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Exercise 12: Phase structure of the Quark Meson Model

In this exercise you are going to calculate parts of the phase structure of the Quark
Meson Model introduced in the lecture.

In order to do this, recollect the derivation of the flow equation at finite temperature
and density for the two flavour Quark Meson Model using a flat regulator in Section
3.2.4 of the script. For this exercise we are staying in the chiral limit, i.e. setting the
bare quark mass mq = 0. You should arrive at the result
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where Nc = 3 and Nf = 2. The dispersion relations are given by

(επk)2 = k2 + V ′(ρ) (2)

(εσk)2 = k2 + V ′(ρ) + 2ρ V ′′(ρ) (3)
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(ρ
2

) 1
2
. (4)

The occupation numbers in (1) are given by

nB(z) =
(
ez/T − 1

)−1
(5)

nF(z) =
(
ez/T + 1

)−1
. (6)
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The remaining part of the exercise requires the usage of a Computer-Algebra system
with numerical capabilities, e.g. Mathematica.

For the actual computation we will only consider finite temperature and set the chem-
ical potential to zero for simplicity, i.e. µq = 0. In order to solve (1) we will expand the
potential V (ρ) around some fixed expansion point in a Taylor series

V (ρ) =
Nmax∑
j=0

λj
j!

(ρ− κ)j , (7)

please note that you can neglect the j = 0 component as it will not couple back into
the equation. The full k-dependence is therefore carried by the Nmax Taylor coefficients
λj. Plugging (7) into (1), taking 0 . . .Nmax derivatives and evaluating the equation at κ
results in a coupled system of ordinary differential equations. Practically, we you should
chose Nmax between 5 and 7 for good results. Do not attempt to do this by hand! since
the resulting expression get rather large.

We are left with the specification of the initial conditions at the cut off scale Λ =
700 MeV. We start with a quadratic potential in ρ, i.e. λj = 0 for j ≥ 3. The remaining
parameters are adjusted in the vacuum, i.e. hσ, λ1, λ2, fπ. Adjust your parameters such
that you get a minimum at fπ = 88 MeV, a constituent quark mass of mq = 300 MeV and
a sigma meson mass of mσ = 300..500 MeV and the pion mass vanishes by definition. We
don’t specify the sigma mass precisely, since it involves fine tuning the initial conditions.
The expansion point κ should always be chosen slightly above the IR minimum of the
potential, i.e. κ = (88 + ε) MeV in the vacuum and needs to be dynamically adjusted
at finite temperature.

With this at hand you can calculate the minimum of the potential as well as the masses
as a function of temperature. The second order phase transition should be clearly visible
in a plot. You have just calculated the chiral phase transition of QCD in an Low Energy
Effective Theory!

Additional hints, remarks and bonus questions:

• Always evaluate all field dependent quantities, e.g. masses, at the expansion point,
especially when tuning λ1 and λ2 in order to adjust the position of the minimum
and the sigma meson mass.

• Calculate for different temperatures iteratively and readjust the expansion point
κ starting from your previous temperature.

• Choosing your expansion point κ below the minimum results in an unstable nu-
merical scheme, leading to divergences in your numerical result.
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• The flow equation (1) is numerically unstable for T → 0, but the limit can easily
be achieved analytically.

• Once you have the potential as a function of temperature it is easy to extract
thermodynamic quantities, what is happening at large temperatures?
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