Hydrodynamics of Ultracold Gases

Seminar Quark-Gluon Plasma and Cold Atomic Physics

27.04.2009

Tobias Schuster Group Markus Oberthaler

Outline of the Talk

- What are we able to do with Ultracold Quantum Gases? (experimental issues including traps, analysis of images)
- Hydrodynamic behaviour in expanding thermal clouds
- Collective Modes & Hydrodynamics: BEC regime and thermal clouds
- Outlook

<u>Common types of traps used in</u> <u>ultracold atom experiments</u>

Magnetic: trap atoms in *B*-field minimum

Optical: Trap atoms in intensity maximum of red detuned light field (AC Stark shift) \rightarrow allow for easy use of Feshbach resonances to change scattering length *a*

Trap geometry determines trap frequencies \rightarrow Possibility of dynamical modification and hence excitation of collective modes etc.

http://www.mpq.mpg.de/qdynamics/projects/bec/BECtrap.html

<u>Cold \rightarrow Ultracold atoms</u>

Ultracold temperatures commonly reached by evaporative cooling: Remove hottest atoms

- Magnetic traps: Use radiofrequency / microwave
- Optical dipole traps: lower trap depth

http://cold-atoms.physics.lsa.umich.edu/ projects/bec/evaporation.html

Different types of ramps allow to adjust most important parameters, e.g. $N_{atoms} \rightarrow T > T_{C/F}, T < T_{C/F}$ possible

 \rightarrow Important for testing theories in various parameter regimes

Image analysis

- Most commonly absorption imaging to image the atoms used \rightarrow Get 2 dimensional density profile of atom cloud Can extract important quantities (typical values for BECs):
- Temperature (100nK ... 1µK)
- Total atom number (up to $\sim 10^8$ in condensate)
- Chemical potential (100nK ... 1µK) / peak density (10¹⁴cm⁻³... 10¹⁵ cm⁻³)
- Condensate atom number / fraction (adjustable from 0 to 1) Can even derive e.g. correlation functions

Foelling *et al.*, Nature 434, 481 (2005)

<u>Hydrodynamic behaviour in</u> expanding thermal clouds of ⁸⁷Rb

Shvarchuck et al., PRA 68, 063603 (2003)

Pure BEC in trap (Thomas-Fermi limit E_{kin} << E_{int}): Interaction driven inversion of aspect ratio in TOF. Thermal gas without interactions (collisionless): Isotropic Expansion

Parameters of the experiment: http://cua.mit.edu/ketterle_group/Projects_1996/Ballistic_ collision rate $\tau_c^{-1} = 6000$ 1/s, cigar-shaped trap with $\omega_{\rho} = 2\pi^*477$ Hz , $\omega_z = 2\pi^*20.8$ Hz \rightarrow Knudsen criterion for hydrodynamic behaviour $\frac{\lambda_0}{l_i} \approx \omega_i \tau_c \ll 1$

well satisfied in z direction, in p direction crossover regime.

<u>Hydrodynamic behaviour in</u> expanding thermal clouds of ⁸⁷Rb

Shvarchuck et al., PRA 68, 063603 (2003)

Knudsen criterion: Consider classical particles Expect cooling to happen in z direction (only particles with v||z can scatter), thus heating in ρ direction (collisionless) Theoretical description using two-stage-model: 1st stage hydrodynamic (here heating/cooling occurs), 2nd collisionless Experiment: T₀ =1.17µK, T_z=0.83µK, T₀ =1.35µK

Collective Modes and Hydrodynamics

Collective mode = (low-lying) excitation of condensate Experimentally relevant: BEC in trap (axially symmetric) \rightarrow Write collective modes in terms of spherical harmonics How can we excite them?

 \rightarrow Change appropriate trap parameters

Simple example: Dipole mode I=1 What can we learn from the dipole mode?

 \rightarrow Determine trap frequencies ω_i with high accuracy

But no interaction effects due to pure c.o.m. motion.

 \rightarrow Same for BEC/thermal cloud

→ More complicated modes necessary to study physics, e.g. hydrodynamics!

10 milliseconds per frame

http://cua.mit.edu/ketterle_group/Projects_1998/Coll_exc /Collective_excitations.htm

<u>Collective excitations of a trapped</u> <u>Bose-Condensed Gas</u>

S. Stringari, PRL 77, 2360 (1996)

Starting from the Gross-Pitaevskii equation,

 $i\hbar \frac{\partial}{\partial t} \Phi(\mathbf{r},t) = \left(-\frac{\hbar^2 \nabla^2}{2m} + V_{\text{ext}}(\mathbf{r}) + \frac{4\pi \hbar^2 a}{m} |\Phi(\mathbf{r},t)|^2 \right) \Phi(\mathbf{r},t)$

one can derive the hydrodynamic equations

$$\frac{\partial}{\partial t}\rho + \nabla(\mathbf{v}\rho) = 0 \qquad m\frac{\partial}{\partial t}\mathbf{v} + \nabla\left(\delta\mu + \frac{1}{2}m\mathbf{v}^2\right) = 0$$

with $\rho(\mathbf{r}, t) = |\Phi(\mathbf{r}, t)|^2 \qquad \delta\mu = V_{\text{ext}} + \frac{4\pi\hbar^2a}{m}\rho - \frac{\hbar^2}{2m\sqrt{\rho}}\nabla^2\sqrt{\rho} - \mu$

 $\mathbf{v}(\mathbf{r},t) = [\Phi^*(\mathbf{r},t)\nabla\Phi(\mathbf{r},t) - \nabla\Phi^*(\mathbf{r},t)\Phi(\mathbf{r},t)]/2mi\rho(\mathbf{r},t).$

For an axially symmetric trap and strong interactions

$$\omega^2(m = \pm \ell) = \ell \omega_\perp^2 \qquad \lambda = \omega_z / \omega_\perp$$
$$\omega^2(m = 0) = \omega_\perp^2 \left(2 + \frac{3}{2}\lambda^2 \mp \frac{1}{2}\sqrt{9\lambda^4 - 16\lambda^2 + 16}\right)$$

Experimental Observation

D.S.Jin *et al.*, PRL **77**,420 (1996) ; M.-O.Mewes *et al.*, PRL **77**, 988 (1996)

- a) low-lying m=0 quadrupole mode In TOP-Trap (λ^2 =8) ω = 1.797 ω_0
- Cigar-shaped trap $\omega = (5/2)^{(1/2)} \omega_{z}$
- b) fast m=0 quadrupole mode Cigar-shaped trap $\omega = 2^* \omega_{\alpha}$

c) |m|=2 quadrupole mode $\omega = 2^{(1/2)}\omega$

All predicted frequencies experimentally verified (e.g. a) as shown on the right)!

http://cua.mit.edu/ketterle_group/Theses/thesis _DMSK.pdf

5 milliseconds per frame http://cua.mit.edu/ketterle_group/Projects_1998/Coll_exc /Collective_excitations.htm

More advanced collective oscillations

D.Stamper-Kurn et al., PRL 81, 500 (1998)

So far: Only T=0 physics. What happens at finite T?

- thermal cloud appears
- change in frequency
- finite damping

→ Does thermal cloud show hydrodynamic behaviour? Further theoretical and experimental analysis needed!

<u>Hydrodynamic Modes in a Trapped Bose</u> <u>Gas above the Bose-Einstein Transition</u>

A. Griffin *et al.*, PRL **78** (1997), 1838; G.M.Kavoulakis *et al.*, PRA **57**, 2938 (1998)

Hydrodynamic treatment of collective modes in thermal gas: Modes with |m|=I, |m|=I-1have same frequency as in BEC regime

To find differences, have to compare frequencies of low-lying quadrupole mode: For a cigar shaped trap,

- $\omega = (5/2)^{(1/2)} \omega_{j}$ in BEC regime
- $\omega = (12/5)^{(1/2)} \omega_{J}$ for thermal hydrodynamic gas

Calculation of damping done with ansatz given in Landau Lifshitz $\int \kappa dv_{k} = \frac{1}{2} \int \frac{1}{2} e^{-\frac{1}{2}} dv_{k} = \frac{1}{2} e^{-\frac{1}{2}} e^{-\frac{1$

$$\dot{E}_{\text{mech}} = -\int \frac{\kappa}{T} |\nabla T|^2 d\mathbf{r} - \int \zeta (\nabla \cdot \mathbf{v})^2 d\mathbf{r} - \int \frac{\eta}{2} \left(\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} - \frac{2}{3} \delta_{i,k} \nabla \cdot \mathbf{v} \right)^2 d\mathbf{r}$$

1 0

Bulk viscosity ζ vanishes, no temperature gradients \rightarrow damping only due to shear viscosity η

<u>Collective Oscillations of a classical</u> <u>gas confined in harmonic traps</u>

D. Guery-Odelin et al., PRA 60, 4851(1999)

So far only purely hydrodynamic regime; damping rates turn out not to describe experimental data correctly \rightarrow use Boltzmann equation to describe frequencies and damping in collisionless as well as hydrodynamic regime With Gaussian ansatz for the distribution function f(**r**,**v**,t) get the following result for frequency and damping (solid line: Gaussian ansatz, points: numerical simulation)

<u>Shape oscillations in nondegenerate Bose</u> <u>gases: Transition from the collisionless to</u> <u>the hydrodynamic regime</u>

Ch. Buggle et al., PRA 72, 043610 (2005)

Make experiment in cigar-shaped trap with varying densities (achieved by laser depletion followed by plain evaporation)

$$\omega^{2} = \omega_{cl}^{2} + \frac{\omega_{hd}^{2} - \omega_{cl}^{2}}{1 - i\omega\tilde{\tau}}$$

Conclusion and Outlook

- Introduction to traps and image analysis for ultracold quantum gases
- Hydrodynamic behaviour in expanding thermal clouds of $^{87}\text{Rb} \rightarrow \text{Aspect ratio}$ as indicator
- Collective modes and hydrodynamics:
 - BEC regime
 - Thermal clouds: Transition from collisionless to hydrodynamic regime well described by Boltzmann equation
- No comprehensive experimental study of damping of collective modes of condensate at finite temperature
- Collective oscillations of Fermi Gases (BEC-BCS crossover) → Precision measurements done in group of R. Grimm (e.g. PRL 98, 040401 (2007))