The QGP at RHIC

EMMI seminar:

Quark-Gluon Plasma and Cold Atoms
19-July-2010

Klaus Reygers

Physikalisches Institut
Universität Heidelberg

RHIC: Relativistic Heavy Ion Collider

- Operational since 2000
- Active experiments:
- PHENIX
- STAR
- Maximum energy in the nucleon-nucleon center-of-mass system
- 200 GeV for Au+Au
- 500 GeV for $\mathrm{p}+\mathrm{p}$
- Systems studied so far
- $p+p$
- d+Au
- $\mathrm{Cu}+\mathrm{Cu}, \mathrm{Au}+\mathrm{Au}$

Ultra-Relativistic Heavy-Ion Collision

time

Au+Au Collision at RHIC

Evidence for Collective Behavior (I): Radial Flow

- For low momenta ($p_{T}<2 \mathrm{GeV} / \mathrm{c}$) spectra roughly follow Boltzmann distributions with a characteristic temperature close to the QCD critical temperature
- In heavy-ion collisions the apparent temperatures for heavy particles are larger than for light particles
- Explanation: collective transverse expansion velocity V_{T}
$p_{T}^{\mathrm{w} / \mathrm{boost}} \sim p_{T}^{\mathrm{w} / \mathrm{o} \text { boost }}+m v_{T}$

- Apparent (blue shifted) temperature

$$
\frac{1}{m_{T}} \frac{d N}{d m_{T}} \sim \exp \left(-\frac{m_{T}}{T_{\text {eff }}}\right), \quad T_{e f f} \simeq T \sqrt{\frac{1+v_{T}}{1-v_{T}}}
$$

- At RHIC v_{\top} reaches $0.6 \cdot c$ at freezeout

5 The QGP at RHIC

Evidence for Collective Behavior (II): Elliptic Flow

- Impact parameter vector and beam axis define the reaction plane
- Orientation of the reaction plane can be measured event-by-event
- Particle yields as a function of the angle ϕ w.r.t. the reaction plane:

$$
\left.E \frac{d N}{d^{3} p}\right|_{p_{z}=0}=N_{0}\left(p_{T}\right) \cdot\left[1+2 v_{2}\left(p_{T}\right) \cos (2 \phi)+2 v_{4} \cos (4 \phi)+\ldots\right]
$$

- For a typical mid-central collision at RHIC ($b \approx 6 \mathrm{fm}$): $\mathrm{v}_{2} \approx 6 \%$
- Interpretation: Hydrodynamic evolution converts initial pressure gradients to velocity gradients in the final state

Elliptic Flow at RHIC

Plot from
Braun-Munzinger, Stachel, Nature 448:302-309,2007

- Measured v_{2} in good agreement with ideal hydro
- Hydro predicts mass ordering: $v_{2} \sim \frac{1}{T}\left(p_{T}-v m_{T}\right), \quad v=$ average transv. flow velocity
- Indeed observed!
- "Perfect liquid" created at RHIC

Recap of Ideal Relativistic Hydrodynamics

- Energy/momentum density and flux in a fluid cell described by energy momentum tensor T^{kv}
- Ideal fluid: $T^{\mu v}=(\varepsilon+P) u^{\mu} u^{v}-g^{\mu v} P$
- Conservation of energy and momentum: $\partial_{\mu} T^{\mu \nu}=0$
- Baryon current is conserved: $\partial_{\mu} j_{B}^{\mu}=0$ where $j_{B}^{\mu}=n_{B} u^{\mu}, u^{\mu}=4$-velocity
- Conservation of energy, momentum, and baryon number give five independent equations for the six thermodynamic variables

$$
\varepsilon(x), P(x), n_{B}(x), \vec{v}(x)
$$

- Hence an equation of state is needed to close the system: $P(\varepsilon, \ldots)$

Bjorken Model (I)

- Bjorken provided a simple model for the space-time evolution of a heavy-ion collision
- Nuclei pass through each other and create a longitudinally expanding fireball
- The number of produced particles is independent of the rapidity y
- The evolution in proper time is the same for all comoving observers:

$$
\varepsilon=\varepsilon(\tau), P=P(\tau), T=T(\tau)
$$

$$
y=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right)=\tanh ^{-1} \beta_{z}, \beta_{z}=p_{z} / E
$$

Bjorken Model (II)

- Flow velocity profile in the Bjorken model („Hubble form"):

$$
u_{\mu}=\gamma\left(1,0,0, v_{z}\right)=(t / \tau, 0,0, z / \tau), \gamma=\text { boost factor, } \tau=\sqrt{t^{2}-z^{2}}=\text { proper time }
$$

- This velocity field solves the relativistic Euler equation
- Entropy conservation leads to $\frac{d}{d \tau}[\tau s(\tau)]=0$
- For an ideal relativistic gas $s^{\sim} T^{3}, \varepsilon \sim T^{4}$ leads to

$$
\begin{aligned}
& \mathrm{O} \\
& \Delta \tau_{Q G P}=\tau_{0}\left[\left(\frac{T_{0}}{T_{c}}\right)^{3}-1\right]
\end{aligned}
$$

- Typical parameters at RHIC: $\tau_{0}=(0.6-1.6) \mathrm{fm} / c, T_{0}=(300-425) \mathrm{MeV}$
- Note that $T_{0}>T_{\mathrm{c}} \approx 160 \mathrm{MeV}$: (Indirect) evidence for QGP formation
- The combination $\tau_{0} T_{0}^{3}$ is constrained by the final multiplicity, but τ_{0} and T_{0} are not well constrained

Visualization of the Bjorken Space-Time Evolution

- Different phases separated by lines of constant proper time т

Modeling of the Freeze-Out in Hydro Models

- Hydro models usually impose a sudden transition from a thermalized fluid to freestreaming particles
- Freeze-out typically happens on a hypersurface of constant temperature or energy density
- Distribution function f at the transition from hydro to kinetic theory parameterized by the local temperature T and flow velocity u

$$
f(\boldsymbol{x}, \boldsymbol{p}, t)=\sum_{i} \frac{d_{i}}{\exp (p \cdot u / T) \pm 1}
$$

- Observed particle spectra given by

$$
\left(E \frac{d N}{d^{3} p}\right)_{i}=\frac{1}{(2 \pi)^{3}} \int d \Sigma_{\mu} p^{\mu} f_{i}(\boldsymbol{x}, \boldsymbol{p}, t)
$$

Improvements of the Simple Bjorken Model (I):

Transverse Expansion

- Transverse expansion becomes important at a proper time $\tau_{0} \sim R / c_{s}$
- A very late times the expansion becomes three dimensional:

$$
s(\tau) \sim \frac{1}{\tau^{3}}, T(\tau) \sim \frac{1}{\tau}
$$

- Transverse expansion is caused by transverse pressure gradients
- Initial energy density (or entropy density) profile often taken from Glauber calculations:

$$
s(x, y, b) \sim \frac{d N_{\text {part }}}{d x d y}
$$

- Other models (e.g., the color glass condensate model [CGC]) predict different initial profiles

Improvements of the Simple Bjorken Model (II): Viscous Corrections

Shear viscosity increases transverse flow velocities (however, effect on v_{2} is small)

with viscous corrections (for bulk viscosity $\zeta=0$):

shear viscosity increases shear viscosity decreases transverse pressure:
longitudinal pressure:

- Shear viscosity decreases longitudinal pressure and increases transverse flow
- This leads to a suppression of v_{2}
- In the model of Teaney and Dusling (discussed in the review) they find that viscous v_{2} suppression is dominated by non-equilibrium corrections to the local thermal distribution function at freeze-out

Effects of Viscosity on Elliptic Flow (I)

- Viscous effects reduce v_{2}
- This opens the possibility to extract η / s of the QGP
- Measure v_{2}
- Compare to viscous hydro calculation
- However, the constraints on η / s are sensitive to the initial transverse profile of the energy density ($v_{2} \propto$ initial eccentricity)
- The Color glass condensate model produces higher transverse pressure gradients and thus allows for up to a factor 2 larger values of η / s
- Moreover, v_{2} also sensitive to
- variations of the EOS near T_{c}
- bulk viscosity (often neglected)
- late hadronic viscosity

Effects of Viscosity on Elliptic Flow (II)

Luzum, Romatschke,
Phys.Rev.C78:034915,2008
ecc. from Glauber:
$\Rightarrow 0<\eta / s<0.1$
ecc. from CGC:
$\Rightarrow 0.08<\eta / s<0.2$
conservative estimate for the QGP (taking into account e.g. effects of EOS variations, bulk viscosity, ...):

$$
\eta / s<5 \times\left.\frac{\eta}{s}\right|_{\mathrm{KSS}}=5 \times \frac{1}{4 \pi}
$$

Three Interesting Facts about Elliptic Flow: 1. Breakdown of Ideal Hydro (I)

- Hydro description for Au+Au at RHIC only works in central collisions and for $p_{T}<1.5 \mathrm{GeV} / c$

Three Interesting Facts about Elliptic Flow: 1. Breakdown of Ideal Hydro (II)

- Hydro limit only reached at RHIC energies
- How will this plot look at LHC energies ?

Three Interesting Facts about Elliptic Flow:
 2. Scaling with the Number of Constituent Quarks

- Scaling of v_{2} with n_{q} suggests that the flowing medium at some point consists of constituent quarks
- Is there a transition from massless u and d quarks to constituent quarks $\left(m_{u} \approx m_{d} \approx 300 \mathrm{MeV}\right)$?

Three Interesting Facts about Elliptic Flow:
 3. Heavy Quarks Take Part in the Flow

- Current masses: $m_{\mathrm{u}} \approx m_{\mathrm{d}} \approx 4 \mathrm{MeV}, m_{\mathrm{c}} \approx 1270 \mathrm{MeV}, m_{\mathrm{b}} \approx 4200 \mathrm{MeV}$
- Even though $m_{\text {heavy, quark }}>200 \cdot m_{\text {light,quark }}$ heavy and light quarks exhibit a similar flow strength

Points to Take Home

- QGP at RHIC is close to an ideal fluid (close to KSS bound)
- Elliptic flow coefficient v_{2} sensitive to viscosity of the QGP (viscosity reduces v_{2})
- Largest systematic uncertainty in the extraction of η / s is the unknown initial eccentricity ($\varepsilon_{c G c}>\varepsilon_{\text {Glauber }}$)
- Current upper limit:

$$
\eta / s<5 \times\left.\frac{\eta}{s}\right|_{\mathrm{KSS}}=5 \times \frac{1}{4 \pi}
$$

Useful References

- Thomas Schäfer, Derek Teaney, Nearly Perfect Fluidity: From Cold Atomic Gases to Hot Quark Gluon Plasmas, Rept.Prog.Phys.72:126001,2009
- Jean-Yves Ollitrault, Relativistic hydrodynamics for heavy-ion collisions, Eur.J.Phys. 29:275-302,2008
- Huichao Song, Ulrich W. Heinz, Extracting the QGP viscosity from RHIC data - A Status report from viscous hydrodynamics, J.Phys.G36:064033,2009
- Paul Sorensen, Elliptic Flow: A Study of Space-Momentum Correlations In Relativistic Nuclear Collisions, arXiv:0905.0174 [nucl-ex]

