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5.2. Results for the Polyakov Loop Potential and T¢

Results for SU(2)

0.0

T = 230 MeV

T = 220 MeV
T = 215 MeV
T = 210 MeV
T = 205 MeV
T = 200 MeV

1.0

(a) Polyakov loop potential for SU(2). For low temperatures
the minimum is at the confining value ¢ = 1/2 for SU(2). For
higher temperatures the minimum moves to a different value
which signals the deconfinement-confinement phase transition.
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(b) At the phase transition temperature the derivative of the
Polyakov potential for SU(2) changes at the confining value
from a positive to negative slope, turning the minimum of the
potential into a local maximum.

Figure 5.7.: Polyakov loop potential for SU(2) from its DSE representation with vacuum

scaling propagators.

Eq. (5.33) only depends on the ghost and gluon propagators. In the following three differ-
ent kinds of propagators are used. At first, the difference between the decoupling and the
scaling solutions of Yang-Mills propagators at vanishing temperature, cf. section 2.3.2, is

studied.

Similar to the pressure, cf. section 4.3, the finiteness of the temperature has a two-fold
effect. On the one hand side, the Matsubara sum yields an explicit dependence and on the
other hand side, the wave-function renormalisation are temperature dependent. Therefore,
the third approximation for the Polyakov loop potential is obtained with the temperature-

dependent propagators presented in chapter 4.
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5.9. Results for the Polyakov Loop Potential and T,

The Polyakov loop potential for SU(2) from the scaling propagators at vanishing tem-
perature is given in fig. (5.7(a)). As argued before the position of the minimum de-
cides about a confining (¢ = 1/2) or deconfining (¢ # 1/2) potential. In fig. (5.7(a)) the
Polyakov loop potential is given at different temperatures, the critical temperature T, for
the deconfinement-confinement phase transition is obtained best by the help of the deriva-
tive of the Polyakov loop potential, which is plotted in fig. (5.7(b)). The phase transition
happens at the point at which the minimum in the potential moves away from p = 1/2. As
it is a smooth transition, the potential is flat around ¢ = 1/2 at this temperature. Thus,
a vanishing derivative of the potential in this region signals the phase transition. Being
computed from the scaling propagators the critical temperature is Tgcal ~ 210MeV. In
comparison to this, the FRG result gives a critical temperature of TF RG 5 9266 MeV in [11],
using the same input. However, note that the two-loop diagram has been omitted in the
computation presented here which could potentially correct for this deviation.

T T T T % —v—J T T T T | T T

1op transversal gluons (3) ]
L .- .mmTTEES s o
051 ,” “s\ 7
[ #7 o s @IEEEE 8 . ~
.22+~ gauge mode IR
o ==,

\ VIel/ T ooy /
—1.5;— \\ghoiti (%/
0.0 I ' 0.2 ‘ I OI.4 I I OI.6 08 1.0
P

PRI P

Figure 5.8.: Individual contributions from the gauge mode, the transversal gluons and the
ghost loop with trivial implicit temperature dependence in the Polyakov loop
potential obtained from its presentation in the framework DSEs.

Functional methods have the advantage that often the mechanisms and individual contri-
butions can be resolved. In this case it is trivially possible due to the additive structure of
the equation for the potential, eq. (5.33). As outlined above the gauge mode gives half of
the perturbative one-loop potential. The factor of one-half stems from the fact that the
perturbative potential is made up from the two physical modes: the transverse polarisa-
tions of the gluon. The Polyakov loop potential is gauge invariant, thus only the physical
modes must contribute. Naturally, the perturbative result simply reproduces this feature.
In fact, for trivial propagators all different modes contribute combinatorically with the
same weight. So the cancellation of the unphysical modes can be understood easily. All of
" the four gluonic degrees of freedom contribute equally with %Vggf(iis,c) each. The amplitude
of the ghost potential is equal to this, however, these modes contribute with a negative

VWeiss

sign. So a trivial summation cancels the two unphysical mode, leaving exactly SU(Ne)"
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5.2. Results for the Polyakov Loop Potential and T,
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(a) Polyakov loop potential for SU(3) obtained from temperature-
independent scaling propagators from [276].
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(b) Polyakov loop potential for SU(3) obtained from temperature-
dependent propagators from chapter 4.

Figure 5.13.: The Polyakov loop potential for SU(3) can be obtained from the SU(2)
potential according to eq. (5.37). This figure shows the SU(3) potential in
the ¢ = ¢* direction. The confining value is ¢ = 2/3. The position of the
minimum serves as an order parameter for the deconfinement-confinement
phase transition. At the critical temperature it jumps from its confining
value to a non-confining value. This signals a first order phase transition for
SU(3), which is in agreement with lattice results, see e.g. [20].

tures for the deconfinement-confinement phase transition in SU(2) and SU(3) obtained

from the best truncation within functional methods agree well with lattice gauge theory,

there are caveats arising from truncations. Thus, the high accuracy may be a lucky co-

incidence. Nevertheless, it is fair to infer from the previous results that the occurence of

the phase transition at the correct order of magnitude is definitely not affected by these

approximations. In the following I summarise the potential problems and arguments why
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Figure 5.14.: First order phase transition for SU(3) obtained from temperature-
independent scaling propagators. The expectation value of the temporal
gluon serves as an order parameter for the deconfinement-confinement phase-
transition. The confining value for SU(3) is @cont = 2/3.

these deviations from the lattice in the corresponding parts could be subleading in the
computation of the Polyakov loop potential.

Firstly, the main ingredients for the DSE representation of the Polyakov loop potential
are the propagators. The good agreement is achieved with the temperature-dependent
propagators given in chapter 4. For the temperatures of the phase transitions the results
for the chromomagnetic gluon and the ghost are in satisfactory agreement with the lat-
tice. In contrast to this, the chromoelectric propagator is significantly enhanced on the
lattice. This is not seen in the FRG. However, the FRG propagator is evaluated on a
non-trivial background. The background is identified with the Polyakov loop potential
which is directly sensitive to the critical physics, in contradistinction to the computations
of the thermal propagators presented in section 4.2.1. Therefore, although there is a clear
deviation in the propagators, the way in which they occur in the subsequent computations
may correct for this. This conjecture is supported by the quantitative agreement of the
pressure given in fig. (4.3).

Secondly, another benchmark for the DSE Polyakov loop potential are the FRG results,
which give higher critical temperatures for the same input. Since in the one-loop trun-
cation of the DSE only the propagators enter, this may be due to the missing two-loop
contribution. However, the two-loop contribution can be approximated by a diagram
which has the same structure as the one-loop gluon term but with a three-gluon vertex
correction. This vertex correction is supposedly a small correction. The latter statement
is based on the results for the two-point functions at vanishing temperature in the DSE
framework [276] given in section 2.3.2 in fig. (2.4), in which the two-loop diagrams have
been dropped. Nevertheless, these results show that the main contributions arise from the
one-loop diagrams and the two-loop terms give a small correction. This suggests that the
two-loop diagram in the DSE representation of the Polyakov loop potential gives only a

small correction as well.
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