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Exercise 11: Connecting strong and weak coupling

Consider a 2-dimensional SU(2) Yang-Mills theory on the lattice, whose partition func-
tion reads

Z =

∫
DU exp

{
−β
∑
n

[
1− 1

2
ReTrU01(n)

]}
, (1)

where U01 is the plaquette at site n and directions 0 and 1. The Wilson loop defined in
a contour C of size T ×R lattice site n is given by

W (C) ≡ W (T,R) =
1

2

〈
Tr

[∏
C

U

]〉
. (2)

Use the Metropolis algorithm to simulate this theory on a 10× 10 lattice with 0.1 ≤
β ≤ 15.0, and compute the Wilson loop for square contours of different sizes.

You should observe that the 1× 1 Wilson loop has the following limiting behaviours:

• at strong coupling (β � 1):

W (1, 1) ∼
β→0

β

4
; (3)

• at weak coupling (β � 1):

W (1, 1) ∼
β→∞

1− 3

2β
. (4)

You should also note that larger Wilson loops are suppressed at small β, and that getting
good sinals for them can be hard. You may want to run longer simulations than in the
φ4 case.
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Hint : In order to improve statistics, consider computing W (1, 1) on all lattice points
and then taking the volume average. Do not forget about the periodic boundary condi-
tions.
Hint : For large β configurations where plaquette is close to the identity will become

more and more important. Consider reducing the variance of your proposals in these
situations, e.g., using a narrower Gaussian to generate random numbers, to achieve a
higher acceptance rate.

Exercise 12: Computing the string tension

From strong coupling arguments, we expect the above Wilson loop to have the form

W (T,R) = exp [−σ̂RT − α̂(R + T ) + γ̂] , (5)

where σ̂ is the string tension in lattice units, and α̂ accounts for subleading effects
proportional to the perimeter of the contour. Those subleading effects can be eliminated
by studying the Creutz ratio,

χ̂(T,R) = − ln

(
W (T,R)W (T − 1, R− 1)

W (T − 1, R)W (T,R− 1)

)
. (6)

If eq. (5) correctly describes the behaviour of the Wilson loop, then χ̂ will coincide with
the string tension.

In a way similar to the previous exercise, compute Wilson loops of square and rect-
angular shapes and construct Creutz ratios for various values of β. Like before, ratios
computed at larger values of T or R will be noisier. Since we expect χ̂ to be independent
of both T and R, a constant fit (including errors, obviously!) will give the final result.

At Strong coupling, your string tension should behave as

σ̂ ∼
β→0
− ln

β

4
. (7)

Hint : Due to larger Wilson loops being suppressed at small β their values may come
out negative, but statistically compatible with zero and probably large relative errors.
Since the string tension is a real number, taking the logarithm of negative numbers
makes no sense. In such situations, you can either disregard the Creutz ratios where W
is negative, or run your simulation for longer.
Hint : In order to improve statistics, consider computing W (T,R) on all lattice points

and then taking the volume average. Do not forget about the periodic boundary condi-
tions.
Hint : When computing χ̂(1, 1) use only W (1, 1) in the calculation, i.e., take the other

loops to be equal to 1.

Supplemental material

In this exercise we are dealing with a field whose elements belong to the group SU(2), and
the updating procedure should be such that update proposals also belong to the group.
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Since every element of SU(2) group can be written as the exponential of a member of
the su(2) Lie algebra, updating a particular link U can be written as

U → RU , R = exp

[
i

3∑
a=1

αaσa

]
, (8)

with σa being the Pauli matrices and αa real numbers. Note that the update may
equally well be written as U → UR. Because of the commutation properties of the Pauli
matrices the computation of R can be simplified as

R = cos(|~α|)1 + i
αa

|~α|
σa sin(|~α|) , (9)

with 1 being the 2×2 identity matrix and |~α| =
√

(α1)2 + (α2)2 + (α3)2. Thus it requires
only simple arithmetic and trigonometric functions.

matrix U[Nt][Nx];
for n← 0 to Nsteps do

for 0 ≤ t < Nt and 0 ≤ x < Nx do // sweep over the lattice

oldAction ← S(U) ; // save old action

oldValue ←U[t][x] ; // save old U
R ← randomSU2() ; // random SU(2) matrix

U[t][x] ← R * U[t][x] ; // random change to U within SU(2)
∆S = S(U) - oldAction;
if ∆S > 0 then

r ← UniformReal(0,1);
if r > exp(−∆S) then

U[t][x] ← oldValue ; // reject proposal

end

end

end
Obs ← Obs + O(U) ; // update computation of observable

end
Obs ← Obs / Nsteps;

As always, you should skip a number of steps at the beginning, so the system can
thermalise. And remember that consecutive configurations in the Markov chain are likely
to be correlated, so it is also a good idea to skip some between consecutive measurements.

Below, you can find a plot of the string tension as a function of β to use for cross-
checking.
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Figure 1: String tension, in lattice units, as a function of the (inverse) coupling. Com-
puted on a 10× 10 lattice.
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