Non-perturbative aspects of gauge theories

1. Generating functionals and asymptotic series

The generating functional $Z[J]$ of a free real scalar field theory is given by

$$
\begin{equation*}
Z_{0}[J]=\int d \varphi \exp \left\{-\frac{1}{2} \int d^{4} x \varphi(x)\left(\Delta+m^{2}\right) \varphi(x)+\int d^{4} x \varphi(x) J(x)\right\} \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\langle\varphi\left(x_{1}\right) \cdots \varphi\left(x_{2 n}\right)\right\rangle=\sum_{\sigma} \prod_{i=1}^{n} G\left(x_{\sigma(2 i-1)}, x_{\sigma(2 i)}\right) . \tag{2}
\end{equation*}
$$

Here $G(x)$ is the Feynman propagator of $\left(\Delta+m^{2}\right)$. The sum \sum_{σ} in (2) denotes the sum over all permutations σ of $(1, \ldots, 2 n)$ with $\sigma(2 i-1)<\sigma(2 i)$ and $\sigma(2 i-1)<\sigma(2 i+1)$. Connected Green functions have the generating functional

$$
\begin{equation*}
W[J]=\ln Z[J], \quad \text { with } \quad\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle_{\mathrm{c}, \mathrm{~J}=0}:=\left.\prod_{i=1}^{n} \frac{\delta}{\delta J\left(x_{i}\right)} W[J]\right|_{J=0} . \tag{3}
\end{equation*}
$$

W is called the Schwinger functional.
a) Convince yourself that (2) is valid and show that we have

$$
\begin{equation*}
\left\langle\varphi\left(x_{1}\right) \cdots \varphi\left(x_{n}\right)\right\rangle_{\mathrm{c}}=G_{F}\left(x_{1}, x_{2} ; m\right) \delta_{n 2} \tag{4}
\end{equation*}
$$

b) Consider the function $Z(\lambda)$ with coupling $\lambda>0$:

$$
\begin{equation*}
Z(\lambda):=\int_{-\infty}^{\infty} d \varphi \exp \left[-\frac{1}{2} \varphi^{2}-\frac{\lambda}{4} \varphi^{4}\right] \tag{5}
\end{equation*}
$$

Compute the coefficients Z_{n} within the perturbative expansion in powers of λ,

$$
\begin{equation*}
Z=\sum_{n=0}^{\infty} Z_{n} \lambda^{n}, \quad \text { tip: } \quad \int_{0}^{\infty} d t e^{-t} t^{x}=\Gamma(x+1) \tag{6}
\end{equation*}
$$

What is the radius of convergence in an expansion about $\lambda=0$?
c) The remainder R_{N} of the partial sum of order N can be estimated by

$$
\begin{equation*}
R_{N}=\left|Z(\lambda)-\sum_{0}^{N} Z_{n} \lambda^{n}\right| \leq \lambda^{N+1}\left|Z_{N+1}\right| \tag{7}
\end{equation*}
$$

The proof of (7) is attached below. Use the Stirling formula

$$
\begin{equation*}
\Gamma(x \rightarrow \infty) \rightarrow x^{x-\frac{1}{2}} e^{-x} \sqrt{2 \pi} \tag{8}
\end{equation*}
$$

to estimate $\lambda^{n} Z_{n}$ for large n. Estimate the order $N=N_{\text {min }}$, in which the remainder of the above partial sum is minimised.

Proof of (7): The above estimate follows with

$$
\begin{aligned}
R_{N} & =\int d \varphi e^{-\frac{1}{2} \varphi^{2}}\left|e^{-\frac{1}{4} \lambda \varphi^{4}}-\sum_{n=0}^{N} \frac{1}{n!}(-\lambda)^{n}\left(\frac{1}{4} \varphi^{4}\right)^{n}\right| \\
& \leq \int d \varphi e^{-\frac{1}{2} \varphi^{2}} \frac{1}{(N+1)!} \lambda^{N+1}\left(\frac{1}{4} \varphi^{4}\right)^{N+1}=\lambda^{N+1}\left|Z_{N+1}\right| .
\end{aligned}
$$

It follows from exercise 1 c , that R_{N} approaches a minimum for $N_{\min } \approx(4 \lambda)^{-1}$.

Figure 1: $\ln R_{N}$ for $\lambda=\frac{1}{10}, \frac{1}{50}, \frac{1}{90}, \frac{1}{137}$ as a function of N.

Figure 2: Graph of relative deviation $\Delta Z=\left(Z(\lambda)-\sum_{n=1}^{11+i} Z_{n} \lambda^{n}\right) / Z(\lambda)$ für $\lambda=1 / 137$. The optimum is at about $N \approx 34(i \approx 23)$

