Lattice field theories Exercise sheet 1 - Derivative Discretisations

Lectures: Jan Pawlowski
Felipe Attanasio
Tutorials: Felipe Attanasio
j.pawlowski@thphys.uni-heidelberg.de pyfelipe@thphys.uni-heidelberg.de pyfelipe@thphys.uni-heidelberg.de

Institut für Theoretische Physik, Uni Heidelberg
Consider the action that was derived on the fist lecture,

$$
\begin{equation*}
S_{E}[q]=\int d t\left\{\frac{1}{2} m \dot{q}^{2}+V(q)\right\} \tag{1}
\end{equation*}
$$

with $q=q(t)$ and $t \in[0, T]$. For numerical simulations typically q will be stored as an array, whose elements will be accessed like $\mathrm{q}[\mathrm{n}]$, where n is an integer. Therefore, one needs to discretise the time coordinate. Usually this is done by partitioning the interval $[0, T]$ in N parts of equal size a with the discrete times $t \rightarrow t_{n}=n a$.

In conseuqence, the derivatives in the kinetic term in S_{E} have to be substituted with derivatives, as discussed in detail in the lecture from 26th of October. This leads us, e.g., to

$$
\begin{equation*}
\dot{q} \rightarrow \frac{q\left(t_{n}+a\right)-q\left(t_{n}\right)}{a} \tag{2}
\end{equation*}
$$

the right derivative discussed in the lecture for a scalar field, or

$$
\begin{equation*}
\dot{q} \rightarrow \frac{q\left(t_{n}+a\right)-q\left(t_{n}-a\right)}{2 a} \tag{3}
\end{equation*}
$$

the symmetric derivative. In the limit $a \rightarrow 0$ the differences between these definitions disappear, if the limit is well-defined. The differences in eq. (2) and eq. (3) can be computed numerically as $(\mathrm{q}[\mathrm{n}+1]-\mathrm{q}[\mathrm{n}]) / a$ or $(\mathrm{q}[\mathrm{n}+1]-\mathrm{q}[\mathrm{n}-1]) / 2 * a$, respectively.

Exercise 1: Taylor expansions

- Assume now that $q(t)$ is defined for $t \in \mathbb{R}$. Use the right-hand side of the two expressions above, and compute the Taylor expansion about t_{n} up to the second order.
- How does each of them differ from the actual \dot{q} ?

Bonus: Can you think of other discretisations? How do they compare with those above?

Exercise 2: Dispersion relation and continuum limit

Consider now the action of the quantum harmonic oscillator

$$
\begin{equation*}
S_{E}=\int d t\left[\dot{q}^{2}+\frac{1}{2} m q^{2}\right] \tag{4}
\end{equation*}
$$

and its discretised version

$$
\begin{equation*}
S_{E}=a \sum_{n}\left(\frac{1}{a}\left[\frac{1+\beta}{2} q\left(t_{n}+a\right)-\frac{1-\beta}{2} q\left(t_{n}-a\right)-\beta q\left(t_{n}\right)\right]\right)^{2}+\frac{m}{2} q^{2}, \tag{5}
\end{equation*}
$$

where $\beta \in[0,1]$. This interpolates the kinetic term between the two discretisations shown above: for $\beta=0$ one has eq. (3) and for $\beta=1$ one has eq. (2).

Since the action is quadratic, it may be written in momentum (or, more accurately, frequency) space by using Fourier transforms

$$
\begin{equation*}
q\left(t_{n}\right)=\sum_{j} e^{i p_{j} t_{n}} \hat{q}\left(p_{j}\right) \tag{6}
\end{equation*}
$$

$p_{j}=j \pi / a N$ and $j=0,1, \cdots, N-1$. The action in momentum space then has the form

$$
\begin{equation*}
S_{E}=\frac{1}{2 a} \sum_{j} \hat{q}^{*}\left(p_{j}\right) D\left(p_{j}\right) \hat{q}\left(p_{j}\right) . \tag{7}
\end{equation*}
$$

- Compute $D\left(p_{j}\right)$.
- It is instructive to plot $D\left(p_{j}\right)$ as a function of p_{j} for different values of β. How do the different curves compare to each other?
- Using Fourier transforms to write eq. (4) also in momentum space and find the continuum version of $D(p)$.
- Consider now the limit of $a \rightarrow 0$ (the continuum limit) of $D\left(p_{j}\right)$, and compare that with $D(p)$. For which values of p_{j} do both agree?

