Dynamic critical phenomena & η/s in Quark Gluon Plasma

Igor Böttcher

Institute for Theoretical Physics, Heidelberg

Introduction

a relativistic heavy ion collision

colliding heavy ions Quark Gluon Plasma

hadronization, freeze-out

detection

Experimental observations on relativistic heavy ion collisions can be well described by small transport coefficients or even ideal hydrodynamics.

Quark Gluon Plasma is a strongly coupled, nearly perfect fluid in the regime $1 \le T/T_c \le 2!$

Theoretical challenge: Calculate transport coefficients for QGP from an underlying field theory

Introduction

Small values of η /s in QGP are reached **near** the critical point of confinement/deconfinement:

fluid	P [Pa]	T [K]	$\eta [\text{Pa·s}]$	$\eta/n \ [\hbar]$	$\eta/s \ [\hbar/k_B]$
H_2O	$0.1 \cdot 10^{6}$	370	$2.9\cdot 10^{-4}$	85	8.2
$^{4}\mathrm{He}$	$0.1 \cdot 10^{6}$	2.0	$1.2\cdot 10^{-6}$	0.5	1.9
H_2O	$22.6 \cdot 10^{6}$	650	$6.0\cdot10^{-5}$	32	2.0
${}^{4}\mathrm{He}$	$0.22 \cdot 10^{6}$	5.1	$1.7\cdot 10^{-6}$	1.7	0.7
⁶ Li $(a = \infty)$	$12 \cdot 10^{-9}$	$23 \cdot 10^{-6}$	$\leq 1.7\cdot 10^{-15}$	≤ 1	≤ 0.5
QGP	$88 \cdot 10^{33}$	$2 \cdot 10^{12}$	$\leq 5\cdot 10^{11}$		≤ 0.4

 $\frac{1}{4\pi} \approx 0.08$

Guess: The critical point corresponds to the minimal value.

This will turn out to be **wrong!**

Outline

- Dynamic properties of nearly perfect fluids
- Interlude: The QCD phase diagram
- Critical dynamics
- η /s in QGP from lattice simulations

Dynamic properties of nearly perfect fluids

Typical nonequilibrium situation

Consider a gas in a (sufficiently large) container with no applied external field:

temperature, density, average velocity of the particles **not constant** throughout the system

Equilibrium

transport of energy, mass, momentum

Microscopic view

Equilibration through interactions of the particles:

 λ , t_0 are the microscopic scales of the system

Non-uniformities in density or temperature of order λ will be washed out in the order of t_0 .

Variations over long distances ($\gg \lambda$) may persist for a long time ($\gg t_0$).

Hydrodynamic regime

In the hydrodynamic regime $\boldsymbol{\lambda}$ is much less than

- size of the container (trap, fireball,...)
- wavelength of density fluctuations

characteristic <u>macroscopic</u> <u>scales</u> of the system

Especially: temperature, entropy density are well-defined locally

Separation of scales

How to describe a system with different scales?

Hydrodynamic equations

(macroscopic point of view)

connection ?

Both are effective descriptions!

Stochastic Langevin equations

(microscopic point of view)

We will do it for a toy example: Brownian motion

A particle of large mass m is suspended in a fluid of much lighter particles. It gets kicked from all sides and will perform a random walk.

 t_0 , λ : time / walked distance between two kicks

Let x be the position of the particle and n(x,t) its probability distribution.

Rate equations (Master equation)

n(x,t) satisfies the **Diffusion equation**

$$\frac{\partial n}{\partial t}(x,t) = D\Delta n(x,t)$$

Diffusion: a damped process

The diffusion equation describes a damped process:

Consider mode of frequency ω :

$$n(x,t) \propto e^{i\omega t}$$
 e^{-Dk^2t}

Excitation gets damped:

Relaxation time is larger for smaller k (longer wavelength)

Compare this to a propagating sound mode:

 $\omega = vk$ $n(x,t) \propto e^{-ik(x-vt)}$

Diffusion in Hydrodynamics

Let n(x,t) be the density of a conserved quantity (e.g. particle number). Then the **continuity equation** is **exact**:

 $\frac{\partial n}{\partial t} + div(\vec{j}_n) = 0$ Diffusion constant (transport coeffic.)
But what is j? Derivative expansion: $\vec{j}_n = -D\nabla n + ...$

$$\frac{\partial n}{\partial t} = -div(\vec{j}_n) = Ddiv(\nabla n) = D\Delta n$$
 Diffusion equation

The damping term $\Delta n(x,t)$ is typical for hydrodynamic equations.

 $\frac{\mathrm{d}}{\mathrm{d}t} \left< |x|^2 \right>$

$$\frac{\mathrm{d}}{\mathrm{d}t}\left\langle |x|^2 \right\rangle = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} |x|^2 \, n(x,t) \mathrm{d}x$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\left\langle |x|^2 \right\rangle = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} |x|^2 \, n(x,t) \mathrm{d}x = \int_{\Omega} |x|^2 \, \frac{\partial n}{\partial t}(x,t) \mathrm{d}x$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle |x|^2 \right\rangle = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} |x|^2 n(x,t) \mathrm{d}x = \int_{\Omega} |x|^2 \frac{\partial n}{\partial t} (x,t) \mathrm{d}x$$
$$= \int_{\Omega} |x|^2 D\Delta n(x,t) \mathrm{d}x$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle |x|^2 \right\rangle = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} |x|^2 n(x,t) \mathrm{d}x = \int_{\Omega} |x|^2 \frac{\partial n}{\partial t}(x,t) \mathrm{d}x$$
$$= \int_{\Omega} |x|^2 D\Delta n(x,t) \mathrm{d}x = \int_{\Omega} (\underbrace{\Delta |x|^2}_2) Dn(x,t) \mathrm{d}x$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle |x|^2 \right\rangle = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} |x|^2 n(x,t) \mathrm{d}x = \int_{\Omega} |x|^2 \frac{\partial n}{\partial t}(x,t) \mathrm{d}x$$
$$= \int_{\Omega} |x|^2 D\Delta n(x,t) \mathrm{d}x = \int_{\Omega} (\underbrace{\Delta |x|^2}_2) Dn(x,t) \mathrm{d}x$$
$$= 2D \underbrace{\int_{\Omega} n(x,t) \mathrm{d}x}_{1} = 2D$$
$$\left[\left\langle |x|^2 \right\rangle = 2D \left| t \right| \right]$$

We got this without solving the diffusion equation explicitly!

Brownian motion: microscopic

Let x be the position of the heavy particle, v its velocity.

The stochastic force describes the light particles. We do **not** know the explicit form of $\xi(t)$. (Nor are we interested in.) We assume:

$$\langle \xi(t) \rangle = 0, \qquad \langle \xi(t)\xi(t') \rangle = g\delta(t-t')$$

Brownian motion: microscopic

Let x be the position of the heavy particle, v its velocity.

We are only interested in the evolution of a subset of the degrees of freedom of the system. The remaining degrees of freedom enter the description via stochastic forces.

Examples:

- Brownian motion
- Dynamics of the order parameter near the critical point

Brownian motion: microscopic

Solve the Langevin equations for x(t) and v(t):

$$v(t) = v_0 e^{-t/\tau} + e^{-t/\tau} \int_0^t dt' e^{t'/\tau} \xi(t')$$

This expression still contains g and ξ ! Fit g to equilibrium values:

$$\frac{m}{2} \left\langle v(t)^2 \right\rangle = \frac{g\tau}{2m^2} (1 - e^{-2t/\tau}) + v_0^2 e^{-2t/\tau} \longrightarrow \frac{m}{2} \frac{g\tau}{2m^2} \stackrel{!}{=} \frac{1}{2} k_B T$$
$$\left\langle x(t)^2 \right\rangle \longrightarrow \frac{g\tau^2}{m^2} t \stackrel{!}{=} 2Dt$$

Fit g in order to get the correct equilibrium limit.

Once we know how to choose g properly, we can use the Langevin equations to describe non-equilibrium processes. (fluctuations, equilibration)

Dynamic vs. static properties

Dynamic properties (in the hydrodynamic regime):

- transport coefficients (D, η , ζ , κ_{T})
- relaxation times
- multi-time correlation functions
- linear response to time-dependent perturbations

→ not simply described by single-time equilibrium distribution of the particles

Static properties:

- thermodynamic coefficients (C_v, compressibility,...)
- single-time correlation functions
- linear response to time-<u>in</u>dependent perturbations

1st, 2nd order and crossover

Depending on the behavior of the free energy along a phase transition line, one distinguishes:

1st, 2nd order and crossover

Depending on the behavior of the free energy along a phase transition line, one distinguishes:

Critical dynamics

Langevin eq. for order parameter

Hydrodynamic regime: time scales for the conserved quantities:

All other time scales are small compared to the long wavelength excitations of the conserved quantities.

At the critical point: Fluctuations of the order parameter become macroscopic ($\xi \rightarrow \infty$).

Order parameter has to be included into the hydrodynamic description.

Langevin equations for conserved quantities & order parameter. Everything else: stochastic forces

Generic example

No conserved quantities, order parameter m(x,t) (e.g. local magnetization):

$$\frac{\partial m}{\partial t}(\vec{x},t) = -\lambda \frac{\delta F}{\delta m(\vec{x},t)} + \xi(\vec{x},t)$$

F[m] is given by the **static** Ginzburg-Landau functional:

$$F[m] = \int d^3x \left\{ \frac{a}{2} (\nabla m)^2 + \frac{b}{2} (T - T_C) m^2 + \frac{c}{4} m^4 - mh \right\}$$

underlying field theory!

Generic example

Without quartic term:

$$\left\langle \widetilde{m}(\vec{k},t)\widetilde{m}(-\vec{k},0)\right\rangle \sim e^{-t/\tau_k}$$

 τ_k is the **momentum-dependent relaxation time** of the order parameter. For small k (long wavelength) it diverges like

$$au_0 \sim \xi^2$$

Relaxation time goes to ∞ at T_c: **"Critical slowing down**": The order parameter just can't calm down!

Generic example

Without quartic term:

$$\left\langle \widetilde{m}(\vec{k},t)\widetilde{m}(-\vec{k},0)\right\rangle \sim e^{-t/\tau_k}$$

 τ_k is the **momentum-dependent relaxation time** of the order parameter. For small k (long wavelength) it diverges like

$$au_0 \sim \xi^2$$

Relaxation time goes to ∞ at T_c: **"Critical slowing down**": The order parameter just can't calm down!

In general:

z: dynamic critical exponent

How to explain critical slowing down?

Relaxation times are usually given by

$$\frac{1}{\tau} = \frac{\text{transport coefficient}}{\text{susceptibility}} \to 0 \quad (T \to T_C)$$

"Conventional theory" (1950's)

Transport coefficients remain finite $\neq 0$ at the critical point.

Now we know:

Transport coefficients can go to 0 or ∞ at T_c, but critical slowing down still holds.

How does η behave for $T \rightarrow T_c$?

Dynamic universality classes

Hypothesis: There exist universality classes for the dynamic behavior of physical systems near the critical point.

These depend on

- conservation laws,
- Poisson-bracket relations (commutators) between the order parameter and conserved quantities

 and the static universality class properties. (dimensionality, symmetry of the order parameter,...)

(Classification due to Hohenberg and Halperin)

dynamics

Dynamic universality classes

Model H: describes binary fluids at the consolute point, the gas-liquid critical point and the QCD critical point

Model H corresponds to $z \approx 3$.

We conclude: The minimal value of η /s in QGP cannot be located at the critical point.

η/s in QGP from lattice simulations

Example: How to find the QCD critical point?

The QCD-Lagrangian is known, the partition function Z of QCD is given by the **path integral** over the Lagrangian.

- → calculate Z
- → look for singularities, jumps, kinks, ...
- → done.

But: Z is incredibly hard to get, since the path integral sums over an **infinite number of degrees of freedom** and is therefore infinite dimensional.

Discretization of spacetime

One possible way out: Discretize spacetime

A typical number of lattice points could be $8 \times (20)^3$.

The quantities on the lattice are still difficult to handle, but can be calculated e.g. by using Monte Carlo methods.

Perturbative / Non-perturbative

Note: Perturbation theory (= expansion in coupling g) cannot be applied near the critical point because of strong coupling.

Lattice calculations can be performed with every g and are therefore **non-perturbative**.

Entropy density s

s in η /s is not a big deal!

1st law of thermodynamics: $TdS = dE + PdV \Rightarrow T\frac{dS}{dV} = \frac{dE}{dV} + P$ But E, S are extensive:

There is a standard method to calculate ε +P on the lattice.

Entropy density s is known with an accuracy of 1%.

Shear viscosity η

In order to get η , we use the Kubo relations. They appear in

Linear Response Theory.

Main idea of linear response theory:

Apply a **small** field to a system. The answer to this perturbation will be given in terms of the **equilibrium properties** of the system.

Many beautiful results (Fluctuation-Dissipation-Theorem, Onsager reciprocity, Kubo relations,...) and applications!

Fluctuation-Dissipation-Theorem

Fluctuation-Dissipation-Theorem:

Fluctuations in thermal equilibrium are related to linear response to small perturbations:

Usually, one can simulate/measure one of them and gets information about the other one.

Get retarded correlator G_{ret} on the lattice and calculate η by a special case of the FDT:

$$\eta = \lim_{\omega \to 0} \frac{\rho(\omega)}{2\omega}$$
 a **"Kubo relation**"

$$G_{ret}(\vec{x},t) = -i\theta(t) \left\langle [T^{xy}(\vec{x},t), T^{xy}(\vec{0},0)] \right\rangle$$

$$\rho(\omega) = -2\mathrm{Im}\widetilde{G_{ret}}(\vec{k}=\vec{0},\omega) \qquad \text{energy n}$$

energy momentum tensor of gluon-field

 $\rho(\omega)$ is called "spectral function".

Problem: Lattice calculations are done in euclidean time. We obtain G_E (instead of G_{ret}) and $\rho(\omega)$ is given by

$$G_E(\tau) \stackrel{!}{=} \int \frac{\mathrm{d}\omega}{2\pi} \rho(\omega) \frac{\cosh[\omega(\tau - 1/(2T))]}{\sinh[\omega/(2T)]}$$

Inverting this integral transform is an **ill-posed problem**.

Results on η/s

Recent developments to overcome these difficulties:

- Improvements of maximum entropy method
- Different **parametrizations** of $\rho(\omega)$
- Multi-level algorithms
- Non-zero spatial momentum: $\rho(\omega,k)$ instead of $\rho(\omega)$
- Smoothness assumptions (also suggested by gauge/gravity duality for N=4 SUSY QCD)

H.B. Meyer, Phys. Rev. D 76, 101701 (2007):

$$\frac{1}{4\pi}\approx 0.08$$

$$\eta/s = \begin{cases} 0.134(33) \ (T=1.65T_c) \\ 0.102(56) \ (T=1.24T_c) \end{cases}$$