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Exercise 20: Quantum Gravity in the Einstein-Hilbert truncation

In this exercise we investigate quantum gravity in the Einstein-Hilbert truncation,

Γk = 2κ2Zk

∫
d4x
√
g [2Λk −R] , (1)

and g = ḡ. As a further simplification we only take contributions from the transverse-
traceless spin-two mode of the graviton into account, i.e., we neglect the other graviton
as well as the ghost modes. Due to this approximation, we never have to specify a
gauge-fixing action. Start from transverse-traceless graviton two-point function

Γ
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We define a completely transverse-traceless regulator
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hTThTT
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)
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with the Litim-type cutoff

rk(x) =

(
1

x
− 1

)
Θ(1− x) . (4)

Then the flow equation only includes the TT-part of the propgator. Evaluate now the
trace over the Laplace operator on the right-hand side of the Wetterich equation

Tr

[
1

Γ
(2)
k +Rk

]
TT

∂tRk , (5)

with heat-kernel techniques, see next page as well as Appendix G.1 of the lecture notes
for details.
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Turn now to the left-hand side of the Wetterich equation and take a scale derivative of
(1). Compare the terms proportional to

√
g and

√
gR from the left-hand side with the

result from the right-hand side, (5). Deduce from this the flow equations of the Newton
coupling and the cosmological constant. The resulting flow equations are

∂tgk = (2 + ηg)gk ,

ηg = − 5
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∂tλk = −4λk +
λk
gk
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. (6)

Bonus question 1:
Why does the spin-two approximation work rather well in most cases?

Bonus question 2:
Use mathematica and find numerically the non-Gaussian fixed point of (6) and determine
the eigenvalues of the stability matrix.

Heat-kernel techniques

Heat-kernel techniques are used to evaluate the trace of a function that depends on the
Laplace operator on a curved background. You can use the formula

Tr f(∆) =
1

(4π)2

[
B0(∆)Q2[f(∆)] +B2(∆)Q1[f(∆)]

]
+O(R2) , (7)

with the definition

Qn[f(x)] =
1

Γ(n)

∫
dx xn−1 f(x) . (8)

The Bn are called heat-kernel coefficients and often written as

Bn(∆) =

∫
d4x
√
g Tr bn(∆) . (9)

The values of the heat-kernel coefficients depend on the field. For the transverse-traceless
tensor (TT), transverse vectors (TV) and scalars (S) on a sphere, they are given by

TT TV S
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