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Introduction

Experimental observations on relativistic heavy ion 
collisions can be well described by small transport 
coefficients or even ideal hydrodynamics.

Quark Gluon Plasma is a strongly coupled, 
nearly perfect fluid in the regime 1 ≤ T/TC ≤ 2!

Theoretical challenge: Calculate transport coefficients
for QGP from an underlying
field theory



  

Introduction

Small values of η/s in QGP are reached near the critical
point of confinement/deconfinement:

Guess: The critical point corresponds to the minimal value.

This will turn out to be wrong!
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● Dynamic properties of nearly perfect fluids
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Dynamic properties of nearly
perfect fluids



  

Typical nonequilibrium situation

temperature, density, 
average velocity of the 
particles not constant
throughout the system

Equilibrium

transport of energy,
mass, momentum

Consider a gas in a (sufficiently large) container 
with no applied external field:



  

Microscopic view

Equilibration through interactions of the particles:

● mean free path λ,

● most probable velocity v

● collision time t0=λ/v

λ , t0 are the microscopic
scales of the system

Non-uniformities in density or temperature of order λ will
be washed out in the order of t0.
Variations over long distances (      ) may persist for a 
long time (       ).



  

Hydrodynamic regime

In the hydrodynamic regime λ is much less than

● size of the container (trap, fireball,...)

● wavelength of density fluctuations

characteristic
macroscopic
scales of the
system

Separation of scales!

Especially:  temperature, entropy density are well-defined locally



  

Separation of scales 

How to describe a system with different scales?

Hydrodynamic equations
(macroscopic point of view)

Stochastic Langevin equations
(microscopic point of view)

connection ?
Both are effective
descriptions!

We will do it for a toy example: Brownian motion



  

Brownian motion: macroscopic

A particle of large mass m is suspended in a fluid
of much lighter particles. It gets kicked from all sides
and will perform a random walk.

t0, λ: time / walked distance between two kicks

Let x be the position of the particle and n(x,t) its
probability distribution.

Rate equations
(Master equation)

n(x,t) satisfies the
Diffusion equation



  

Diffusion: a damped process

The diffusion equation describes a damped process:

Fourier trf.

Consider mode of frequency ω: 

Excitation gets damped: 
Relaxation time is larger 
for smaller k (longer wavelength)

Compare this to a propagating sound mode:



  

Diffusion in Hydrodynamics

Let n(x,t) be the density of a conserved quantity (e.g. particle
number). Then the continuity equation is exact: 

But what is j? Derivative expansion: 

The damping term Δn(x,t) is typical for hydrodynamic equations.

Diffusion constant
(transport coeffic.)

Diffusion 
equation



  

A nice calculation

Assume n(x,t) (satisfying the diffusion equation) to be the 
probability distribution of the heavy Brownian particle. (1-dim)
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A nice calculation

Assume n(x,t) (satisfying the diffusion equation) to be the 
probability distribution of the heavy Brownian particle. (1-dim)

We got this without solving the diffusion equation explicitly!



  

Brownian motion: microscopic

Let x be the position of the heavy particle, v its velocity.

„Stochastic
Langevin
equations“

The stochastic force describes the light particles. We do not
know the explicit form of ξ(t). (Nor are we interested in.)
We assume:

damping term stochastic force (noise)



  

Brownian motion: microscopic

Let x be the position of the heavy particle, v its velocity.

„Stochastic
Langevin
equations“

The stochastic force describes the light particles. We do not
know the explicit form of ξ(t). (Nor are we interested in.)
We assume:

damping term stochastic force (noise)

The ξ's are correlated
on a time scale t0

we do not see!

 → δ(t-t')



  

Langevin equations: Motivation

We are only interested in the evolution of a subset of
the degrees of freedom of the system. The remaining
degrees of freedom enter the description via stochastic
forces.

Examples:

● Brownian motion

● Dynamics of the order parameter near the
  critical point



  

Brownian motion: microscopic

Solve the Langevin equations for x(t) and v(t):

This expression still contains g and ξ! Fit g to equilibrium values:

Einstein
relations



  

Conclusion

Fit g in order to get the correct equilibrium limit.

Once we know how to choose g properly, we can use 
the Langevin equations to describe non-equilibrium 
processes. (fluctuations, equilibration)



  

Dynamic vs. static properties

Dynamic properties (in the hydrodynamic regime):

● transport coefficients (D, η, ζ, κT)
● relaxation times
● multi-time correlation functions
● linear response to time-dependent perturbations

 → not simply described by single-time equilibirium
distribution of the particles

Static properties: 

● thermodynamic coefficients (CV, compressibility,...)
● single-time correlation functions
● linear response to time-independent perturbations



  

The QCD phase diagram
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The QCD phase diagram

Quark Gluon Plasma
d.o.f: quarks, gluons

hadron gas
d.o.f.: hadrons
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1st, 2nd order and crossover

Depending on the behavior of the free energy along a phase
transition line, one distinguishes:

crossover

smooth

1st order phase
transition

jump



  

1st, 2nd order and crossover

Depending on the behavior of the free energy along a phase
transition line, one distinguishes:

crossover

smooth

1st order phase
transition

jump

in between:
2nd order phase
transition

kink



  

The QCD phase diagram

Quark Gluon Plasma
d.o.f: quarks, gluons

hadron gas
d.o.f.: hadrons



  

The QCD phase diagram

Quark Gluon Plasma
d.o.f: quarks, gluons

hadron gas
d.o.f.: hadrons

cross
over

from lattice simulations



  

The QCD phase diagram

Quark Gluon Plasma
d.o.f: quarks, gluons

hadron gas
d.o.f.: hadrons

cross
over

1st order

from different models
(less robust argument)



  

The QCD phase diagram

Quark Gluon Plasma
d.o.f: quarks, gluons

hadron gas
d.o.f.: hadrons

cross
over

1st order

There has to be a point of 2nd 
order phase transition at the 
end of the 1st order line:

The QCD critical point!



  

Critical dynamics



  

Langevin eq. for order parameter

Hydrodynamic regime: time scales for the conserved quantities:

All other time scales are small compared to the
long wavelength excitations of the conserved quantities.

At the critical point:  Fluctuations of the order parameter
become macroscopic (ξ ∞).→

Order parameter has to be included into the hydrodynamic
description.

Langevin equations for conserved quantities & order
parameter. Everything else: stochastic forces



  

Generic example

No conserved quantities, order parameter m(x,t) (e.g. local
magnetization):

F[m] is given by the static Ginzburg-Landau functional:

underlying field theory!



  

Generic example

Without quartic term:

τk is the momentum-dependent relaxation time of the
order parameter. For small k (long wavelength) it diverges like

Relaxation time goes to ∞ at TC: „Critical slowing down“:
The order parameter just can't calm down!



  

Generic example

Without quartic term:

τk is the momentum-dependent relaxation time of the
order parameter. For small k (long wavelength) it diverges like

Relaxation time goes to ∞ at TC: „Critical slowing down“:
The order parameter just can't calm down!

In general: z: dynamic critical exponent



  

How to explain critical slowing down?

Relaxation times are usually given by

„Conventional theory“ (1950's)

Transport coefficients remain finite ≠0 at the critical point.

Now we know:

Transport coefficients can go to 0 or ∞ at TC, but critical
slowing down still holds.

How does η behave for T  T→ C?



  

Dynamic universality classes

Hypothesis: There exist universality classes for the dynamic
behavior of physical systems near the critical point.

These depend on
 
● conservation laws,
 
● Poisson-bracket relations (commutators) between
  the order parameter and conserved quantities

● and the static universality class properties. (dimensionality,
  symmetry of the order parameter,...)

(Classification due to Hohenberg and Halperin)

dynamics



  

Dynamic universality classes

Model H: describes binary fluids at the consolute point, the 
gas-liquid critical point and the QCD critical point

Model H corresponds to z≈3.

Transport coefficients of model H diverge at the critical point:

We conclude: The minimal value of η/s in QGP cannot be located 
at the critical point.



  

η/s in QGP from lattice
simulations



  

Why computers?

Example: How to find the QCD critical point?

The QCD-Lagrangian is known, the partition function Z of QCD
is given by the path integral over the Lagrangian.

 → calculate Z

 → look for singularities, jumps, kinks, …

 → done.

But: Z is incredibly hard to get, since the path integral sums
over an infinite number of degrees of freedom and is 
therefore infinite dimensional.



  

Discretization of spacetime

One possible way out: Discretize spacetime

Continuum

(infinite number 
of points)

Lattice

(finite number
of points)

A typical number of lattice points could be 8 x (20)3.

The quantities on the lattice are still difficult to handle,
but can be calculated e.g. by using Monte Carlo methods.



  

Perturbative / Non-perturbative

Note: Perturbation theory (= expansion in coupling g) cannot
be applied near the critical point because of strong coupling.

Lattice calculations can be performed with every g and are
therefore non-perturbative.



  

Entropy density s

s in η/s is not a big deal!

1st law of thermodynamics:

There is a standard method to calculate ε+P on the lattice.
 
Entropy density s is known with an accuracy of 1%.

But E, S are extensive:



  

Shear viscosity η

In order to get η, we use the Kubo relations. They appear in 

Linear Response Theory.

Main idea of linear response theory:
 
Apply a small field to a system. The answer to this 
perturbation will be given in terms of the equilibrium 
properties of the system.

Many beautiful results (Fluctuation-Dissipation-Theorem,
Onsager reciprocity, Kubo relations,...) and applications!



  

Fluctuation-Dissipation-Theorem

Fluctuation-Dissipation-Theorem:

Fluctuations in thermal equilibrium are related
to linear response to small perturbations:

Correlation fcts. of fluctuations
without external field

Response to fields,
energy dissipation

Usually, one can simulate/measure one of them and gets
information about the other one.



  

η in QGP

Get retarded correlator Gret on the lattice 
and calculate η by a special case of the FDT:

a „Kubo relation“

energy momentum
tensor of gluon-field

ρ(ω) is called „spectral funtion“.



  

An ill-posed problem

Problem: Lattice calculations are done in euclidean time. We
obtain GE (instead of Gret) and ρ(ω) is given by

Inverting this integral transform is an ill-posed problem.



  

Results on η/s

Recent developments to overcome these difficulties:

● Improvements of maximum entropy method
● Different parametrizations of ρ(ω)
● Multi-level algorithms
● Non-zero spatial momentum: ρ(ω,k) instead of ρ(ω)
● Smoothness assumptions (also suggested by gauge/gravity
 duality for N=4 SUSY QCD)

H.B. Meyer, Phys. Rev. D 76, 101701 (2007):

η/s = 0.134(33) (T=1.65TC)
0.102(56) (T=1.24TC)
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