Lattice field theories Exercise sheet 7 - Gauged scalar fields

Lectures: Jan Pawlowski
Felipe Attanasio
Tutorials: Felipe Attanasio
j.pawlowski@thphys.uni-heidelberg.de pyfelipe@thphys.uni-heidelberg.de pyfelipe@thphys.uni-heidelberg.de

Institut für Theoretische Physik, Uni Heidelberg
Consider a 2-dimensional pair of neutral scalar fields with quartic self-interactions

$$
\begin{equation*}
S=\int d^{2} x\left[\frac{1}{2}\left(\partial_{\mu} \Phi\right)^{\dagger} \partial_{\mu} \Phi+\frac{m^{2}}{2} \Phi^{\dagger} \Phi+\frac{g}{4!}\left(\Phi^{\dagger} \Phi\right)^{2}\right] \tag{1}
\end{equation*}
$$

where $\Phi=\left[\begin{array}{ll}\phi_{1} & \phi_{2}\end{array}\right]^{\top}, \phi_{1}, \phi_{2}$ are real fields, $m^{2}, g \in \mathbb{R}$, and $\mu \in\{1,2\}$. This action is invariant under global $\mathrm{SU}(2)$ transformations, $\Phi(x) \rightarrow \Phi^{\prime}(x)=\Omega \Phi(x), \Omega \in \mathrm{SU}(2)$. If we now assume the transformations to be local, the derivatives have to be made covariant in order to preserve gauge invariance: $\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}+i g A_{\mu}(x)$, where g is the gauge coupling strength. The lattice version of the action of eq. (1) reads,

$$
\begin{align*}
S_{\mathrm{lat}}=\sum_{n} & \left\{\frac{-1}{2 a^{2}} \sum_{\mu}\left[\Phi^{\dagger}(n) U_{\mu}(n) \Phi(n+\hat{\mu})+\Phi^{\dagger}(n+\hat{\mu}) U_{\mu}^{\dagger}(n) \Phi(n)-2 \Phi^{\dagger}(n) \Phi(n)\right]\right. \\
& \left.+\frac{m^{2}}{2} \Phi^{\dagger}(n) \Phi(n)+\frac{g}{4!}\left[\Phi^{\dagger}(n) \Phi(n)\right]^{2}\right\} \tag{2}
\end{align*}
$$

with $U_{\mu}(n)$ being the gauge link connecting sites n and $n+\hat{\mu}$ and we are using periodic boundary conditions.

Exercise 13: Connecting the lattice and the continuum

Show that, in the naïve continuum limit $a \rightarrow 0$, eq. (2) reduces to the gauge invariant version of eq. (1), i.e., with the replacement $\partial_{\mu} \rightarrow D_{\mu}$.

Hint: Remember that $U_{\mu}(n)=\exp \left[\operatorname{iag} A_{\mu}(n)\right]$. You will need to expand the exponential to second order.

Hint: To first order in the lattice spacing a, one may write

$$
\begin{equation*}
f(n \pm \hat{\mu}) \approx f(x) \pm a \partial_{\mu} f(x) \tag{3}
\end{equation*}
$$

Hint: Remember that, due to the periodic boundary conditions, the sum over the entire lattice of any funciton $f(n)$ can be shifted without altering the result. In other words, for an arbitrary shift m,

$$
\begin{equation*}
\sum_{n} f(n+m)=\sum_{n} f(n) . \tag{4}
\end{equation*}
$$

Exercise 14: The reality of the action

Show that the lattice action shown in eq. (2) is real, i.e., that $\left(S_{\text {lat }}\right)^{\dagger}=S_{\text {lat }}$.

Exercise 15: A convenient (re)parametrisation (again)

Use the transformations

$$
\begin{align*}
a^{\frac{d-2}{2}} \phi_{i} & \rightarrow(2 \kappa)^{1 / 2} \varphi_{i}, \tag{5}\\
(a m)^{2} & \rightarrow \frac{1-2 \lambda}{\kappa}-2 d, \tag{6}\\
a^{-d+4} g & \rightarrow \frac{6 \lambda}{\kappa^{2}} \tag{7}
\end{align*}
$$

with $i=1,2$, and d being the number of spacetime dimensions, to write the action of eq. (2) in terms of the dimensionless parameters κ and λ.

Exercise 16: Actual simulations

Consider the combined action of eq. (2) and that of a $\operatorname{SU}(2)$ Yang-Mills field on the lattice, written below,

$$
\begin{equation*}
S_{\mathrm{YM}}=\beta \sum_{n}\left[1-\frac{1}{2} \operatorname{Re} \operatorname{Tr} U_{01}(n)\right] . \tag{8}
\end{equation*}
$$

Using the Metropolis algorithm, simulate this theory of a neutral pair of scalar fields coupled to a dynamic gauge field in two dimensions. Use a volume of $V=10 \times 10$ and $\lambda=0.02$.

The scalar sector of this system is similar to that of exercise sheet 2 , but with the \mathbb{Z}_{2} symmetry replaced by an $O(2)$ symmetry. In other words, depending on the values of κ and λ the scalar potential will have either the shape of a single-well or of a Mexican hat. Therefore, it is useful to consider as an observable

$$
\begin{equation*}
\rho=\frac{1}{V} \sum_{n}\left\langle\Phi^{\dagger}(n) \Phi(n)\right\rangle=\frac{1}{V} \sum_{n}\left\langle\varphi_{1}^{2}(n)+\varphi_{2}^{2}(n)\right\rangle . \tag{9}
\end{equation*}
$$

For different value of the (inverse) gauge coupling β, perform a scan over κ measuring:

- the average norm of Φ, ρ; and
- the string tension $\hat{\sigma}$.

In the supplemental material you can find two plots, one for each of the observables above. You can use the same values of β and κ, but also feel free to try any you want.

Note: In the limit of $g \rightarrow 0$, i.e., $\beta \rightarrow \infty$, the system consists only of the φ fields.

Supplemental material

In this exercise we are dealing with a field whose elements belong to the group $\mathrm{SU}(2)$, and the updating procedure should be such that update proposals also belong to the group. Since every element of $\mathrm{SU}(2)$ group can be written as the exponential of a member of the $\mathfrak{s u}(2)$ Lie algebra, updating a particular link U can be written as

$$
\begin{equation*}
U \rightarrow R U, \quad R=\exp \left[i \sum_{a=1}^{3} \alpha^{a} \sigma^{a}\right], \tag{10}
\end{equation*}
$$

with σ^{a} being the Pauli matrices and α^{a} real numbers. Note that the update may equally well be written as $U \rightarrow U R$. Because of the commutation properties of the Pauli matrices the computation of R can be simplified as

$$
\begin{equation*}
R=\cos (|\vec{\alpha}|) \mathbb{1}+i \frac{\alpha^{a}}{|\vec{\alpha}|} \sigma^{a} \sin (|\vec{\alpha}|) \tag{11}
\end{equation*}
$$

with $\mathbb{1}$ being the 2×2 identity matrix and $|\vec{\alpha}|=\sqrt{\left(\alpha^{1}\right)^{2}+\left(\alpha^{2}\right)^{2}+\left(\alpha^{3}\right)^{2}}$. Thus it requires only simple arithmetic and trigonometric functions.

As always, you should skip a number of steps at the beginning, so the system can thermalise. And remember that consecutive configurations in the Markov chain are likely to be correlated, so it is also a good idea to skip some between consecutive measurements.

Below, you can find a plot of the string tension as a function of β to use for crosschecking.

```
matrix U[Nt] [Nx] [d];
```

double phi [Nt] [Nx] [2];
for $n \leftarrow 0$ to $N_{\text {steps }}$ do
for $0 \leq t<N_{t}$ and $0 \leq x<N_{x}$ do // sweep over the lattice
for $0 \leq c<d$ do // go over all components
oldAction $\leftarrow S(\mathrm{U}, \mathrm{phi})$;
oldValue $\leftarrow U[\mathrm{t}][\mathrm{x}][\mathrm{c}]$;
// save old action
// save old U
$\mathrm{R} \leftarrow$ randomSU2 () ; // random SU(2) matrix
$\mathrm{U}[\mathrm{t}][\mathrm{x}][\mathrm{c}] \leftarrow \mathrm{R} * \mathrm{U}[\mathrm{t}][\mathrm{x}][\mathrm{c}]$;
$\Delta S=S(\mathrm{U}, \mathrm{phi})$ - oldAction;
if $\Delta S>0$ then
$r \leftarrow$ UniformReal $(0,1)$;
if $r>\exp (-\Delta S)$ then
$\mathrm{U}[\mathrm{t}][\mathrm{x}][\mathrm{c}] \leftarrow$ oldValue; $/ /$ reject proposal
end
end
end
for $0 \leq i<2$ do // go over all components
oldAction $\leftarrow S(\mathrm{U}, \mathrm{phi}) ; \quad / /$ save old action
oldValue \leftarrow phi [t][x][i] ; // save old $\phi(x)$
$\mathrm{phi}[\mathrm{t}][\mathrm{x}][\mathrm{i}] \leftarrow \mathrm{phi}[\mathrm{t}][\mathrm{x}][\mathrm{i}]+\mathcal{N}(0,1)$;
$\Delta S=S(\mathrm{U}, \mathrm{phi})$ - oldAction;
if $\Delta S>0$ then
$r \leftarrow$ UniformReal $(0,1)$;
if $r>\exp (-\Delta S)$ then
phi[t][x][i] \leftarrow oldValue; $/ /$ reject proposal
end
end
end
end
Obs \leftarrow Obs $+O$ (U,phi) ; // update computation of observable
end
Obs \leftarrow Obs $/ N_{\text {steps }}$;

Figure 1: String tension, in lattice units, as a function of κ for different values of the (inverse) coupling. Computed on a 10×10 lattice.

Please note that the runs used in these plots may suffer from "low" statistics and/or ergodicity problems. In other words, they were rather short. Take these plots with a grain of salt.

Figure 2: Norm of Φ as a function of κ for different values of the (inverse) coupling. Computed on a 10×10 lattice.

Please note that the runs used in these plots may suffer from "low" statistics and/or ergodicity problems. In other words, they were rather short. Take these plots with a grain of salt.

