Non-perturbative aspects of gauge theories Exercise sheet 13 - Scalars in Quantum Gravity

Lectures: Jan Pawlowski
Tutorials: Nicolas Wink
Manuel Reichert
Institut für Theoretische Physik, Uni Heidelberg

j.pawlowski@thphys.uni-heidelberg.de n.wink@thphys.uni-heidelberg.de reichert@cp3.sdu.dk
due date: 04 February 2019

Exercise 21: Scalars in Quantum Gravity

In this exercise we consider N_{s} scalar fields minimally coupled to quantum gravity. The ansatz for the effective action is given by

$$
\begin{equation*}
\Gamma=\Gamma_{\text {gravity }}+\sum_{i=1}^{N_{\mathrm{s}}} \frac{Z_{\varphi^{i}}}{2} \int \mathrm{~d}^{4} x \sqrt{g} g^{\mu \nu} \partial_{\mu} \varphi^{i} \partial_{\nu} \varphi^{i} \tag{1}
\end{equation*}
$$

We want to estimate qualitatively the influence of the scalar fields on the fixed-point value of the Newton's coupling and of the cosmological constant. In a fluctuation computation we would obtain this from the scalar contribution to graviton n-point functions. Draw all diagrams that contribute to the graviton two- and three-point function. You should find that all diagrams contain a closed scalar loop and hence all contributions are proportional to N_{s}.

For simplicity we compute the scalar contributions to the beta functions from the background field approximation. Compute with heat-kernel methods the trace of right-hand side of the Wetterich equation

$$
\begin{equation*}
\operatorname{Tr}\left[\frac{1}{\Gamma_{k}^{(2)}+R_{k}}\right]_{\varphi \varphi} \partial_{t} R_{k} \tag{2}
\end{equation*}
$$

In straight analogy to the exercise from last week, choose the regulator function as

$$
\begin{equation*}
R_{k}=\Gamma_{\varphi \varphi}^{(2)} \cdot r_{k}\left(\frac{\bar{\Delta}}{k^{2}}\right) \quad \text { with } \quad r_{k}(x)=\left(\frac{1}{x}-1\right) \Theta(1-x) . \tag{3}
\end{equation*}
$$

The flow involves contributions from the scalar anomalous dimension $\eta_{\varphi}=-\partial_{t} \ln Z_{\varphi}$. We could determine those from the flow of scalar two-point function $\partial_{t} \Gamma_{\varphi \varphi}^{(2)}$, but here we set them simply to zero, $\eta_{\varphi}=0$, which is indeed a good approximation is most cases.

In straight analogy to last week, compare the \sqrt{g} and the $\sqrt{g} R$ terms in order to obtain the contributions to the beta function. You should find

$$
\begin{align*}
& \partial_{t} g_{k}=\beta_{g, \text { gravity }}+g_{k}^{2} \frac{N_{\mathrm{s}}}{6 \pi}\left(1-\frac{\eta_{\varphi}}{4}\right), \\
& \partial_{t} \lambda_{k}=\beta_{\lambda, \text { gravity }}+g_{k} \frac{N_{\mathrm{s}}}{4 \pi}\left(1-\frac{\eta_{\varphi}}{6}\right) . \tag{4}
\end{align*}
$$

In which direction are the fixed point values g_{k}^{*} and λ_{k}^{*} pushed? How do these changes influence the pure gravity contributions $\beta_{g, \text { gravity }}$ and $\beta_{\lambda, \text { gravity }}$, and how does this backreact on the fixed-point values? (See exercise sheet 12 for the precise form of these contributions.) Make a guess: which effect wins in the end?

