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Exercise 20: Quantum Gravity in the Einstein-Hilbert truncation

In this exercise we investigate quantum gravity in the Einstein-Hilbert truncation,
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and g = g. As a further simplification we only take contributions from the transverse-
traceless spin-two mode of the graviton into account, i.e., we neglect the other graviton
as well as the ghost modes. Due to this approximation, we never have to specify a
gauge-fixing action. Start from transverse-traceless graviton two-point function
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We define a completely transverse-traceless regulator

with the Litim-type cutoff

r(z) = (1 - 1) ol — ). (4)
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Then the flow equation only includes the TT-part of the propgator. Evaluate now the
trace over the Laplace operator on the right-hand side of the Wetterich equation
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with heat-kernel techniques, see next page as well as Appendix G.1 of the lecture notes
for details.



Turn now to the left-hand side of the Wetterich equation and take a scale derivative of
(1). Compare the terms proportional to \/g and /gR from the left-hand side with the
result from the right-hand side, (5). Deduce from this the flow equations of the Newton
coupling and the cosmological constant. The resulting flow equations are
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Bonus question 1:
Why does the spin-two approximation work rather well in most cases?

Bonus question 2:
Use mathematica and find numerically the non-Gaussian fixed point of (6) and determine
the eigenvalues of the stability matrix.

Heat-kernel techniques

Heat-kernel techniques are used to evaluate the trace of a function that depends on the
Laplace operator on a curved background. You can use the formula
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with the definition
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The B,, are called heat-kernel coefficients and often written as
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The values of the heat-kernel coefficients depend on the field. For the transverse-traceless
tensor (TT), transverse vectors (TV) and scalars (S) on a sphere, they are given by
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