Lattice field theories
 Exercise sheet 5 - Simple gauge theories on the lattice

Lectures: Jan Pawlowski
Felipe Attanasio
Tutorials: Felipe Attanasio
j.pawlowski@thphys.uni-heidelberg.de pyfelipe@thphys.uni-heidelberg.de pyfelipe@thphys.uni-heidelberg.de

Institut für Theoretische Physik, Uni Heidelberg
Please see the supplemental material at the end of this exercise sheet for further explanations and hints.

Exercise 10: The SU(2) Polyakov Chain

Consider the action of the $\mathrm{SU}(2)$ Polyakov chain,

$$
\begin{equation*}
S=-\frac{\beta}{2} \operatorname{Tr}\left[U_{1} U_{2} \cdots U_{N_{\text {links }}}\right], \tag{1}
\end{equation*}
$$

where $U_{n} \in \mathrm{SU}(2)$ for $1 \leq n \leq N_{\text {links }}$ are known as gauge links, or just links, and $\beta \in \mathbb{R}$. Use the Metropolis algorithm from exercise sheet 2, reproduced and adapted below, to compute the expectation value of the action,

$$
\begin{equation*}
\langle S\rangle=\frac{1}{Z} \int \mathcal{D} U S e^{-S} \tag{2}
\end{equation*}
$$

You can compare your numerical results with the exact one,

$$
\begin{equation*}
\langle S\rangle_{\text {exact }}=\beta \frac{I_{2}(\beta)}{I_{1}(\beta)}, \tag{3}
\end{equation*}
$$

where I_{m} are the m th order modified Bessel function of the first kind. Note that $\langle S\rangle$ is independent of $N_{\text {links }}$. You should also observe this in the simulations.

Suggested parameters (but by no means an exclusive or exhaustive list):

- $|\beta|<1$
- $1 \leq N_{\text {links }} \leq 30$
but feel free to exceed these bounds!

Supplemental material

In this exercise we are dealing with a field whose elements belong to the group $\operatorname{SU}(2)$, and the updating procedure should be such that update proposals also belong to the group. Since every element of $\mathrm{SU}(2)$ group can be written as the exponential of a member of the $s u(2)$ Lie algebra, updating a particular link U_{n} can be written as

$$
\begin{equation*}
U_{n} \rightarrow R U_{n}, \quad R=\exp \left[i \sum_{a=1}^{3} \alpha^{a} \sigma^{a}\right], \tag{4}
\end{equation*}
$$

with σ^{a} being the Pauli matrices and α^{a} real numbers. Note that the update may equally well be written as $U_{n} \rightarrow U_{n} R$. Because of the commutation properties of the Pauli matrices the computation of R can be simplified as

$$
\begin{equation*}
R=\cos (|\vec{\alpha}|) \mathbb{1}+i \frac{\alpha^{a}}{|\vec{\alpha}|} \sigma^{a} \sin (|\vec{\alpha}|) \tag{5}
\end{equation*}
$$

with $\mathbb{1}$ being the 2×2 identity matrix and $|\vec{\alpha}|=\sqrt{\left(\alpha^{1}\right)^{2}+\left(\alpha^{2}\right)^{2}+\left(\alpha^{3}\right)^{2}}$. Thus it requires only simple arithmetic and trigonometric functions.

```
matrix U[Nlinks];
for \(n \leftarrow 0\) to \(N_{\text {steps }}\) do
    for \(0 \leq n<N_{\text {links }}\) do
        oldAction \(\leftarrow S(\mathrm{U})\);
        oldValue \(\leftarrow U[n]\);
        \(\mathrm{R} \leftarrow\) randomSU2 () ; // random \(\operatorname{SU}(2)\) matrix
        \(\mathrm{U}[\mathrm{n}] \leftarrow \mathrm{R} * \mathrm{U}[\mathrm{n}] ; \quad / /\) random change to \(U_{n}\) within \(\mathrm{SU}(2)\)
        \(\Delta S=S(\mathrm{U})\) - oldAction;
        if \(\Delta S>0\) then
            \(r \leftarrow\) UniformReal \((0,1)\);
            if \(r>\exp (-\Delta S)\) then
                \(\mathrm{U}[\mathrm{n}] \leftarrow\) oldValue ; // reject proposal
            end
        end
    end
    avgAction \(\leftarrow\) avgAction \(+S(\mathrm{U}) ; \quad / /\) update avg. action
end
Obs \(\leftarrow\) Obs \(/ N_{\text {steps }}\);
```

As always, you should skip a number of steps at the beginning, so the system can thermalise. And remember that consecutive configurations in the Markov chain are likely to be correlated, so it is also a good idea to skip some between consecutive measurements.

