has eq. (2).

Since the action is quadratic, it may be written in momentum (or, more accurately,
frequency) space by using Fourier transforms

q(tn) =
∑
j

eipjtn q̂(pj) , (6)

pj = jπ/aN and j = 0, 1, · · · , N − 1. The action in momentum space then has the form

SE =
1

2a

∑
j

q̂∗(pj)D(pj)q̂(pj) . (7)

• Compute D(pj).

• It is instructive to plot D(pj) as a function of pj for different values of β. How do
the different curves compare to each other?

• Using Fourier transforms to write eq. (4) also in momentum space and find the
continuum version of D(p).

• Consider now the limit of a→ 0 (the continuum limit) of D(pj), and compare that
with D(p). For which values of pj do both agree?
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