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For this exercise sheet we are mostly considering a scalar theory in the framework of
Dyson-Schwinger Equations. The (Euclidean) Lagrangian for this theory is given by
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which is Zs-symmetric. Nevertheless, it can dynamically acquire a finite expectation
value ¢ = (¢), spontaneously breaking the symmetry. Additionally, we assume the

ground-state (¢) to be space-time independent throughout this exercise sheet.
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Exercise 1: Effective potential from Dyson-Schwinger Equations

In the following we are going to calculate a differential equation for the effective potential
in two space-time dimensions for a scalar theory. In order to truncate the infinite tower
of equations we work in a derivative expansion, i.e. full correlation functions at vanishing
momentum are given derivatives of the effective potential. Practically this reduces to
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where we have dropped the momentum dependence for all correlation functions n > 3,
since they are momentum independent in leading order.

a) Recollect the derivation of the master equation for this theory.
You should arrive at the following expression (graphical representation see Fig-
ure 1.2 in lecture notes)
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b) Calculate the one-loop term in (4).
The integral is not finite and requires regularisation, split the mass term in the
classical action into a renormalised mass and counter term
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which renders the integral finite.



c) Calculate the two-loop term in (4).
The integral is finite, but not entirely straightforward to calculate:

e Introduce Feynman parameters
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e Complete the square first for ¢ and p consecutively , introducing two new
momentum variables ki, ks that decouple the momentum integrations.

e Rewrite in the denominator as an exponential
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and carry out the momentum integrations over k; and k.

e Only the integral over the Feynman parameters is left, the result is given by:
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where 1™ (z) is the n-th derivative of the digamma function, ¥®(2) =

I(2)/T(2).

The result you have derived is a differential equation for the effective potential. In
order to solve it the initial condition is the classical potential at a large field value, where
all quantum fluctuations are suppressed. Solving the differential equation is however in
almost all cases analytically not possible.

Exercise 2: Dyson-Schwinger Equation for the two-point function

Solving Frercise 3 renders this exercise trivial.
Derive the Dyson-Schwinger equation of the two-point function for the same theory as
in Exercise 1.



Exercise 3*: Dyson-Schwinger Equations for arbitrary theories

Derive the Dyson-Schwinger Equation for the two-point function in the superfield for-
malism.

The superfield formalism collects all fields in a single superfield, where the field-space
metric accounts for possible minus signs for fermions. For example, in Yang-Mills theory
we have ® = (A, ¢,¢)T and the metric reads
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which results from the requirement ®*®, = A% + 2éc, where the delta-distribution in
space is implicitly contained in the metric v and integration on the right-hand side is
implied. By (our) convention indices are always raised from the left and lowered from
the right, e.g. ®* = y*®, = &,y = (A, ¢, —c). This immediately implies the following
identities

Yo' =V Yae = VYo = 8 (10)
VY =Yy = e = (—1)%65 (11)

where (—1)% is -1 iff a and b are fermionic and 1 else. For completeness we do not set
the fields in the end to zero, but to a finite, arbitrary value. As we cannot go to arbitrary
order in the classical action we will restrict ourselves to a polynomial up to order 4, i.e.
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where integration is again implied.
With this at hand you can derive the Dyson-Schwinger equation for a two point function
starting from
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