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For this exercise sheet we are mostly considering a scalar theory in the framework of
Dyson-Schwinger Equations. The (Euclidean) Lagrangian for this theory is given by

L[φ] =
1

2
(p2 +m2)φ2 +

λ

4!
φ4 , (1)

which is Z2-symmetric. Nevertheless, it can dynamically acquire a finite expectation
value φ = 〈φ〉, spontaneously breaking the symmetry. Additionally, we assume the
ground-state 〈φ〉 to be space-time independent throughout this exercise sheet.

Exercise 1: Effective potential from Dyson-Schwinger Equations

In the following we are going to calculate a differential equation for the effective potential
in two space-time dimensions for a scalar theory. In order to truncate the infinite tower
of equations we work in a derivative expansion, i.e. full correlation functions at vanishing
momentum are given derivatives of the effective potential. Practically this reduces to

Γ
(2)
φφ(p) = p2 + V (2)(φ) (2)

Γ
(3)
φφφ = V (3)(φ) , (3)

where we have dropped the momentum dependence for all correlation functions n ≥ 3,
since they are momentum independent in leading order.

a) Recollect the derivation of the master equation for this theory.
You should arrive at the following expression (graphical representation see Fig-
ure 1.2 in lecture notes)

V (1)(φ) =
δS

δφ
+
λ

2
φ

∫
p

Gφφ(p)− λ

3!

∫
p,q

Gφφ(p)Gφφ(q)Gφφ(p+ q)Γ
(3)
φφφ . (4)

b) Calculate the one-loop term in (4).
The integral is not finite and requires regularisation, split the mass term in the
classical action into a renormalised mass and counter term

m̄2 = m2 − λ

2

∫
p

1

p2 +m2
ren

, (5)

which renders the integral finite.

1



c) Calculate the two-loop term in (4).
The integral is finite, but not entirely straightforward to calculate:

• Introduce Feynman parameters

1

A1 . . . An
= (n− 1)!

∫ 1

0

du1 . . .

∫ 1

0

dun
δ (1−

∑n
k=1 uk)

(
∑n

k=1 ukAk)
n . (6)

• Complete the square first for q and p consecutively , introducing two new
momentum variables k1, k2 that decouple the momentum integrations.

• Rewrite in the denominator as an exponential

1

D3
=

1

2

∫ ∞
0

dt t2e−Dt (7)

and carry out the momentum integrations over k1 and k2.

• Only the integral over the Feynman parameters is left, the result is given by:∫ 1

0

dxdydz
δ(x+ y + z − 1)

xy + xz + yz
(8)

=
1

18

(
ψ(1)(1/6) + ψ(1)(1/3)− ψ(1)(2/3)− ψ(1)(5/6)

)
≈ 2.3439 ,

where ψ(n)(z) is the n-th derivative of the digamma function, ψ(0)(z) =
Γ′(z)/Γ(z).

The result you have derived is a differential equation for the effective potential. In
order to solve it the initial condition is the classical potential at a large field value, where
all quantum fluctuations are suppressed. Solving the differential equation is however in
almost all cases analytically not possible.

Exercise 2: Dyson-Schwinger Equation for the two-point function

Solving Exercise 3 renders this exercise trivial.
Derive the Dyson-Schwinger equation of the two-point function for the same theory as
in Exercise 1.
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Exercise 3∗: Dyson-Schwinger Equations for arbitrary theories

Derive the Dyson-Schwinger Equation for the two-point function in the superfield for-
malism.

The superfield formalism collects all fields in a single superfield, where the field-space
metric accounts for possible minus signs for fermions. For example, in Yang-Mills theory
we have Φ = (A, c, c̄)T and the metric reads

(γab) =

1 0 0
0 0 1
0 −1 0

 , (9)

which results from the requirement ΦaΦa = A2 + 2c̄c, where the delta-distribution in
space is implicitly contained in the metric γ and integration on the right-hand side is
implied. By (our) convention indices are always raised from the left and lowered from
the right, e.g. Φa = γabΦb = Φbγ

ab = (A, c̄,−c). This immediately implies the following
identities

γ b
a = γbcγac = γcbγca = δba (10)

γab = γacγcb = γcaγbc = (−1)abδab , (11)

where (−1)ab is -1 iff a and b are fermionic and 1 else. For completeness we do not set
the fields in the end to zero, but to a finite, arbitrary value. As we cannot go to arbitrary
order in the classical action we will restrict ourselves to a polynomial up to order 4, i.e.

S[Φ] =
1

2!
SijΦiΦj +

1

3!
SijkΦiΦjΦk +

1

4!
SijklΦiΦjΦkΦl , (12)

where integration is again implied.
With this at hand you can derive the Dyson-Schwinger equation for a two point function
starting from

δΓ

δΦi

=
δS

δϕi

[
ϕi = Gij

δ

δΦj

+ Φi

]
. (13)
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