Non-perturbative aspects of gauge theories Exercise sheet 8 - Yang-Mills propagators II

Lectures: Jan Pawlowski
Tutorials: Nicolas Wink
Institut für Theoretische Physik, Uni Heidelberg
j.pawlowski@thphys.uni-heidelberg.de n.wink@thphys.uni-heidelberg.de due date: 10 December 2018

Exercise 14: Derivation of the flow equations for ghost and gluon

Recapitulate Exercise 13 and make sure you understand each step in the derivation on a conceptual level. All details can be found in the script in Section 5.5.3 and Appendix F.3.

We introduce an angular variable $p q=p_{v} q_{v} z$, which ranges from $-1 \leq z \leq 1$ and the subscript v denotes the modulus of a vector. The regulator derivative is abbreviated as $d R_{\varphi}=\partial_{t} r_{\varphi}-\eta_{\varphi} r_{\varphi}$. The scalar parts of the propagators are

$$
\begin{align*}
\bar{G}_{A A}(p) & =Z_{A}(p)^{-1}\left(p^{2}\left[1+r_{A}\left(p^{2} / k^{2}\right)\right]+m_{A}^{2}\right)^{-1} \tag{1}\\
\bar{G}_{\bar{c} c}(p) & =Z_{c}(p)^{-1}\left(p^{2}\left[1+r_{c}\left(p^{2} / k^{2}\right)\right]\right)^{-1} . \tag{2}
\end{align*}
$$

Please note that the ordering of the indices for the ghost-gluon vertex is different from the one used in the lecture.

The resulting flow equation for the ghost dressing function is

$$
\begin{align*}
\partial_{t} Z_{c}(p) & =-3\left(z^{2}-1\right)\left\{d R_{A}(q) \bar{G}_{A A}(q)^{2} \bar{G}_{\bar{c} c}(p+q) \lambda_{A \bar{c} c}(-q, p+q) \lambda_{A \bar{c} c}(q, p)\right. \tag{3}\\
& \left.+\frac{q_{v}^{2}}{p_{v}^{2}+q_{v}^{2}+2 p_{v} q_{v} z} d R_{c}(q) \bar{G}_{A A}(p+q) \bar{G}_{\bar{c} c}(q)^{2} \lambda_{A \bar{c} c}(-p-q, p) \lambda_{A \bar{c} c}(p+q,-q)\right\}
\end{align*}
$$

And for the gluon

$$
\begin{align*}
\partial_{t}\left[Z_{A}(p)\left(p^{2}+m_{A}^{2}\right)\right] & =\left(z^{2}-7\right) d R_{A}(q) \bar{G}_{A A}(q)^{2} \gamma_{A A A A}(p,-p, q) \tag{4}\\
& +2 q_{v}^{2}\left(z^{2}-1\right) d R_{c}(q) \bar{G}_{\bar{c} c}(q)^{2} \bar{G}_{\bar{c} c}(p+q) \lambda_{A \bar{c} c}(-p,-q) \lambda_{A \bar{c} c}(p,-p-q) \\
& -\frac{4\left(z^{2}-1\right)\left(3 p_{v}^{4}+3 q_{v}^{4}+6 p_{v}^{3} q_{v} z+6 p_{v} q_{v}^{3} z+p_{v}^{2} q_{v}^{2}\left(8+z^{2}\right)\right)}{p_{v}^{2}+q_{v}^{2}+2 p_{v} q_{v} z} \times \\
& \times d R_{A}(q) \bar{G}_{A A}(q)^{2} \bar{G}_{A A}(p+q) \lambda_{A A A}(-p, p+q) \lambda_{A A A}(p, q)
\end{align*}
$$

Proceed by dressing all vertices appropriately and introduce a single coupling $\alpha_{s}(\bar{p})$ according to (5.54) in the lecture notes. Use the full momentum dependence in the
dressings, such that they cancel in all equations after introducing η on the LHS of the equations and set the argument of the coupling to the symmetric point configuration afterwards. It is give by

$$
\begin{align*}
\bar{p} & =\left(\frac{2}{3}\left(p_{1}^{2}+p_{2}^{2}+p_{1} p_{2}\right)\right)^{\frac{1}{2}} \tag{5}\\
\bar{p} & =\left(\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right)\right)^{\frac{1}{2}}
\end{align*}
$$

for three- and four-point functions, respectively.

Exercise 15: Solving the propagator flow equations in Yang-Mills

Solve the equations in Exercise 14! For this we have to chose m_{A}^{2}, where we will make the choice

$$
\begin{equation*}
m_{A}^{2}=\lim _{p \rightarrow 0} \mathcal{P}_{A A}^{(1)} \Gamma_{A A}^{(2)}, \tag{6}
\end{equation*}
$$

ensuring a positive Z_{A} and resulting in the constraint $Z_{A}(p=0)=1$. You can get the strong coupling α_{s} from the wave functions as

$$
\begin{equation*}
\bar{\alpha}_{s}(p)=\frac{1}{4 \pi^{2}} \frac{g^{2}}{Z_{A}(p) Z_{c}(p)^{2}}, \tag{7}
\end{equation*}
$$

more details are in the lecture notes, c.f. the discussion around (5.75). As initial conditions we now require the UV scale Λ as well as the coupling g and the initial gluon mass parameter m_{A}^{2}. The first two are in a sense arbitrary, as we still need to set the scale in the calculation. Practically, use a small, but not too small value for g, e.g. $g=0.1$, at $\Lambda=50$, where the units will turn out to be roughly GeV . After calculations determine maximum in the propagator dressing $1 / Z_{A}(p)$ (if there is one) and rescale all units such that the position of the maximum is at 1 GeV , which defines the scale. Solve the flow equations for various choices of $m_{A, k=\Lambda}^{2}<0$. Explore the behaviour of $m_{A, k=0}^{2}\left(m_{A, k=\Lambda}^{2}\right)$, where you should find a critical value, corresponding to a Landau-polelike singularity. You should find the qualitative behaviour shown in Fig. 9 in Cyrol, Fister, Mitter, Pawlowski, Strodthoff (2016).

Practically, you have to solve the differential equations

$$
\begin{align*}
\partial_{t} m_{A}^{2} & =\lim _{p \rightarrow 0} \mathcal{P}_{A A}^{(1)} \partial_{t} \Gamma_{A A}^{(2)} \tag{8}\\
\partial_{t} Z_{\varphi} & =-Z_{\varphi} \eta_{\varphi}
\end{align*}
$$

and before each evaluation of the right-hand side of the different equation, solve the coupled integral equations for the anomalous dimensions η_{φ}. As shape function for the regulator you can use for both fields an exponential regulator

$$
\begin{equation*}
r_{\varphi}(x)=\frac{x e^{-x^{2}}}{1-e^{-x^{2}}}, \tag{9}
\end{equation*}
$$

allowing you to limit the radial integration to $q_{v} \lesssim 3 k$.

Exercise 16*: Solving the propagator DSEs in Yang-Mills

Now that you've warmed up, repeat Exercise 13 and Exercise 15 for the corresponding Dyson-Schwinger Equations.

