Non-perturbative aspects of gauge theories Exercise sheet 12 - Quantum Gravity in the Einstein-Hilbert truncation

Lectures: Jan Pawlowski
Tutorials: Nicolas Wink
Manuel Reichert
Institut für Theoretische Physik, Uni Heidelberg

j.pawlowski@thphys.uni-heidelberg.de n.wink@thphys.uni-heidelberg.de reichert@cp3.sdu.dk
due date: 28 January 2019

Exercise 20: Quantum Gravity in the Einstein-Hilbert truncation

In this exercise we investigate quantum gravity in the Einstein-Hilbert truncation,

$$
\begin{equation*}
\Gamma_{k}=2 \kappa^{2} Z_{k} \int \mathrm{~d}^{4} x \sqrt{g}\left[2 \Lambda_{k}-R\right] \tag{1}
\end{equation*}
$$

and $g=\bar{g}$. As a further simplification we only take contributions from the transversetraceless spin-two mode of the graviton into account, i.e., we neglect the other graviton as well as the ghost modes. Due to this approximation, we never have to specify a gauge-fixing action. Start from transverse-traceless graviton two-point function

$$
\begin{equation*}
\Gamma_{h^{\mathrm{TT}} h^{\mathrm{TT}}}^{(2)}=\frac{Z_{k}}{32 \pi}\left(\Delta-2 \Lambda_{k}+\frac{2}{3} R\right) . \tag{2}
\end{equation*}
$$

We define a completely transverse-traceless regulator

$$
\begin{equation*}
R_{k}=\left.\Gamma_{h^{\mathrm{TT}} h^{\mathrm{TT}}}^{(2)}\right|_{\Lambda_{k}=\bar{R}=0} \cdot r_{k}\left(\frac{\bar{\Delta}}{k^{2}}\right), \tag{3}
\end{equation*}
$$

with the Litim-type cutoff

$$
\begin{equation*}
r_{k}(x)=\left(\frac{1}{x}-1\right) \Theta(1-x) \tag{4}
\end{equation*}
$$

Then the flow equation only includes the TT-part of the propgator. Evaluate now the trace over the Laplace operator on the right-hand side of the Wetterich equation

$$
\begin{equation*}
\operatorname{Tr}\left[\frac{1}{\Gamma_{k}^{(2)}+R_{k}}\right]_{\mathrm{TT}} \partial_{t} R_{k}, \tag{5}
\end{equation*}
$$

with heat-kernel techniques, see next page as well as Appendix G. 1 of the lecture notes for details.

Turn now to the left-hand side of the Wetterich equation and take a scale derivative of (1). Compare the terms proportional to \sqrt{g} and $\sqrt{g} R$ from the left-hand side with the result from the right-hand side, (5). Deduce from this the flow equations of the Newton coupling and the cosmological constant. The resulting flow equations are

$$
\begin{align*}
\partial_{t} g_{k} & =\left(2+\eta_{g}\right) g_{k}, \\
\eta_{g} & =-\frac{5}{6 \pi} g_{k}\left(2 \frac{1-\frac{1}{6} \eta_{g}}{\left(1-2 \lambda_{k}\right)^{2}}+\frac{1-\frac{1}{4} \eta_{g}}{1-2 \lambda_{k}}\right), \\
\partial_{t} \lambda_{k} & =-4 \lambda_{k}+\frac{\lambda_{k}}{g_{k}} \partial_{t} g_{k}+\frac{5}{4 \pi} g_{k} \frac{1-\frac{1}{6} \eta_{g}}{1-2 \lambda_{k}} . \tag{6}
\end{align*}
$$

Bonus question 1:
Why does the spin-two approximation work rather well in most cases?
Bonus question 2:
Use mathematica and find numerically the non-Gaussian fixed point of (6) and determine the eigenvalues of the stability matrix.

Heat-kernel techniques

Heat-kernel techniques are used to evaluate the trace of a function that depends on the Laplace operator on a curved background. You can use the formula

$$
\begin{equation*}
\operatorname{Tr} f(\Delta)=\frac{1}{(4 \pi)^{2}}\left[B_{0}(\Delta) Q_{2}[f(\Delta)]+B_{2}(\Delta) Q_{1}[f(\Delta)]\right]+\mathcal{O}\left(R^{2}\right) \tag{7}
\end{equation*}
$$

with the definition

$$
\begin{equation*}
Q_{n}[f(x)]=\frac{1}{\Gamma(n)} \int \mathrm{d} x x^{n-1} f(x) . \tag{8}
\end{equation*}
$$

The B_{n} are called heat-kernel coefficients and often written as

$$
\begin{equation*}
B_{n}(\Delta)=\int \mathrm{d}^{4} x \sqrt{g} \operatorname{Tr} b_{n}(\Delta) \tag{9}
\end{equation*}
$$

The values of the heat-kernel coefficients depend on the field. For the transverse-traceless tensor (TT), transverse vectors (TV) and scalars (S) on a sphere, they are given by

	TT	TV	S
$\operatorname{Tr} b_{0}$	5	3	1
$\operatorname{Tr} b_{2}$	$-\frac{5}{6} R$	$\frac{1}{4} R$	$\frac{1}{6} R$

