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Exercise 4: Detailed balance

In the lecture of 2nd of November the detailed balance condition was introduced. It is
a sufficient condition for the solution of the balance equation that allows the Markov
chain to have an equilibrium distribution.

Prove that the total transition probability T = T0TA of the Metropolis algorithm,

TA(φ′ ← φ) = min

(
1,
T0(φ← φ′) exp(−S[φ′])

T0(φ′ ← φ) exp(−S[φ])

)
, (1)

satisfies the detailed balance equation

T (φ′ ← φ)P (φ) = T (φ← φ′)P (φ′) , (2)

where P (φ) = exp(−S[φ])/Z.

Exercise 5: Simulation of a 1+1 dimensional scalar lattice theory

Below, we provide a pseudo-code implementation of the Metropolis algorithm for the
1 + 1 dimensional scalar field. The lattice has cubic elementary cells with both lattice
distances being a, and its extend is given by Nt×Nx. We also assume the implementation
of a function S, that computes the action of a given field configuration. In this example
we shall use the following lattice action ,

S =
∑
nt,nx

{
−1

2
φ(nt, nx)

(
φ(nt + 1, nx) + φ(nt − 1, nx) + φ(nt, nx + 1) + φ(nt, nx − 1)

− 4φ(nt, nx)
]

+
m2

2
φ(nt, nx)2 +

g

4!
φ(nt, nx)4

}
, (3)
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where 0 ≤ nt < Nt and 0 ≤ nx < Nx. The field has periodic boundary conditions,
φ(nt + Nt, nx) = φ(nt, nx) = (nt, nx + Nx). It is dimensionless in two dimensions. In
turn, the dimensionless couplings are measure in the lattice distance a.

The field is evolved over Nsteps Monte Carlo steps, where after each the observable O
is computed and stored. At the end of execution the ensemble average is computed and
may then be printed to a file or the screen.

It is customary to “throw away” the first few configurations generated by any Monte
Carlo method. This is because we start from some arbitrary initial condition and the
Markov chain has not reached its equilibrium distribution yet (it has not “thermalised”,
in common parlance). Typically, one runs the Markov chain for 0 < Ntherm < Nsteps

steps without updating the observable, so that the chain thermalises, and then runs it
for Nsteps collecting statistic for the observable(s).

Another important aspect is that with our choice of updating procedure two subse-
quent field configurations are correlated, and correlations tend to cause statistical errors
to be underestimated. In order to avoid that, one can compute ensemble averages using
only one configuration for every Nskip Monte Carlo steps, with the other configurations
being discarded.

double phi[Nt][Nx];
for n← 0 to Nsteps do

for 0 ≤ t < Nt and 0 ≤ x < Nx do // sweep over the lattice

oldAction ← S(phi) ; // save old action

oldValue ←phi[t][x] ; // save old φ(x)
phi[t][x] ← phi[t][x] + N (0, 1) ; // random change to φ(x)
∆S = S(phi) - oldAction;
if ∆S > 0 then

r ← UniformReal(0,1);
if r > exp(−∆S) then

phi[t][x] ← oldValue ; // reject proposal

end

end

end
Obs ← Obs + O(phi) ; // update computation of observable

end
Obs ← Obs / Nsteps;

• How would you change the algorithm above to use discard Nskip configurations
between those that are used to compute ensemble averages?

• Perform the simulation using the algorithm above in a lattice of size 32× 32, and
compute the “magnetisation”

M =

〈
1

NtNx

∑
nt,nx

φ(nt, nx)

〉
, (4)
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i.e., the expectation value of the volume average field for the following parameters
in units of the lattice distance,

– m2 = 0.173913, g = 2.26843

– m2 = −0.307692, g = 1.77515

– m2 = −0.571429, g = 1.53061

Classically, one would expect the Z2 symmetry of the theory to be broken for
m2 < 0, i.e., the “magnetisation” to have a non-zero value. What do you observe
for each case in the Monte Carlo simuations?

Exercise 6: A convenient (re)parametrisation

When dealing with scalar fields it is very common to apply the following re-scaling of
the variables:

a
d−2
2 φ→ (2κ)1/2ϕ , (5)

(am)2 → 1− 2λ

κ
− 2d , (6)

a−d+4g → 6λ

κ2
, (7)

where d is the number of spacetime dimensions, and we have introduced the dimension-
less field ϕ and the hopping parameter κ. Note that all variables in the new formulation
are dimensionless.

• Using the transformation above, rewrite the action in eq. (3) using the new,
dimensionless, variables.

• Perform lattice simulations, again on a 32× 32 lattice, with λ = 0.02 and 0.22 ≤
κ ≤ 0.30. The system should be in different phases for κ = 0.22 and κ = 0.30 and
undergoes a second order phase transition at a certain value of κ. The different
phases are indicated by a (non-)zero value of the “magnetisation”

M =

〈
1

NtNx

∑
nt,nx

ϕ(nt, nx)

〉
. (8)

At second order phase transitions the susceptibility,

χ2 = NtNx

〈( 1

NtNx

∑
nt,nx

ϕ(nt, nx)

)2〉
−

〈
1

NtNx

∑
nt,nx

ϕ(nt, nx)

〉2
 , (9)

has a peak when in a finite volume, and should diverge in the thermodynamic
limit. For which value of κ do you observe the phase transition, i.e., where does
M change behaviour and χ2 diverge?

Note: computing the susceptibility may require more statistics (i.e., longer runs)
than the magnetisation.
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