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Exercise 8: Simplifying the propagator

Consider the Euclidean correlator of a free fermion created at time t′ and annihilated at
time t′ + δ:

〈ψt′+δ ψt′〉 =
∑
n

〈0|ψ|n〉〈n|ψ|0〉
[
e−Enδ − e−En(Nt−δ)

]
, (1)

Use the fact that we are working in the free case to show that only the n = 1 element
of eq. (1) survives, and that the result is proportional to sinh(En(Nt/2− δ)).

Exercise 9: Inverting matrices and extracting masses

The correlator of eq. (1) can also be obtained in the path-integral formulation via

〈ψyψx〉 =
δ

δJy

δ

δJx
lnZ

∣∣∣∣
J=J=0

= (D−1)y,x , (2)

where D represents the Dirac operator. In d spacetime dimensions and in the Wilson
formulation, it is given by

Dx,y = (d r +m)1δx,y −
1

2

d−1∑
µ=0

[(r − γµ)δx,y+µ̂ + (r + γµ)δx,y−µ̂] , (3)

where x = (x0, ~x) and y = (y0, ~y), µ̂ represents a unit vector in the µ direction, r is the
Wilson parameter, and 1, γµ act in Dirac space.

Consider now the correlator of a zero momentum fermion created at the origin and
annihilated at time t = δ:

C(δ) =
1

V

∑
~y

〈ψ(δ,~y) ψ0〉 =
1

V

∑
~y

(D−1)(δ,~y),0 =
1

V

∑
~y

∑
x

(D−1)(δ,~y),xvx , (4)
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where vx ≡ vx0,~x = s δx0,0 δ~x,~0 and s is a spinor.
Implement the Conjugate Gradient (CG) algorithm and use it to compute eq. (4)

using the Dirac operator in 1 + 1 dimensions. Use Nt = 64 and V = Nx = 32, r = 1,
and 0.01 ≤ m ≤ 1.0. In this exercise we do not care about a particular spin orientation,
so just like in QFT we compute the correlator for both spin up, s = [1 0]ᵀ, and spin
down, s = [0 1]ᵀ, and sum them.

1. Measure the number of iterations used by CG as a function of the bare fermion
mass. You should see that it increases for lower masses. Can you think of an
explanation?

2. You should observe that C(δ), for δ > 0, is proportional to sinh(amR(Nt/2− δ)),
where mR is the renormalised fermion mass. It is related to the bare mass via

amR = ln [1 + Z (am− amc)] , (5)

where Z is a renormalisation constant and mc is a shift to the mass caused by the
Wilson term. In the free case, Z = 1 and mc = 0. This provides a non-trivial
check of your implementation: you should be able to extract the bare mass by
fitting C(δ) with the expected sinh behaviour and verify if it agrees with the input
value.
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Supplemental material

For this exercise sheet we work with free Wilson fermions. Consider the creation and
annihilation operators for fermions at zero spatial momentum at time t

ψt ≡
1

V

∑
~x

ψt,~x , (6)

ψt ≡
1

V

∑
~x

ψt,~x , (7)

where V stands for the spatial volume. With those operators we can look at the (Eu-
clidean) correlator of a zero momentum fermion created at time t and annihilated at
time t′, 〈ψt′ψt〉.

Note that fermionic fields are anti-periodic in the temporal direction, i.e., ψt+Nt,~x =
−ψt,~x, where Nt is the temporal extent of the lattice. Consider, then, a particle source
at t = t′ and a sink at t = t′ + δ. The sink, because of the anti-periodic boundary
conditions, “sees” another source1 at t = t′ + Nt. Alternatively, the source at t = t′

“sees” two sinks: one at t = t′ + δ and another at t = Nt + t′ − δ. Of course, the minus
sign from the anti -periodic BC have to be taken into account.

This correlator contains two terms: one involving the particle “propagating” forwards
from t′ to t′ + δ, and another with the particle “propagating” backwards from t′ to 0,
which is identified with Nt, thus picking up a minus sign, and then to t′ + δ. It can be
written, using energy eigenstates |n〉, as

〈ψt′+δ ψt′〉 = 〈0|ψt′+δ ψt′|0〉 − 〈0|ψNt+t′−δ ψt′|0〉 (8)

=
∑
n

[
〈0|ψt′+δ|n〉〈n|ψt′ |0〉 − 〈0|ψNt+t′−δ|n〉〈n|ψt′ |0〉

]
(9)

=
∑
n

[
〈0|ψ e−Ĥ(t′+δ)|n〉〈n|eĤt′ ψ|0〉 − 〈0|ψ e−Ĥ(Nt+t′−δ)|n〉〈n|eĤt′ ψ|0〉

]
(10)

=
∑
n

〈0|ψ|n〉〈n|ψ|0〉
[
e−Enδ − e−En(Nt−δ)

]
, (11)

where we have used the facts that Ĥ|n〉 = En|n〉 and that the vacuum is invariant under
time evolution. Since the propagator only depends on the time difference δ we shall, for
simplicity, set t′ = 0.

The propagator 〈ψyψx〉, where x = (x0, ~x) and y = (y0, ~y), can also be computed via
the path-integral formulation by taking appropriate derivatives of the partition function,

〈ψyψx〉 =
δ

δJy

δ

δJx
lnZ

∣∣∣∣
J=J=0

= (D−1)y,x , (12)

1Note that this is unrelated to the fermion doubling problem, as this is only due to boundary conditions.
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where D represents the Dirac operator.
The Dirac operator is a sparse matrix2. In d spacetime dimensions and in the Wilson

formulation, it is given by

Dx,y = (d r +m)1δx,y −
1

2

d−1∑
µ=0

[(r − γµ)δx,y+µ̂ + (r + γµ)δx,y−µ̂] , (13)

where x = (x0, ~x) and y = (y0, ~y), µ̂ represents a unit vector in the µ direction, r is the
Wilson parameter, and 1, γµ act in Dirac space.

The Dirac matrix is of size NtV ×NtV , where Nt is the temporal extent of the lattice
and V the spatial volume, thus making a direct computation of its inverse infeasible ex-
cept for very small lattices in low dimension. We can reduce the problem by considering
the propagator of a point source at x = (0,~0) to another point y. This way, we can
compute the correlator at zero momentum as

C(δ) =
1

V

∑
~y

〈ψ(δ,~y) ψ0〉 =
1

V

∑
~y

(D−1)(δ,~y),0 =
1

V

∑
~y

∑
x

(D−1)(δ,~y),xvx , (14)

where vx ≡ vx0,~x = s δx0,0 δ~x,~0 and s is a spinor. In other words, we do not need the full
inverse of the Dirac operator, but rather “just” the first column.

Owing to its sparsity, it is common to employ iterative methods to compute the
solution to the linear system Avout = vin, where vin and vout are vectors and A is a
matrix. One popular method is known as the Conjugate Gradient (CG) method. A
pseudo-code follows:

function name: ConjugateGradient
input : A vector vin, a Hermitian matrix A, iteration limit Nmax and

target inversion precision ε
output : A vector vout and the number of iterations needed for

inversion k
r0 ← vin − Avout ; // initial residue

p0 ← r0 ; // initial search direction

for 0 ≤ k < Nmax do // iterative procedure

α← rᵀkrk
pᵀ
kApk

;

vout ← vout + αpk ; // update solution to linear system

rk+1 ← rk − αApk ; // update residue

if |rk+1| < ε then // if desired precision has been reached

break ; // leave algorithm

end

β ← rᵀk+1rk+1

rᵀkrk
;

pk+1 ← rk+1 + βpk ; // update search direction

k ← k + 1;

end

2Roughly speaking, a sparse matrix is a matrix where most entries are zero.

4



Note that CG requires the matrix A to be Hermitian. One common trick is then to
write A = DD† and then obtain our solution as vresult = D†A−1vin = D−1vin.
Hint: Euclidean γ-matrices in the chiral basis

γ0 =

[
0 1
1 0

]
, γ1 =

[
0 −1
1 0

]
. (15)

Big hint: since we know how to construct each element of D and it is a sparse matrix,
it is very convenient to write it as a function along the lines of

function name: applyDirac
input : An array in[t][x] of dimensions Nt ×Nx

output : An array out[t][x] of dimensions Nt ×Nx

for 0 ≤ t < Nt and 0 ≤ x < Nx do // traverse the entire lattice

out[t][x] ← (2r +m) *in[t][x];
out[t][x] ← out[t][x]- (r − γ0)/2 *in[t+1][x];
out[t][x] ← out[t][x]- (r + γ0)/2 *in[t-1][x];
out[t][x] ← out[t][x]- (r − γ1)/2 *in[t][x+1];
out[t][x] ← out[t][x]- (r + γ1)/2 *in[t][x-1];

end

This way we can write the vector vout = Dvin as applyDirac(v_in, v_out) or
v_out = applyDirac(v_in).
Note: The above algorithm does not include the minus signs from anti-periodic

boundary conditions. You should include that in your code! A similar algorithm can be
written for D†. Note that in our formulation the Dirac operator is real.
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