Non-perturbative aspects of gauge theories Exercise sheet 5 - Fermions

Lectures: Jan Pawlowski
Tutorials: Nicolas Wink
Institut für Theoretische Physik, Uni Heidelberg
j.pawlowski@thphys.uni-heidelberg.de n.wink@thphys.uni-heidelberg.de due date: 19 November 2018

Exercise 10: Flow equations for a Yukawa theory

In this exercise we are deriving the flow equation for the effective potential in the LPA. The ansatz for the effective action is given by

$$
\begin{equation*}
\Gamma_{k}=\int_{x}\left\{\bar{\psi}\left(\not \partial+m_{\psi}\right) \psi+\frac{h_{\sigma}}{\sqrt{2}} \bar{\psi}\left(\sigma+\mathrm{i} \gamma_{5} \pi\right) \psi_{a}+\left(\partial_{\mu} \phi\right)^{2}+V(\phi)\right\} . \tag{1}
\end{equation*}
$$

Start by obtaining the two-point functions in momentum space and proceed by inverting them in order to obtain the propagators. As regulators we use the usual Litim regulator

$$
\begin{align*}
& R_{k}^{\phi}(p)=p^{2} r_{\phi}(x) \equiv p^{2}\left(\frac{1}{x}-1\right) \Theta(1-x) \tag{2}\\
& R_{k}^{\psi}(p)=\mathrm{i} p r_{\psi}(x) \equiv \mathrm{i} p p\left(\frac{1}{\sqrt{x}}-1\right) \Theta(1-x),
\end{align*}
$$

where $x=p^{2} / k^{2}$. As regulated propagators you should find

$$
\begin{align*}
G_{\bar{\psi} \psi}(p) & =\frac{-i\left(\not p\left[1+r_{\psi}\right]\right)+M_{\psi}}{p^{2}\left[1+r_{\psi}\right]^{2}+M_{\psi}^{2}} \\
G_{\pi \pi}(p) & =\frac{1}{p^{2}\left[1+r_{\phi}\right]+V^{\prime}(\rho)} \tag{3}\\
G_{\sigma \sigma}(p) & =\frac{1}{p^{2}\left[1+r_{\phi}\right]+V^{\prime}(\rho)+2 \rho V^{\prime \prime}(\rho)},
\end{align*}
$$

where $M_{\psi}=m_{\psi}+h_{\sigma} \rho$. Finally, the flow equation for the effective potential is given by

$$
\begin{equation*}
\partial_{t} V(\rho)=\frac{1}{2} \operatorname{Tr} G_{\pi \pi} \dot{R}_{k}^{\phi}+\frac{1}{2} \operatorname{Tr} G_{\sigma \sigma} \dot{R}_{k}^{\phi}-\operatorname{Tr} G_{\bar{\psi} \psi} \dot{R}_{k}^{\psi} . \tag{4}
\end{equation*}
$$

Carry out the traces in (4)

Exercise 11*: Beyond LPA

Consider the ansatz for the effective action in Exercise 10, i.e. (1), and introduce the wave function renormalisations Z_{ϕ} and Z_{ψ} in an appropriate manner. Redefine the mass terms in a way that all propagators become inverse proportional to their wavefunctions, i.e. $G_{\varphi \varphi} \sim Z_{\varphi}^{-1}$ with $\varphi=\phi, \psi, \ldots$. As regulators we employ the once from (2), but dressed with their appropriate wave function renormalisations, i.e. $R_{k}^{\varphi} \rightarrow Z_{\varphi} R_{k}^{\varphi}$. In order to cancel the wave function renormalisations out of all equations introduce the anomalous dimension

$$
\begin{equation*}
\eta_{\varphi}=-\frac{\partial_{t} Z_{\varphi}}{Z_{\varphi}} . \tag{5}
\end{equation*}
$$

Derive the flow equation for the effective potential.
Hint: Take a detailed look at the regulator derivative.
The equations for the anomalous dimensions can be obtained from the flow equations of the two-point functions by appropriate projections. Derive the flow equations the two-point functions $\Gamma_{\pi \pi}^{(2)}$ and $\Gamma_{\bar{\psi} \psi}^{(2)}$.

Hint: The only difference to previous exercises is the signs from fermions.
Find a suitable procedure, i.e. projection, in order to obtain algebraic equations for the anomalous dimensions.

