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Consider the action that was derived on the fist lecture,

el = [ e {Gmi+ v} 0

with ¢ = ¢(t) and ¢t € [0,T]. For numerical simulations typically ¢ will be stored as an
array, whose elements will be accessed like q[n], where n is an integer. Therefore, one
needs to discretise the time coordinate. Usually this is done by partitioning the interval
[0,7] in N parts of equal size a with the discrete times ¢t — ¢, = na.

In conseuqence, the derivatives in the kinetic term in Sg have to be substituted with
derivatives, as discussed in detail in the lecture from 26th of October. This leads us,
e.g., to

q- N Q<tn + aC)L - Q<tn) ’ (2)

the right derivative discussed in the lecture for a scalar field, or

the symmetric derivative. In the limit a — 0 the differences between these definitions
disappear, if the limit is well-defined. The differences in eq. (2) and eq. (3) can be
computed numerically as (q[n+1] - qlnl)/aor (q[n+1] - qln-1])/2%*a, respectively.

Exercise 1: Taylor expansions

e Assume now that ¢(t) is defined for ¢ € R. Use the right-hand side of the two
expressions above, and compute the Taylor expansion about ¢, up to the second
order.

e How does each of them differ from the actual ¢?

Bonus: Can you think of other discretisations? How do they compare with those
above?



Exercise 2: Dispersion relation and continuum limit

Consider now the action of the quantum harmonic oscillator
E
Sg= [ dt|q + ma| (4)

and its discretised version

Sp=ay_ (é {#Q(tn +a) - #q(tn —a) - BQ(tn)DQ + %Cf , (5)

n

where 5 € [0,1]. This interpolates the kinetic term between the two discretisations
shown above: for 5 = 0 one has eq. (3) and for 5 = 1 one has eq. (2).

Since the action is quadratic, it may be written in momentum (or, more accurately,
frequency) space by using Fourier transforms

q(tn) =D €™ ™i(p;), (6)

J

p; = jm/aN and j =0,1,--- , N — 1. The action in momentum space then has the form
1 " R
Se =5 > @ (p)D(p;)ilp;) - (7)
J

e Compute D(p;).

e It is instructive to plot D(p;) as a function of p; for different values of 5. How do
the different curves compare to each other?

e Using Fourier transforms to write eq. (4) also in momentum space and find the
continuum version of D(p).

e Consider now the limit of @ — 0 (the continuum limit) of D(p;), and compare that
with D(p). For which values of p; do both agree?



