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The solutions will be discussed in the tutorials on 13th & 15th of November.

1. Zero-dimensional field theory

Consider the generating function of a bosonic field theory defined on zero spacetime dimensions,

Z(j) =
∫
dx e−S(x)+jx,

where x ∈ R are the “fields”, j is the source and the classical action S(x) is given by

S(x) =
1
2
x2 +

λ

4!
x4.

This integral cannot be solved analytically. We want to transform the problem of solving this
integral into the problem of solving a (partial) differential equation. To this end we introduce a
quadratic “cutoff” term 1

2Rx
2, R ≥ 0, to the classical action, which yields a modified generating

function:

Z(j, R) =
∫
dx e−S(x)− 1

2
Rx2+jx =

∫
dx e−

1
2

(1+R)x2− λ
4!
x4+jx.

The question we now ask is: how does the generating function behave under continuous varia-
tions of the cutoff-parameter R?

To answer this question it is more convenient to consider the “flowing action” Γ(x̄, R),
which is defined by a modified Legendre transformation of lnZ(j, R):

Γ(x̄, R) = sup
j

(
jx̄− lnZ(j, R)

)
− 1

2
Rx̄2 = jsupx̄− lnZ(jsup, R)− 1

2
Rx̄2,

where x̄ is the expectation value of x in the presence of the source and the cutoff:

x̄ = 〈x〉j,R = ∂j lnZ(j, R).

We choose x̄ to be independent of R.

(a) First, we want to show that pertubation theory fails at some point for this type of problem.

– Compute the coefficients Zn of

Z(0) =
∫
dx e−

1
2
x2− λ

4!
x4

within the perturbative expansion in powers of λ (about λ = 0),

Z(j) =
∑
n

Znλ
n.

What is the radius of convergence of this expansion?
Hint:

∫∞
0 dt e−ttx = Γ(x+ 1), where Γ is the Gamma-function.
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– The remainder RN of the partial sum of order N can be estimated by

RN =
∣∣∣Z(0)−

N∑
n=0

Znλ
n
∣∣∣ ≤ λN+1

∣∣ZN+1

∣∣
(You do not have to prove this). Use the Stirling formula

Γ(x→∞)→ xx−
1
2 e−x

√
2π

to estimate Znλn for large n. Estimate the order N = Nmin in which the above
remainder is minimized.

(b) Derive the flow equation for the flowing action:

∂RΓ(x̄, R) =
1
2

(
∂2
x̄Γ(x̄, R) +R

)−1
. (1)

Hint: jsup = jsup(x̄, R).

(c) In order to find approximate solutions of eq.(1), we make the following ansatz for the
flowing action,

Γ(x̄, R) =
N∑
n=1

λ2n(R)
(2n)!

x̄2n,

Derive the flow equations for the coefficients λ2(R) and λ4(R), i.e. derive equations for
∂Rλ2(R) and ∂Rλ4(R) from eq.(1). Solve these equations numerically for N = 2, that is
λ2n ≡ 0 for n > N . Give diagrammatical representations of the equations you found.
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2. The generating functional of an interacting QFT

Consider the generating functional (in Euclidean space)

Z[j] =
∫
Dϕe−S0[ϕ]−Sint[ϕ]+

R
x j(x)ϕ(x),

where the free and interatcting part of the classical action are given by:

S0[ϕ] =
∫
x

[
1
2

(∂µϕ)(∂µϕ) +
1
2
m2ϕ2

]
and Sint[ϕ] =

∫
x

λ

3!
ϕ3,

and we used the abbreviation
∫
x =

∫
d4x. The interacting generating functional can be repre-

sented in terms of the free one as

Z[j] = e
−Sint[

δ
δj

]
Z0[j], (2)

where δ
δj is the functional derivative with respect to the source field. The generating functional

Z0[J ] is that of the free theory,

Z0[j] =
∫
Dϕe−S0[ϕ]+

R
x j(x)ϕ(x) = Z0[0] e−

1
2

R
x,y j(x)G(x,y)j(y) , (3)

with the free field propagator G(x, y),

G(x, y) = (−∂2
µ +m2)−1δ(4)(x− y).

Prove the eqs.(2) and (3).
Hints:

Represent f(ϕ)e
R
x j(x)ϕ(x) in terms of derivatives w.r.t. j.

Substitute ϕ(x)→ ϕ(x) +
∫
z G(x, z)j(z).
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