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Recap: Hydrodynamics of 
nearly perfect fluids

Hydrodynamics: correlation functions at low energy and small 
momentum are governed by evolution of conserved charges

Hydrodynamics can be derived as an expansion of derivatives of the 
fluid velocity and thermodynamic variables

 The leading order theory “ideal hydrodynamics” only depends on EoS 
and is exactly time reversible

The next order theory “viscous hydrodynamics” involves transport 
coefficients, and describes dissipative, time irreversible phenomena
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Non-relativistic hydrodynamic equations  

• Ideal:

• dissipative:

j� = v(�+ P )

g = ρv

Πij = P δij + ρvivj

j�i = vi(�+ P ) + vjδΠij +Qi

g = ρv

Πij = P δij + ρvivj + δΠij

where

δΠij = −η(∇ivj −∇jvi −
2

3
δij∇ · v)− ζδij(∇ · v)

Q = −κ∇T

Friday 11 June 2010



Determination of Transport Coefficients

The transport coefficients can be extracted from experiment, or 
estimated from an underlying field theory

“Linear Response Theory” connects transport coefficients and 
correlation functions in a field theory=> Kubo formulae

If interaction not weak, calculations based on Kubo formulae  difficult 
=> “Kinetic Theory” used to relate microscopic quasiparticles to 
hydrodynamics

If interaction between quasiparticles is strong, Kinetic theory breaks 
down => “Holographic Method” used to extract transport properties 
from strongly coupled field theory
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Representative Fluids

Superfluid Helium : strongly coupled Bose fluid

atomic Fermi gas near Feshbach resonance : strongly 
coupled Fermi liquid

QGP : strongly coupled plasma

cold relativistic quark matter at very high baryonic 
densities in the CFL Phase 

The phases of matter are quite different, but 
approximately scale invariant and their properties do 
not depend on detailed form the of the interaction
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shear viscosity η

bulk viscosity  ζ

thermal conductivity  κ

diffusion  D

Transport Coefficients

Friday 11 June 2010



Bulk Viscosityζ

Bulk viscosity measures the energy dissipated as a fluid undergoes expansion or 
compression

When a fluid is uniformly compressed, it is perturbed from equilibrium. The energy 
density rises, but pressure temporarily rises by more than what is predicted by EoS. 
Under uniform rarefaction, pressure temporarily falls further than is predicted by 
EoS. Bulk viscosity quantifies this extra shift in the pressure.

Bulk viscosity will be non-zero whenever the trace of the stress energy tensor can 
differ from the equilibrium pressure. The inability to maintain equilibrium is 
assumed to derive from rapidly changing densities i.e. ∇. v ≠ 0

(P - P’) = - ζ (∇. v )
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Bulk Viscosity and Conformal Invariance

In a conformal theory, even if the fluid is perturbed from equilibrium, the 
pressure still does not deviate from the value given by the EoS (P = E/3). This 
follows from the tracelessness of the stress-energy tensor in a conformal 
theory 

Uniform compression or rarefaction is the same as a dilatation 
transformation. 

In a conformal theory, a dilatation transformation is a symmetry, so the 
fluid will not leave equilibrium. Thus, in a non-interacting conformally 
invariant system in the normal phase, bulk viscosity vanishes

When interaction is turned on, conformal symmetry could be broken to give 
finite bulk viscosity

Bulk viscosity is proportional to the relaxation time, and to the deviations 
from breaking of conformal invariance in the EoS. 
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Relativistic hydrodynamics  

• Ideal:     

• dissipative: 

∂µT
µν = 0

Tµν = (�+ P )uµuν + Pηµν

ηµν = diag(−1,1,1,1)

P = P (�)

In the local rest frame: T00 = � , T0i = 0.

Tµν = Tµν
0 + δ(1)Tµν + δ(2)Tµν..

δ(1)Tµν = −ησµν − ζδµν∂ · u

where σµν = ∆µα∆νβ(∂αuβ+∂βuα−2
3ηαβ∂ ·u)

jµ = nuµ + δjµ

with

δ(1)jµ = −κ
�

nT

�+ P

�2
∆µ

�
µ

T

�
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Kinetic Theory: Boltzmann transport equation

Viscous hydrodynamics based on assumption of short mfp: invalid at low densities, when the 
particle can traverse a significant fraction of reaction volume

At low densities, the system can be treated as a hadronic gas undergoing binary collisions and 
Boltzmann treatments are justified

For a Boltzmann description, one needs a phase space density f(p,x), which can be expanded about 
a local equilibrium as   

where the Bose distribution is 

The departure from equilibrium is determined by the Boltzmann equation 

For bulk viscosity, the departure from equilibrium is because of isotropic compression or 
rarefaction ∇⋅ vp ≡ Xp

At linearized order, the departure from equilibrium 

f0p (x) =
1

(eβ(x)vµ(x)p
µ − 1)

fp(x) = f0p (x) + δfp(x)

δfp(x) = −f0p (x)[1 + f0p (x)]Xp(x)

Tµν = gπ

� d3p

(2π)3
fp(x)

Ep
pµpν

Tµν = T0
µν + δTµν

T0
µν = (�+ P )vµvν − Pgµν

f0p (x) =
1

(eβ(x)vµ(x)p
µ − 1)

fp(x) = f0p (x) + δfp(x)

δfp(x) = −f0p (x)[1 + f0p (x)]Xp(x)

Tµν = gπ

� d3p

(2π)3
fp(x)

Ep
pµpν

Tµν = T0
µν + δTµν, T

0
µν = (�+ P )vµvν − Pgµν

δTij = −η(∇ivj +∇jvi −
2

3
δij∇ · v)− ζδij∇ · v

∂f

∂t
+ vp ·∇xf = −C[f ]f0p (x) =
1

(eβ(x)vµ(x)p
µ − 1)

fp(x) = f0p (x) + δfp(x)

δfp(x) = −f0p (x)[1 + f0p (x)]Xp(x)

Tµν = gπ

� d3p

(2π)3
fp(x)

Ep
pµpν

Tµν = T0
µν + δTµν, T

0
µν = (�+ P )vµvν − Pgµν

δTij = −η(∇ivj +∇jvi −
2

3
δij∇ · v)− ζδij∇ · v
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In kinetic theory, the energy momentum tensor in                                                                                 
a weakly interacting system is

Deviation from thermal equilibrium 

 The shear and bulk viscosities are defined by small deviation away from equilibrium:

For non-interacting systems, conformal symmetry requires δT00 =0 => ζ =0.  

When interactions are turned on and conformal symmetry is broken, Tµν equation has to be 
modified to include effect of the interaction to give non-vanishing ζ result            

f0p (x) =
1

(eβ(x)vµ(x)p
µ − 1)

fp(x) = f0p (x) + δfp(x)

δfp(x) = −f0p (x)[1 + f0p (x)]Xp(x)

Tµν = gπ

� d3p

(2π)3
fp(x)

Ep
pµpν

Tµν = T0
µν + δTµν, T

0
µν = (�+ P )vµvν − Pgµν

δTij = −η(∇ivj +∇jvi −
2

3
δij∇ · v)− ζδij∇ · v

f0p (x) =
1

(eβ(x)vµ(x)p
µ − 1)

fp(x) = f0p (x) + δfp(x)

δfp(x) = −f0p (x)[1 + f0p (x)]Xp(x)

Tµν = gπ

� d3p

(2π)3
fp(x)

Ep
pµpν

Tµν = T0
µν + δTµν, T

0
µν = (�+ P )vµvν − Pgµν

δTij = −η(∇ivj +∇jvi −
2

3
δij∇ · v)− ζδij∇ · v
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Bulk viscosity of high temperature QGP
In a relativistic system, using dimensional arguments, both shear and bulk 
viscosity must scale as η,ζ ∝ T3

the parametric behaviour of shear viscosity in QCD is 

In a nearly conformal theory, ζ vanishes as 2nd power of breaking of conformal 
invariance: one power because departure from equilibrium is small, another because 
any departure from equilibrium has a small impact on pressure

For massless QCD, conformal symmetry is broken by β (αs) ~ αs 
2

Bulk viscosity 

η ∼
T3

α2
s log[1/αs]

ζ ∼
T3

α2
s log[1/αs]

× (α2
s)

2 ∼
α2
sT

3

log[1/αs]η ∼
T3

α2
s log[1/αs]

ζ ∼
T3

α2
s log[1/αs]

× (α2
s)

2 ∼
α2
sT

3

log[1/αs]

FIG. 3: Shear versus bulk viscosity: η/s and ζ/s (s the entropy density) as a function of αs, for
Nf=3 QCD, neglecting quark masses. Bulk viscosity ζ has been rescaled by a factor of 1000.

FIG. 4: The ratio ζ/α4
sη for Nf=3 QCD, neglecting quark masses. The dashed line shows the crude

estimate of (4.1) with (3.32). As αs → 0 (and leading-log approximations to the leading-order result
become applicable), the ratio approaches the limit ζ/α4

sη → 0.973.

fall in the density and the equation of state. The bulk viscosity quantifies the time integral
of this extra shift in the pressure (per e-folding of expansion).

The change in pressure occurs because the fluid leaves equilibrium. The time scale for
weakly coupled QCD to relax towards equilibrium is set by the rate Γ ∼ α2

sT log[1/α] for
a typical particle (p ∼ T ) to randomize its momentum p. The faster the fluid equilibrates,
the nearer to equilibrium it remains, so the smaller the shift in the pressure; therefore the
viscosity should be proportional to ε/Γ ∼ T 3/α2

s log[1/α]. This naive estimate turns out to
be parametrically correct for shear viscosity.

However, it is wrong for bulk viscosity. The reason is that QCD (at high temperatures and

5
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Bulk viscosity of Pion Gas at low T

In hadronic phase, dominant configuration of QCD with 2 flavors of massless quarks is a gas 
of massless pions

In QCD with heavy quarks integrated out and light quark masses set to zero, conformal 
symmetry is broken in the quantum level. In the perturbative region of QCD, up to log 
corrections, 

ζ is smaller than η in the perturbative regime 

 When temperature is reduced, η/s reaches minimum near TC , while ζ/s rises sharply near TC . 

ζ/s ∝ α−2
s

�1
3
− v2s

�
∝ α2

s

while η/s ∝ α−2
s
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Bulk viscosity of Pion Gas at low T
Bulk viscosity of massless pions can be obtained by solving the linearized Boltzmann equation. 
The Boltzmann equation describes the evolution of isospin averaged pion distribution function   
f(x,p,t) = fp(x):

   ⇒ ζ ∝ T7/f π4   [Chen and Wang 2007]

For free pion gas,  s = 2π2 g πT3/45

pµ

Ep
∂µfp(x) =

gπ
2

�
dΓf1f2(1 + f3)(1 + fp)− (1 + f1)(1 + f2)f3fp

where Ep =
�
p2 +m2

π, gπ = 3,

dΓ = |τ |2
2Ep

Π d3�ki
(2π3)(2Ei)

(2π)4δ4(k1 + k2− k3− p)

T/T
C

!"s

FIG. 1: (Color online) ζ/s shown as a function of T/Tc. The solid line below Tc is the massless

pion gas result (Tc ! 200 MeV and l = 2.5, explained below Eq.(20), are used). The error on

this curve is estimated to be 30%-40%. The points are the lattice results for gluon plasma [33].

The solid and dashed lines above Tc give the central values and the error band from the QGP

sum rule result of Ref. [32].

points are the lattice results for gluon plasma [33]. The QGP curves above Tc (the solid

line gives the central values and the dashed lines give the estimated errors) are based on

an exact sum rule, a lattice result for the equation of state, and a spectral function ansatz

with massive quarks [32]. Since the light quark mass dependence in the QGP curve is

expected to be small, Fig. 1 shows that, in the chiral limit, QCD ζ/s reaches its maximum

while η/s reaches its minimum around Tc as mentioned above. The same ζ/s behavior is

also seen in molecular-dynamics simulations of Lennard-Jones model fluids [40].

A recent massive pion gas calculation shows that ζ has two peaks [43], one is near

10 MeV and the other is near Tc. They are corresponding to breaking of the conformal

symmetry by the pion mass and the anomaly, respectively. The behavior near the higher

temperature peak is similar to what we have found here for the massless pion case. It is

also similar to the ζ behavior of [44] near Tc with Hagedorn states included. The behavior

near the lower temperature peak is similar to earlier results of [45, 46]. The massless pion

calculation of [43] also conforms our qualitative behavior of ζ .

11
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Superfluidity

Superfluidity is a property of quantum fluids related with existence of 
low energy excitations that satisfies the Landau criterion for 
superfluidity : 

Superfluidity is due to appearance of a quantum condensate which 
spontaneously breaks a global symmetry of the system associated with 
conserved particle number ⇒ phonon

superfluidity discovered in 4He below 2.17K is due to the B-E 
condensation of the bosonic atoms in the lowest quantum state

Cooper Theorem ⇒ Fermionic superfluidity in quantum degenerate 

systems at low temperature when interaction between neutral fermions 
is attractive

Min �(p)/p �= 0
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Superfluid hydrodynamics  
• Ideal:

• dissipative: 

j� = ρsTvn + (µ+
1

2
v2s )(ρnvn + ρsvs)

+ ρnvn(vn − vs)

g = ρnvn + ρsvs

Πij = P δij + ρnvn,ivn,j + ρsvs,ivs,j

δΠij = −η(∇ivn,j +∇jvn,i −
2

3
δij∇ · vn)

− δij(ζ1∇ · (ρs(vs − vn)) + ζ2(∇ · vn))
δj�i = vn,jδΠij + ρs(vs,i − vn,i)H +Qi

where

H = −ζ3∇ · (ρs(vs − vn))− ζ4∇ · vn
Qi = −κ∇iT
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Transport Coefficients in Superfluids

According to fluid mechanics, a normal gas (or Fermi gas above 
critical temperature) has 3 kinetic coefficients: shear viscosity, bulk 
viscosity and thermal conductivity

Below critical temperature, Fermi gas is in the superfluid phase, and the 
number of kinetic coefficients is 5: shear viscosity, thermal 
conductivity, and 3 bulk viscosities
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Bulk Viscosity in superfluids

In a superfluid at non-zero temperature (using Two-fluid description of Landau), there are 2 
independent motions, one normal and the other superfluid. The transport properties depend on 
shear viscosity, three independent bulk viscosities and thermal conductivity

Dissipative processes lead to positive entropy production ⇒ 

ζ2 plays the role of standard bulk viscosity coefficient, ζ1 and ζ3 provide a coupling between 
hydrodynamic equations of the 2 components

In a conformally invariant system in the superfluid phase, it has been shown [Son 2007] that 

two of the three bulk viscosities vanish: ζ1=ζ2= 0. 

In low temperature regime T <<TC , transport properties of superfluids are determined by 
phonons:                      (saturated) and there are only 2 independent bulk viscosities

κ, η, ζ2, ζ3 > 0 and ζ21 ≤ ζ2ζ3

ζ21 = ζ2ζ3
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 Unitary Fermi Gases

In experiments with trapped cold atomic gases, by varying magnetic-field controlled interaction, 
fermionic pairing is observed to undergo BEC to BCS crossover

In weak coupling BCS region, the system is characterized by formation of Cooper pairs. In strong 
coupling limit, the system can be described by BEC dilute gas. 

The unitarity limit is reached when the magnetic field is tuned at the Feshbach resonance, where 
the two-body scattering length diverges. Far from unitarity, properties are well understood using 
Mean Field Theory, but not reliable close to unitarity (scattering length >> inter-particle 
distance), no small parameter in Lagrangian to expand in

Close to unitary region, understanding of phases comes from MC simulations

Different method: At sufficiently low temperature T<<TC , only active DOF are phonons, 
assuming contribution of other DOF are thermally suppressed
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Kinetic Theory of superfluid phonons

The dispersion law of phonons is given by    

Various thermodynamic quantities (entropy density, phonon number) can be computed starting 
from phonon distribution function n.

Kinetic equation for evolution of out-of-equilibrium phonon distribution function     
(Boltzmann transport eqn):  

At equilibrium phonons obey Bose-Einstein distribution : 

and the collision term vanishes. 

 For small departures from equilibrium, the collision term can be linearized on the deviation     
δn = n - neq . The transport coefficients can be obtained by solving the kinetic equation

Various numerical approaches (variational methods, orthonormal polynomials etc). Approx 
expression using RTA (relaxation time approximation):   δ C = - δ n/ τrel

RTA -> correct parametric dependence, but inaccurate numerical factors

�p = csp+Bp3 +O(p5)

∂n
∂t+

∂n
∂r ·

∂H
∂p −

∂n
∂p ·

∂H
∂r = C[n] where H = �p+�p·�vs

neq(�p) =
1

e�p/T − 1
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Effective Field Theory

The properties of the phonons can be extracted from the Effective Field Theory

The Effective phonon Lagrangian Leff can be determined from the pressure using EoS, by 
demanding general coordinate invariance and conformal invariance

From Leff the phonon dispersion law is obtained, and the self couplings (cs , B) depend on some 
universal and dimensionless constants

Transport coefficients can be determined from Leff considering appropriate phonon scattering 
process

It was shown that Fermi gas at unitarity is exactly conformal, and bulk viscosity vanishes in 

normal phase: ζ1=ζ2= 0, while ζ3 ≠ 0  [Escobedo, Mannarelli, Manuel 2009] 

Close to unitarity, scale invariance is broken ⇒ additional terms in Leff ⇒ the phonon dispersion 
law and self-couplings are modified ⇒ first non-vanishing corrections to bulk viscosity

Comparison with Bose superfluids showed that T dependence for bulk viscosity in these two 
superfluids is the same
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In exact conformal limit:  

P = c0m
4
µ
5/2
0

where c0 = 25/2

15π2ξ3/2
, µ0 = ξEF

m

L = LLO + LNLO

= c0m
3/2

X
5/2 + c1m

1/2(∇X)2√
X

+
c2√
m

(∇2φ)2
√
X

where X = mµ0 − ∂0φ− (∇φ)2
2m

�p = cs

�

p− π2
�
2ξ(c1 +

3

2
c2)

p3

k2
F

�

Close to conformal limit:  

B = −π2cs
�
2ξ(c1 +

3

2
c2)

1

k2F

P = P0 + PCB

= c0m
4
µ
5/2
0 +

d0m
3µ20
a

L = LLO + LNLO + LCB

= c0m
3/2

X
5/2 + c1m

1/2(∇X)2√
X

+
c2√
m

(∇2φ)2
√
X

+ d0
mX2

a
+ ..

P = P0 + PCB

= c0m
4
µ
5/2
0 +

d0m
3µ20
a

L = LLO + LNLO + LCB

= c0m
3/2

X
5/2 + c1m

1/2(∇X)2√
X

+
c2√
m

(∇2φ)2
√
X

+ d0
mX2

a
+ ..

Defining y = d0π
2ξ3/2

am
√
2µ0

cs,B = cs(1 +
y

2
)

BCB = −
π2ξ3/2
√
3µ0m2

�
c1(1−

3y

2
) +

3

2
c2(1−

5y

2
)
�

ζ1 = ζ2 = 0

ζ3 � 3695.4
�

ξ
µ0

�9/4 (c1+
3
2c2)

2

m8 T3

ζ1 � −264.7c2(c1 + 3
2c2)ξ

3 T3

m4µ30
y

ζ2 � 19c22
ξ3/2T3

µ
3/2
0

y2

ζ3 � 3695.4
�

ξ
µ0

�9/4 (c1+
3
2c2)

2

m8 T3(1−66c1+135c2
8c1+12c2

y)

ζ1 = ζ2 = 0

ζ3 � 3695.4
�

ξ
µ0

�9/4 (c1+
3
2c2)

2

m8 T3

ζ1 � −264.7c2(c1 + 3
2c2)ξ

3 T3

m4µ30
y

ζ2 � 19c22
ξ3/2T3

µ
3/2
0

y2

ζ3 � 3695.4
�

ξ
µ0

�9/4 (c1+
3
2c2)

2

m8 T3(1−66c1+135c2
8c1+12c2

y)

⇒ ⇒ 
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Experimental detection of transport coefficients: Unitary Fermi gas

1. Damping of radial breathing modes depends on bulk and shear viscosity. Sinceζ2	
 
vanishes, bulk viscosity enters only in the presence of a difference in velocity between 
the normal and superfluid components, and is in general negligible. To determineζ3	
 , 
one should produce oscillations where the normal and superfluid component oscillate 
out of phase  

2. Transport coefficients also enter into the damping rate for propagation of first and 
second sound in a superfluid. The damping of first sound, α1 ,depends on shear 
viscosity and onζ2	
 , while the damping of second sound, α2	
  , depends on all 
dissipative coefficients
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Relativistic superfluid hydrodynamics  

• Ideal:     

• dissipative:     

∂µT
µν = 0

Tµν = (�+ P )uµuν + Pηµν

ηµν = diag(−1,1,1,1)

P = P (�)

∂µn
µ = 0

∂µs
µ = 0

Ψµ = ∂µφ

T ij
d = −ζδij∇ · v

∂µn
µ = 0

∂µs
µ = 0

Ψµ = ∂µφ

T ij
d = −ζδij∇ · v
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Bulk viscosity of cold relativistic quark matter
Relativistic superfluid matter in Neutron stars: high baryonic density and 
low temperature 

 Deconfined quark matter: preferred phase in presence of three light quark 
flavors is CFL

In CFL, baryon symmetry is spontaneously broken, and CFL quark matter 
becomes a superfluid as in B-E condensates

In the regime where T is smaller than all energy gaps of quasi-particles 
(mesons, quarks, gluons), transport coefficients in CFL are dominated by 
collisions of superfluid phonons ⇒ EFT for superfluid phonons can be 
applied.

Besides phonons, kaons may contribute to the transport coefficients
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Bulk viscosity of cold relativistic quark matter
Using EFT, dispersion law of phonons can be obtained: 

At v high chemical potentials, mq << µ : CFL is approx scale invariant, leads 
to vanishing bulk viscosity:

 Scale breaking effects due to a non vanishing value of strange quark mass 
included in Leff. After identifying the leading collisional process relevant for 
bulk viscosity, Boltzmann equation is written down for the phonon, and 
linearized in small deviations around equilibrium. The collision term is 
explicitly written down and bulk viscosity coefficients are numerically 
computed.

cs =
�

1
3 and B = − 11cs

540∆2

ζ1 = ζ2 = 0

ζ3 ∼
1

T

µ6

∆8

cs =
�

1
3 and B = − 11cs

540∆2

ζ1 = ζ2 = 0

ζ3 ∼
1

T

µ6

∆8
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Astrophysical detection of transport coefficients: Compact stars

 Relativistic superfluid phases: If superfluidity occurs in the interior of compact 
stars, there should be possible signatures:  

• Glitches:  sudden spin-up of pulsars, relies on existence of superfluid 
component in the interior of the neutron star, rotating faster than the solid 
crust

• Evolution of r-mode oscillations in compact stars: non-radial oscillations of the 
star with Coriolis force as the restoring force. When dissipative phenomena 
damp these r-modes, the star can rotate without losing angular momentum to 
gravitational waves. It is necessary to consider in detail all the dissipative 
processes and to compute corresponding transport coefficients
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Thermal Conductivity κwith Kinetic Theory
The form of dissipative terms in relativistic hydrodynamics depend on the definition of rest frame 
of the fluid. In Landau frame (energy three-flux vanishes), heat conduction does not enter as 
energy flux T0i, but  in the rest frame of the fluid as baryon current 

Eckart frame: baryon three-current vanishes. Boost velocity vE = v/n to go from Landau frame.

In Eckart frame:  

Boltzmann equation:  pµ∂µfa = Ca(f) describes evolution of phase space densities fa(x,p).                  
Ca(f) =0 for equilibrium distributions f0 of B-E or F-D forms. Close to equilibrium fH = f0 + δf.

In terms of δf, dissipative corrections are 

For heat conduction, we are interested in δT0i and δji : 

In the local rest frame: T00 = � , T0i = 0.

Tµν = Tµν
0 + δ(1)Tµν + δ(2)Tµν..

δ(1)Tµν = −ησµν − ζδµν∂ · u

where σµν = ∆µα∆νβ(∂αuβ+∂βuα−2
3ηαβ∂ ·u)

jµ = nuµ + δjµ

with

δ(1)jµ = −κ
�

nT

�+ P

�2
∆µ

�
µ

T

�

T0i
E = −(�+ P )viE = −κ

�
nT2

ε+P

�
∂i

�
µ
T

�

δTµν =
� d3p

(2π)3
pµpν

p0
δf

δjµ =
� d3p

(2π)3
pµ

p0
δf

T0i
E = −

�+ P

n
δji + δT0i

δTµν =
� d3p

(2π)3
pµpν

p0
δf

δjµ =
� d3p

(2π)3
pµ

p0
δf

T0i
E = −

�+ P

n
δji + δT0i
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Thermal conductivity in superfluids
Distribution function of elementary excitations satisfies the kinetic equation :

At equilibrium: 

 For small departures from equilibrium, distribution function :  n = n0 + n1 where n0 << n1 .        
The problem is “linearized” ⇒ The transport coefficients can be obtained by solving the kinetic 
equation

Inserting n into LHS of kinetic equation: terms containing second viscosity in the superfluid, 
term with temperature gradient ∇T associated with heat conduction and a term related to first 
viscosity

∂n
∂t+

∂n
∂r ·

∂H
∂p −

∂n
∂p ·

∂H
∂r = C[n] where H = �p+�p·�vs

neq(�p) =
1

e�p/T − 1
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Thermal Conductivity : Results

In superfluids:  thermal transport takes place along the normal component by convection, where 
the superfluid moves relative to the normal fluid. The entropy and heat are carried by the 
normal component. The convective distribution is controlled  by shear viscosity of the normal 
fluid. Thermal conductivity of the normal fluid is dominated by roton and phonon scattering

in normal fluids:  At high temperatures, diffusive process, determined by scattering of atoms. 
At large T (similar to shear viscosity): 

in unitary Fermi gas: Thermal conductivity from phonons of unitary gas  → not yet 
determined

In QGP: In the limit µ>>T:  

In the limit T>> µ :

κ ∼ Ts with s = 1
2 + 2

ν−1

κ ∼
µ2

α2
s

κ ∼
T4

α2
sµ

2

κ ∼
µ2

α2
s

κ ∼
T4

α2
sµ

2
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Diffusion D
Due to multiparticle interactions, particles do not move along 
streamlines but instead exhibit fluctuating motions as they 
tumble around each other, leading to a net migration of particles 
down gradients in particle concentration 

If fluid is composed of quasi-particles, then diffusion of 
impurities and shear viscosity are closely linked, as both are 
related to momentum diffusion. They have same dependence on 
coupling constants, and similar temperature dependence up to 
kinematic factors

If the number density of impurity particles is conserved, it 
satisfies the continuity equation  

For smoothly varying number density, 

∂n

∂t
+∇ · j = 0

j = −D∇n

∂n

∂t
= D∇2n
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Diffusion : Results

In Superfluids: phonon scattering off 3He is the dominant mechanism.                                        
The mobility µ of 3He quasi-particles in superfluid 4He can be estimated from the theory of 
elastic scattering:   µ∝ T8

Einstein relation  D =µ kB T ⇒ D ∝ T -7

in normal fluids: scattering between atoms: D ∝ T(1+s)                                                              

    The T dependence is identical to that of shear viscosity

in unitary Fermi gas: calculation involves quasi-particle scattering amplitudes. The system is 
considered as ideal gas of majority(up) atoms mixed with minority(down) atoms, whose 
elementary excitations are quasi-particles with effective mass m*↓. The momentum relaxation 
time can be estimated from thermodynamic arguments. Not related to viscosity. 

in QGP:  dominated by heavy quark scattering on light quarks and gluons   qQ→ qQ and 
gQ → gQ . As in case of shear viscosity, most important Feynman diagrams involve t-channel 
gluon exchanges. D has same parametric dependence on the coupling as shear viscosity

κ ∼ Ts with s = 1
2 + 2

ν−1
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Thank you!
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