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What is Hydrodynamics?

Describes the evolution of physical systems (classical or quantum
particles, fluids or fields) close to thermal equilibrium.



Foundations of statistical physics

@ Ergodic hypothesis: Time averages are equal to ensemble
averages
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A= lim / dt A =TrpA = (A).
T—o0 0
@ The microcanonical ensemble depends on the conserved
quantities of the system, e.g.

p= Q(lE)(S(H - E).

@ Subsystems that can exchange energy or energy and particles
with some larger system are described by the canonical or
grand-canonical ensemble
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FEquilibration

@ Time scale for equilibration is the relaxation time 7.

@ 7 is typically short when interactions between particles or
modes of a field are large.

@ For large systems one may have different relaxation times:
Subsystems approach equilibrium quite fast, while
equilibration for the whole systems needs more time.

@ Local equilibrium is described by a distribution with
T =T(Z,t), n = pu(Z,t), etc.
@ Collective motion is described by fluid velocity v = ¥(Z, t).



Hydrodynamical variables

@ velocity v = ¥(Z, 1),

@ mass density p = p(Z,1),

@ pressure P = P(Z,t).
For relativistic system the velocity gets replaced by the
four-velocity u# and the mass density by the inner energy e.

In principle one can replace the thermodynamic variables p and P
by some other independent pair such as p and 7.



Conservation laws
Conservation of energy and momentum

8, T = 0,
THY — € je . energy density energy flux density
N g II/  \momentum density momentum flux density

or in components

0 - .
¢ + Vje =0 (energy conservation),

—gi + V;Il;; =0 (momentum conservation).
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Conservation of mass density current j* = (p, j)

. 0 =
O =0 or ap—i—Vj =0.



Constituive equations

To use the conservation laws one has to express the conserved
currents in terms of the hydrodynamical variables,

T“V:Tuy(ﬁ,p,P,ﬁ-ﬁ’ﬁXﬁ,ﬁp,...),

@ The form of this is constraint by space-time symmetries
(Rotation and Galilean or Lorentz boosts).

@ The basis idea of hydrodynamics is to expand the above
equations in terms of derivatives of the thermodynamic
variables. The lowest order of this expansion gives ideal
hydrodynamics, the higher orders dissipative corrections.



Non-relativistic ideal fluid 1

@ Lowest order is fixed by Rotation invariance, Galilean
invariance and conservation of entropy

€=€0+%m72, je =U(e+ P),
g=pv, 1 = Pdj+ pvjvy,
J" = (p, pv).
€o is the energy density in the fluid rest frame.
@ Conservation laws for energy, momentum and mass density
give five equations for the six variables

177p7P7€0~

@ To close this one needs as an input from thermodynamics the
equation of state, e.g. in the form

€) = Eo(p, P)



Non-relativistic ideal fluid 2

The expressions for T and J* plugged into the conservation laws
give the hydrodynamic equations. For example, the conservation of
momentum density leads to

This is the Euler equation.



Non-relativistic viscous fluid

At the next level of the hydrodynamic derivative expansion some
terms of the energy-momentum tensor get modified.

@ momentum flux density or stress tensor

IL;; = P(Sij + pviv; + (5Hij
20 = =
6Hij = —U(Vﬂ}j + Vjvi — gémv . ’U) — C(SZ](V’U)

@ energy flux density

(je)i = vi(e + P) + (5Hij)vj — kV;T.

Here, 7 is the shear viscosity, ( is the bulk viscosity, x is the
thermal conductivity.



Transport coefficients

@ Similar to the equation of state, the functions

n=mnlp,P), ¢=({(p,P), k=r(p,P),

have to be determined from the underlying microscopic
theory. Alternatively, one can fix them from experiments.

@ The second law of thermodynamics implies

TI?C?'K/ZO'



Navier-Stokes equation

Including the viscous correction to II;; in the conservation law for
the momentum density, one arrives at the Navier-Stokes equation

o L= s - N e
p{at+(v-V)v}——VP+77AU+<C+3)V(V-U).

@ For incompressible fluids where V -7 =0 the last term
vanishes and the bulk viscosity ¢ drops out.

@ The Navier-Stokes equation is not easy to solve since it is a
non-linear equation for the velocity field @'

@ Example: Oscillating wall in an incompressible fluid.



Shear viscosity

@ The shear viscosity 17 can have very different values for
different fluids.

@ The ratio /s with entropy density s has units i/kp and
might be constraint by a universal lower bound.

@ 7)/s becomes small when interaction / fluctuation effects are

large.
Fluid P (Pa) T (K) n (Pas) n/n (h)y n/s (/kg)
H,O  (boiling point) 0.1x10° 370 29 %107 85 8.2
4He  (lambda transition) 0.1 x 10° 2.0 1.2 x 10-° 0.5 1.9
H,O  (iicritcal point) 2.6x 108 650 60107 32 2.0
“He  (tricritical point) 022 x 10 5.1 1.7 x 107 1.7 0.7
SLi(a = 00) 12x107° 23x10° <17x10°5 <1 <05

QGP 88 % 108 2x 10" <5 10" <04




Superfluid hydrodynamics 1

Hydrodynamic equations for superfluids were de-
rived by Lev D. Landau.

@ Divide fluid into normal and superfluid part

P = Pn+ps

with velocities ¥,, and 7.

@ Superfluid velocity is gradient of the phase of the macroscopic
wave function

1= .
Us=—V, V xt,=0.
m

@ Entropy is carried only by the normal part of the fluid. For
ideal hydrodynamics it is conserved.



Normal and superfluid density

@ Superfluid density and condensate density are not the same.
@ At zero temperature p = pg, pn = 0.
@ At the phase transition p = p,,, ps = 0.
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Theoretical results for Bose gas with different interaction strength
(S. Floerchinger and C. Wetterich, PRA 79, 063602 (2009)).



Superfluid hydrodynamaics 2

@ Hydrodynamic equations are again derived from conservation
of energy, momentum und particle number. As an additional
equation one has

=2

0y = (U3 B
e +V<2 +u>—0.

@ Besides the equation of state one needs also the ratio ps/p as
function of thermodynamic variables from the microscopic
theory.

@ Dissipative superfluid hydrodynamics includes additional
viscosity coefficients (o, (3 besides the usual shear viscosity 7
and bulk viscosity (.



Two wvelocities of sound

@ An interesting feature of superfluid hydrodynamics is that
sound propagation has two modes with different velocities.

@ One mode corresponds to the usual pressure / density wave.

@ The other is an oscillation of the superfluid and normal
density against each other.
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Theoretical results for Bose gas with different interaction strength
(S. Floerchinger and C. Wetterich, PRA 79, 063602 (2009)).



Relativistic hydrodynamics 1

@ For ideal relativistic fluid the energy-momentum tensor is
(g = dlag(lv _L _17 _1))

™ = (e + P)utu” — Pg""”

@ In the fluid rest-frame one has u* = (1,0,0,0) and therefore

T =

oo oo
o oy o
o go o
o o o

@ Conservation laws for currents read 8MJ“ = 0 but sometimes
the currents simply vanish (as in QCD at p = 0).



Relativistic hydrodynamics 2

@ The derivation of ideal hydrodynamic equations is similar to
the non-relativistic case.
@ Dissipative relativistic hydrodynamics has some subtleties:

o Fluid velocity u* is not completely unique. Landau frame
corresponds to T% = 0 in the rest frame, Eckart frame to
ut ~ JH,

@ First order dissipative hydrodynamics has causality problems.
Numerical solutions get unstable. These problems can be
cured by going to second order.

@ Numerical simulations of relativistic ideal and dissipative

hydrodynamics are used in astrophysics or to describe heavy
ion experiments.



