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Introduction

Yang-Mills matter

L = −1
4
F a

µνF a
µν + ψ̄f (i �D −mf )ψf

• The Lagrangian

generators: 1,...,Nc2-1

flavour: 1,...,Nf

colour:   1,...,Nc

spinor:   1,...,4

Lorentz: 1,...,4

In the SM:  gauge group                     with Nf = 6SU(Nc = 3)



Introduction

• quark masses (approximately)

u    3 MeV c    1 GeV t   170 GeV

d    3 MeV s   100 MeV b   4 GeV

so assume: mu ≈ md � ms � mc, mt, mb

i.e. Nf = 3 or Nf = 2 + 1



QCD	 vs.	 QED

self-interactions:

coupling const structure const

QCD: F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
νF a

µν = ∂µAa
ν − ∂νAa

µ + gfabcAb
µAc

ν

QED: Fµν = ∂µAν − ∂νAµFµν = ∂µAν − ∂νAµ

• the field strength tensor
L = −1

4
F a

µνF a
µν + ψ̄f (i �D −mf )ψf



QCD	 vs.	 QED

coupling const gauge potential

Gell-Mann 
matrices
(λa/2 
generators)

QCD:

QED:

• the Dirac operator

i �D = γµ(i∂µ + gAa
µ
λa

2
)

i �D = γµ(i∂µ − eAµ)

L = −1
4
F a

µνF a
µν + ψ̄f (i �D −mf )ψf

QCD: additional colour structure



Running	 coupling

4

Figure 3. Summary of measurements of αs(Q2). Results which are based on fits of αs(MZ0) to data
in ranges of Q, assuming the QCD running of αs, are not shown here but are included in the overall
summary of αs(MZ0), see Figure 4 and Table 1.

agreement with the QCD prediction.
Therefore it is appropriate to extrapolate all

results of αs(Q) to a common value of energy,
which is usually the rest energy of the Z0 boson,
MZ0 . As described in [1], the QCD evolution of αs

with energy, using the full 4-loop expression [29]
with 3-loop matching [30] at the pole masses of
the charm- and the bottom-quark, Mc = 1.7 GeV
and Mb = 4.7 GeV , is applied to all results of
αs(Q) which were obtained at energy scales Q !=
MZ0 .

The corresponding values of αs(MZ0) are tab-
ulated in the 4th column of Table 1; column 5
and 6 indicate the contributions of the experi-

mental and the theoretical unceratinties to the
overall errors assigned to αs(MZ0). All values of
αs(MZ0) are graphically displayed in Figure 4.
Within their individual uncertainties, there is
perfect agreement between all results. This jus-
tifies to evaluate an overall world average value,
αs(MZ0). As discussed e.g. in [1], however, the
combination of all these results to an overall aver-
age, and even more so for the overall uncertainty
to be assigned to this average, is not trivial due
to the supposedly large but unknown correlations
between invidual results, especially through com-
mon prejudices and biases within the theoretical
calculations.

S. Bethke, hep-ex/0407021
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• coupling(s) not constant but modified by 
quantum fluctuations

• QCD and QED couplings have very different 
behavior

• QCD: coupling becomes large at low q → 
perturbation theory applicable?

Running	 coupling



β(g) = µ
∂g

∂µ

The	 β-function

describes the change of the coupling 
strength with respect to the scale μ

QCD:

QED: β(e) =
e3

12π2

β(g) = −
�

11
3

Nc −
2
3
Nf

�
g3

16π2
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β(g) = µ
∂g

∂µ

The	 β-function

describes the change of the coupling 
strength with respect to the scale μ

QCD:

QED:
difference: 

sign

asymptotic freedom

β(e) =
e3
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β(g) = µ
∂g

∂µ

The	 β-function

describes the change of the coupling 
strength with respect to the scale μ

QCD:

QED:
difference: 

sign

Nobel prize 2004:
Gross, Politzer, Wilczek

asymptotic freedom

β(e) =
e3

12π2

β(g) = −
�

11
3

Nc −
2
3
Nf

�
g3

16π2



Running	 coupling	 αs

expand β-function in powers of αs:

solve differential equation:

αs(p2) =
g(p2)2

4π

β(αs) = αs

�
β0αs + β1α

2
s + . . .

�

µ
∂

∂µ
αs(µ) = β(αs)

solution:

αs(p2) =
αs0

1 + αs0β0 log
�

p2

M2

�



Running	 coupling	 αs

M is momentum scale (UV) where       is defined (measured)

αs(p2) =
αs0

1 + αs0β0 log
�

p2

M2

�

p2 = M2 : αs(p2) = αs0for

to remove arbitrary scale M, define mass scale which satisfies

1 = αs0β0 log

�
M2

Λ2
QCD

�

⇔ Λ2
QCD = M2e

− 1
αs0β0

αs0
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Running	 coupling	 αs

⇒ αs(p2) =
αs0

1 + αs0β0 log
�

p2

Λ2
QCD

e
− 1

αs0β0

�

→ Need non-perturbative methods

so consider: p2 = Λ2
QCD

⇒ αs(p2 = Λ2
QCD)→∞

perturbation theory breaks down!

ΛQCD ≈ 200 MeV



non-pertrubative method: the Renormalisation Group

no Landau pole, at very low momenta αs is finite

Running	 coupling	 αs

4

Figure 3. Summary of measurements of αs(Q2). Results which are based on fits of αs(MZ0) to data
in ranges of Q, assuming the QCD running of αs, are not shown here but are included in the overall
summary of αs(MZ0), see Figure 4 and Table 1.

agreement with the QCD prediction.
Therefore it is appropriate to extrapolate all

results of αs(Q) to a common value of energy,
which is usually the rest energy of the Z0 boson,
MZ0 . As described in [1], the QCD evolution of αs

with energy, using the full 4-loop expression [29]
with 3-loop matching [30] at the pole masses of
the charm- and the bottom-quark, Mc = 1.7 GeV
and Mb = 4.7 GeV , is applied to all results of
αs(Q) which were obtained at energy scales Q !=
MZ0 .

The corresponding values of αs(MZ0) are tab-
ulated in the 4th column of Table 1; column 5
and 6 indicate the contributions of the experi-

mental and the theoretical unceratinties to the
overall errors assigned to αs(MZ0). All values of
αs(MZ0) are graphically displayed in Figure 4.
Within their individual uncertainties, there is
perfect agreement between all results. This jus-
tifies to evaluate an overall world average value,
αs(MZ0). As discussed e.g. in [1], however, the
combination of all these results to an overall aver-
age, and even more so for the overall uncertainty
to be assigned to this average, is not trivial due
to the supposedly large but unknown correlations
between invidual results, especially through com-
mon prejudices and biases within the theoretical
calculations.

S. Bethke, hep-ex/0407021

J. Braun, L. M. Haas, J. M. Pawlowski; work in progress
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partition function

free energy

Thermodynamics

Ω(β) = −T lnZ(β)

Z(β) = Tr e−βH



partition function

free energy

Thermodynamics

Ω(β) = −T lnZ(β)

in QFT

information of initial state is lost due to thermal fluctuations 
of heat bath

time scale:

Z ∼
�

eiS

∆t ∼ 1
T

= β

Z(β) = Tr e−βH



ωn =
�

(2n + 1)πT
2nπT

�
d4p

(2π)4
→ T

�

n

�
d3k

(2π)3

Finite	 temperature

→ breaks O(4) to O(3), p0 is discretised to Matsubara frequencies

where
fermions 
bosons

this means that A0 is distinguished from spacial components

R4 → S × R3

T = 0 T �= 0



partition function

free energy

where

ultrarelativistic 
ideal gas of 
spinless particles

pressure

propagator

Thermodynamics

Ω(β) = −T lnZ(β)

lnZ(β) =
1
2
Tr ln∆F

P = − ∂Ω
∂V

=
π2

90
T 4

Z(β) = Tr e−βH



partition function

free energy

where

ultrarelativistic 
ideal gas of 
spinless particles

pressure

propagator

Thermodynamics

Ω(β) = −T lnZ(β)

lnZ(β) =
1
2
Tr ln∆F

P = − ∂Ω
∂V

=
π2

90
T 4

Stefan-Boltzmann law

Z(β) = Tr e−βH



P = T
4
�
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�

Pressure

weak coupling expansion of equation of state:
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P = T
4
�
c0 + c2g

2 + O(g3)
�

Pressure

weak coupling expansion of equation of state:

c0 =
π2

90

�
2

�
N2

c − 1
�

+ 4NcNf
7
8

�

polarisations

gluon dofs
(dim of adjoint repr.)

quark dofs

Stefan-Boltzmann law

c2 = −N2
c − 1
144

�
Nc +

5
4
Nf

�



Debye	 mass

in weak coupling limit (g<1, high temperatures) have following 
contributions to gluon propagator:

where Debye mass

electric

magnetic

screening of static electric interaction at distances

Πab L(q) =
δab

�q2 + m2
D

Πab T(q) =
δab

�q2 − iπ
4 m2

D
ω
|�q|

m2
D = g2T 2

�
1 +

Nf

6

�

r ∼ m−1
D ∼ 1

gT



Landau	 damping

screening of dynamical magnetic interactions:  Landau damping
due to strong interactions of gluons and particles in plasma
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Landau	 damping

screening of dynamical magnetic interactions:  Landau damping
due to strong interactions of gluons and particles in plasma

it prevents an instability from developing, creates a region of 
stability in parameter space

physical interpretation from Wikipedia:

particles = surfers

Langmuir waves = waves 
in sea

surfer will be caught & pushed along 
(gaining energy)

surfer pushes on wave (losing energy)

vsurfer < vwave :

vsurfer > vwave :



Plasma	 oscillations

Langmuir waves ≡ rapid oscillations of e- (quark) density in plasma

quantise oscillations: obtain quasiparticle/ collective excitations

q � gT :

q < gT :

2 transv. modes,

2 transv., 1 longit. mode (plasmon)

ω � q



Plasma	 oscillations

Langmuir waves ≡ rapid oscillations of e- (quark) density in plasma

quantise oscillations: obtain quasiparticle/ collective excitations

q � gT :

q < gT :

2 transv. modes,

2 transv., 1 longit. mode (plasmon)

ω � q

q → 0

γ = 6.64
g2NcT

24π

ω = ωp =
mD√

3
plasma frequency

for           :

damping constant



→ spatial      theory (not perturbation theory)

                 :  perturbation theory (     )

Limits

               :                  →            asT →∞

E →∞

R3

R4

S × R3 β =
1
T

= 0R3



→ spatial      theory (not perturbation theory)

                 :  perturbation theory (     )

Limits

               :                  →            asT →∞

E →∞

R3

R4

S × R3 β =
1
T

= 0R3

finite T:        screening of static electric interactions, 
                  no screening of static magnetic interactions

screening of dynamical magnetic interactions:
non-perturbative effect



Perturbative	 methods	 at	 high	 T

tive theory of QED plasmas as considered by Silin [136]. The derivation has been achieved
invoking a truncation to a Schwinger-Dyson hierarchy. This has lead to a transport equation

for the distribution function describing the hard or particle-like degrees of freedom. The ad-
vantage of a kinetic description is that the non-local interactions in the HTL effective theory

are replaced by a local transport theory. The crucial step is to consider the quasi-particle
distribution function as independent degrees of freedom, describing the hard excitations of

the plasma. This also has lead to a local expression for the HTL energy in terms of the
soft gauge fields and the colour current density [118,30]. It is worthwhile pointing out that
the HTL effective theory can be derived within a semi-classical transport theory based on

a point particle picture [91,92].

|p|

T

gT

!

NLLO

LLO

effective classical theoriesfull QFT

HTL

theory

g  T2

1/ln(1/g)2g

effective Langevin dynamics

gExpansion
parameter:

Figure 1: Schematic diagram for the series of effective theories for hot and weakly coupled non-

Abelian plasmas close to thermal equilibrium. The physics of the hard modes with momenta

|p| ∼ T or larger needs the full thermal QCD. Effective classical theories are found for modes

|p| " T . The hard-thermal-loop (HTL) effective theory integrates-out the hard modes, and is

effective for modes at about the Debye mass, |p| ∼ gT . It can be written as a collisionless

Boltzmann equation. The effective expansion parameter is ∼ g2. A collisional Boltzmann equation

is found after integrating-out the modes |p| ∼ gT to leading logarithmic order (LLO), which is

an expansion in g. The effective theory for the ultra-soft gauge fields with spatial momenta

|p| " gT is a Langevin-type dynamical equation. The next step integrates-out the modes with

|p| ∼ γ ∼ g2T ln(1/g), which is an expansion in 1/ ln(1/g) and yields next-to-leading-logarithmic

order (NLLO) corrections without changing the qualitative form of the effective theory [37].

6

D. Litim, C. Manuel, hep-ph/0110104

for nice review see:      J.-P. Blaizot, E. Iancu, A. Rebhan, hep-ph/0303185

p ∼ T :

p� T :

p� gT :

hard modes need full thermal QCD

effective classical theories, integrate out 

ultra-soft modes, integrate out

p ∼ gT

p ∼ g2T log(1/g)



Perturbative	 methods	 at	 high	 T
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λ ≡ g2N

weak-coupling to order λ3/2

strong-coupling to order λ−3/2

cΛ = 0
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λ1

λ → ∞

N
LA Padé

Figure 1. Entropy density in units of the Stefan-Boltzmann value for pure gauge QCD
and N = 4 supersymmetric QCD. The left panel shows the entropy density of pure
gauge QCD as a function of T/Tc. The grey band is the lattice result. The solid lines
show a resummed QCD calculation [63]. The different lines correspond to different
choices for a non-perturbative parameter cΛ. The dashed lines mark an error band
determined by variations in the QCD renormalization scale. The right panel shows the
entropy density of SUSY QCD as a function of the ’t Hooft coupling λ. The curves
are labeled as in the left panel.

where φa (a = 1, 2, 3) is the pion field. This result is clearly analogous to the phonon

interaction in equ. (28). There are, however, some minor differences. Because of parity

and isospin symmetry there are no vertices with an odd number of pions. We also note

that the leading four-pion interaction has two derivatives, while the four-phonon term

involves four derivatives.

2.5. Gauge theories: Superconformal QCD

QCD is a complicated theory, and a significant amount of effort has been devoted to the

study of generalizations of QCD that possess a larger amount of symmetry, in particular

supersymmetry. Supersymmetry is a symmetry that relates bosonic and fermionic fields.

The simplest supersymmetric cousin of QCD is SUSY gluodynamics, a theory of gluons

and massless fermions in the adjoint representation of the color group called gluinos.
Theories with more supersymmetry involve extra fermions and colored scalar fields. The

most supersymmetric extension of QCD is a theory with four supersymmetries, called

N = 4 SUSY QCD. Theories with even more supersymmetry contain fields with spin

3/2 and 2, and therefore involve gravitational interactions. These theories are known

as supergravity.

The lagrangian of N = 4 SUSY QCD is

L = −1

4
Ga

µνG
a
µν − iλ̄a

i σ
µDµλ

a
i + Dµφ† a

ij Dµφa
ij + Lλλφ + Lφ4 , (47)

where Ga
µν is the usual field strength tensor, λa

i is the gluino field, and φa
ij is a colored

Higgs field. The gluino is a two-component (Weyl) fermion in the adjoint representation

of the color group. The index i (i = 1, . . . , 4) transforms in the fundamental

representation of a global SU(4)R “R-symmetry”. This symmetry interchanges the

• solid lines: perturb. methods, cΛ non-pert. parameter

• dashed lines: error band (vary QCD renormalisation scale)

agree well above T/Tc≈ 2

J.-P. Blaizot, E. Iancu, A. Rebhan;
G. Boyed et al.



introduce quark chemical potential μ:

Lmatter = ψ̄(i �D + µγ0 −m)ψ

The	 QCD	 phase	 diagram



introduce quark chemical potential μ:

Lmatter = ψ̄(i �D + µγ0 −m)ψ

credits: GSI Darmstadt

obtain phase diagram

The	 QCD	 phase	 diagram



Chiral	 symmetry

consider matter sector of QCD: ψ =
�

ψL

ψR

�

if            :m = 0

left and right handed parts of Dirac spinor transform 
independently under                                    

ψf
L → gff �

ψf �

L

ψf
R → gff �

ψf �

R

where
gff �

∈ U(Nf )L

gff �
∈ U(Nf )R

⇒ Lagrangian is symmetric under such trafos (chiral symmetry)

Lmatter = ψ̄f
Li �Dψf

L + ψ̄f
Ri �Dψf

R −mf ψ̄f
Lψf

R −mf ψ̄f
Rψf

L



Chiral	 phase	 transition

macroscopic states
dofs: hadrons

broken      symmetryχ

phase

transition

order parameter:    chiral condensate �ψ̄ψ�

�ψ̄ψ� =
�

0 T > Tc,χ

> 0 T < Tc,χ.

microscopic states
dofs: q, q, g

    symmetryχ



The	 sigma	 model

• want to model phenomenologically chiral symmetric field theory 
of strong interactions

• scalar fields: elementary fields, their interactions arranged to 
produce spontaneous breakdown of chiral symmetry

• symmetric under rotations

• elementary fields: nucleons, pions, sigma (meson)
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The	 sigma	 model

• want to model phenomenologically chiral symmetric field theory 
of strong interactions

• scalar fields: elementary fields, their interactions arranged to 
produce spontaneous breakdown of chiral symmetry

• symmetric under rotations

consider e.g.              ,              :Nf = 2 m = 0

                QCD                                   sigma model

SU(2)× SU(2) SO(4)
isomorphic

QCD and sigma model have same symmetry group

• elementary fields: nucleons, pions, sigma (meson)



Conclusions

credits: GSI Darmstadt



From	 QGP	 to	 Cold	 Atoms

ψ̄ �Dψ (ψ̄ψ)2
q q

q̄ q̄

ψ̄ψ φquark & anti-quark scalar

interpretation: condensate ψ̄ψ vs. ψψ

QCD Cold Atoms

ψ̄ψφ + . . . ψψφ + . . .


