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RHIC: Relativistic Heavy lon Collider

—

RHIC at Brookhaven National Laboratory, USA

= Operational since 2000

L=
L]

= Active experiments:

» PHENIX
» STAR

= Maximum energy in the nucleon-nucleon
center-of-mass system
» 200 GeV for Au+Au
» 500 GeV for p+p

= Systems studied so far

> ptp
» d+Au
» Cu+Cu, Au+Au
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Ultra-Relativistic Heavy-lon Collision

Highly Lorentz- Early hard Thermalized
Contracted Nuclei  Parton-parton medium (QGP!?) Transition Freeze-out
scatterings (T,>T,, QGP — hadron gas (after ~3-5x 1023 s)

Lorentz y ~ 100
( VTI00)  (@essnne) T = 160-190 Mev)

= |nitial state is far from equilibrium

= Applicability of hydrodynamics is not clear a priori
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Au+Au Collision at RHIC

About 7000 particles are
produced per

central Au+Au collision at
\/SNN =200 GeV

Main observables:
spectra dN/d3p of produced
particles
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Evidence for Collective Behavior (l): Radial Flow

= For low momenta (pt < 2 GeV/c) spectra
roughly follow Boltzmann distributions
with a characteristic temperature close to
the QCD critical temperature

= |n heavy-ion collisions the apparent
temperatures for heavy particles are
larger than for light particles

= Explanation: collective transverse

expansion velocity vr "\ | /
w/ boost w/0 boost
Pr ~ Pr T myy J‘y_! Va | \

= Apparent (blue shifted) temperature

’nT
~exp| ——L |, T, =T
p( T ] eff

eff

1 dN

m, dm,

1+v,
l—v,

# At RHIC vy reaches 0.6:-c at freezeout
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dN/2rp, dpdp, [Gc\"'3]

dN/2mp, dp dp, [GeV™]

Plots from Ollitrault,

Eur. J.Phys. 29 (2008), 275
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Evidence for Collective Behavior (ll): Elliptic Flow

1 )

¥

= Impact parameter vector and beam axis define the reaction plane
= Orientation of the reaction plane can be measured event-by-event

= Particle yields as a function of the angle ¢ w.r.t. the reaction plane:

dN

3

y = N,(p;)-[1+2v,(p,)cos(2¢) + 2v, cos(4¢) +...|
p

p.=0

E

= For a typical mid-central collision at RHIC (b = 6 fm): v, = 6%

= |nterpretation: Hydrodynamic evolution converts initial pressure gradients
to velocity gradients in the final state
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Elliptic Flow at RHIC

Plot from
Braun-Munzinger, Stachel,
Nature 448:302-309,2007
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= Measured v; in good agreement with ideal hydro
= Hydro predicts mass ordering: v, ~ %(pT —-vm,),

= [Indeed observed!

= “Perfect liquid” created at RHIC
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v = average transv. flow velocity
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Recap of Ideal Relativistic Hydrodynamics

8

Energy/momentum density and flux in a fluid cell described by energy
momentum tensor ™

Ideal fluid: T"" =(e+ Pu"u" —g""'P
Conservation of energy and momentum: d,T*" =0
Baryon current is conserved: d, j, =0 where j; =nu”, u* = 4-velocity

Conservation of energy, momentum, and baryon number give five independent
equations for the six thermodynamic variables

€(x),P(x),ny(x),v(x)

Hence an equation of state is needed to close the system: P(g, ...
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Bjorken Model (I)

J.D. Bjorken, Phys. Rev. D27, 140 (1983)

= Bjorken provided a simple model for the
space-time evolution of a heavy-ion collision

= Nuclei pass through each other and create a
longitudinally expanding fireball

. dN/dy
. . before the
= The number of produced particles is collision
independent of the rapidity y ﬂ A
>
= The evolution in proper time is the same for y
all comoving observers: 4 dN/dy
after the .
collision - produced particles

E=&(1),P=P(1), T =T(7)

>

y

1 E+p »
=—In l=tanh™ B, B.=p. /E
y=7 [E_pj B.. B.=p.
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Bjorken Model (Il)

= Flow velocity profile in the Bjorken model (,,Hubble form®):

U, = v(1,0,0,v.)=(¢/7,0,0,z/71), ¥y = boost factor, T = N proper time

= This velocity field solves the relativistic Euler equation

= Entropy conservation leads to i[fs(r)] =0

drt
= For an ideal relativisticgas s ~ T3, € ~ T* leads to QGP lifetime
—4/3 ~1/3 / B 3 '
E(T)=¢ L T(t)=T L AT, ., =T L —1
0 7, ’ 0 7, ’ OGP 0 Tc

= Typical parameters at RHIC: 7, =(0.6-1.6)fm/c, T, = (300 —425)MeV
= Note that To > T. = 160 MeV: (Indirect) evidence for QGP formation

= The combination 7,7, is constrained by the final multiplicity, but 7, and T, are not
well constrained
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Visualization of the Bjorken Space-Time Evolution
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= Different phases separated by lines of constant proper time 1
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Modeling of the Freeze-Out in Hydro Models

= Hydro models usually impose a sudden transition from a thermalized fluid to free-
streaming particles

= Freeze-out typically happens on a hypersurface of constant temperature or
energy density

= Distribution function f at the transition from hydro to kinetic theory
parameterized by the local temperature T and flow velocity u

di
Jx.p.1)= Z‘ exp(p-u/T)xl1

= Observed particle spectra given by

daN |} 1 )
(ECPP J,- - @ry szﬂp Ji(x,pt)
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Improvements of the Simple Bjorken Model (l):

Transverse Expansion

= Transverse expansion becomes important at a
proper time 1, ~ R/c,

= A very late times the expansion becomes three

dimensional:

s(T) ~ i T(t)~ l
T

3’

= Transverse expansion is caused by transverse
pressure gradients

= |nitial energy density (or entropy density)
profile often taken from Glauber calculations:

part

dx dy

s(x,y,b) ~

= Other models (e.g., the color glass condensate
model [CGC]) predict different initial profiles
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eccentricity ¢

Example of a Glauber Monte Carlo event:
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Improvements of the Simple Bjorken Model (ll):
Viscous Corrections

§
( )
g 0 8 8 with viscous
p corrections
ideal hydro: T"" = T" =
Y 00 p O (for bulk
viscosity { = 0):
000 p
Shear viscosity increases transverse flow shear viscosity increases shear viscsity decreases
velocities (however, effect on v, is small) transverse pressure: longitudinal pressure:
1 T T
Vi (n/s=0.2) . . . .
y =~ — = Shear viscosity decreases longitudinal pressure
= & and increases transverse flow
0.6 =9
. = = This leads to a suppression of v
55 LT = In the model of Teaney and Dusling (discussed in
, P - the review) they find that viscous v, suppression is
dominated by non-equilibrium corrections to the
0.2 R — —— . .
o 1 2 3R(fm)4 b & ¥ local thermal distribution function at freeze-out
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http://www.slac.stanford.edu/spires/find/hep/www?eprint=nucl-th/0305084
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Effects of Viscosity on Elliptic Flow (l)

= Viscous effects reduce v,

= This opens the possibility to extract n/s of the QGP
» Measure v;

» Compare to viscous hydro calculation

= However, the constraints on n/s are sensitive to the initial transverse profile of
the energy density (v, o< initial eccentricity)

» The Color glass condensate model produces higher transverse pressure gradients and thus
allows for up to a factor 2 larger values of n/s

= Moreover, v, also sensitive to

» variations of the EOS near T.
» bulk viscosity (often neglected)

» late hadronic viscosity
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Effects of Viscosity on Elliptic Flow (ll)

Glauber Clasbec Luzum, Romatschke,
- B i ——— Phys.Rev.C78:034915,2008
! O STAR non-flow corrected (est.)
0.1F =  PHOBOS 7 [ | ® STAR event-plane
008} ecc. from Glauber:
0,06} g = 0<n/s<0.1
3 3 § ) 16
0.04 =
. ecc. from CGC:
0.02F ¥
= 008<n/s<0.2
0
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CGC CGC ]
, , : : 2 : B for the QGP (taking
al f o STARevapiame |- into account e.g.
20 e
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Three Interesting Facts about Elliptic Flow:
1. Breakdown of Ideal Hydro (l)
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= Hydro description for Au+Au at RHIC only works in central collisions
and for pr< 1.5 GeV/c
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Three Interesting Facts about Elliptic Flow:
1. Breakdown of Ideal Hydro (Il)
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= Hydro limit only reached at RHIC energies

= How will this plot look at LHC energies ?
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Three Interesting Facts about Elliptic Flow:
2. Scaling with the Number of Constituent Quarks
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\ nq=2 for mesons,
nq=3 for baryons

= Scaling of v, with nq suggests that the flowing medium at some point
consists of constituent quarks

KE, =kin. energy in the transverse direction = m, —m,

= |s there a transition from massless u and d quarks to constituent quarks
(my= mq =300 MeV)?
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Three Interesting Facts about Elliptic Flow:
3. Heavy Quarks Take Part in the Flow

_measured

Example for a semi-leptonic heavy quark decay: D°(cut) — K (su) e Vv,

HF 02 L L L L L L DL L | | R

Voo Tk . .
B O T RAA :
G s n%v, p_>2GeVic
B '} e ctR,, etviF =
0.1 [ AA 2 -
0.05— ; —
B =18t --- A

) #
— \ ) 3 [ i s \ \ o il \ 3
0 1 2 4 5 6 7 8 9

P, [GeVic]

= Current masses: my=mq=4 MeV, mc=1270 MeV, mp= 4200 MeV

= Even though Mhneavy, quark > 200 - Myight quark heavy and light quarks exhibit
a similar flow strength
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Points to Take Home

= QGP at RHIC is close to an ideal fluid (close to KSS bound)
= Elliptic flow coefficient v, sensitive to viscosity of the QGP (viscosity reduces v3)

= Largest systematic uncertainty in the extraction of n/s is the unknown initial
eccentricity (€cec > €clauber)

= Current upper limit:

1
17/s<5><ﬂ =5X—

S |xss 471
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