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•  Particle physics  Standard model … 
•  Nuclear physics  Quark-gluon transition 

    Nuclear liquid-gas transition … 
•  Atomic physics  Bose-Einstein 

    Laser 
•  Condensed matter  Glass transition 

    Surfaces 
    Biophysics … 

•  Environmental physics Condensation 
    Aggregation 
    Percolation … 

•  Astrophysics, Cosmology  → next page 

Phase transitions in Heidelberg physics dep't.: 

1. Introduction 
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History of the universe 

of the vacuum: 

Transition  Temperature  Time 
Planck  1019eV  ~0s   
GUT’s  ?   ?   
Inflation  ?   ? 
Electro-weak  100GeV  10−12s 

      
of matter, i.e. freeze out of: 

Quark-gluon plasma to nucleons 100GeV?  10−12s ?   
Nucleons to nuclei  1MeV  1s   
Atoms  10eV   105a 
Galaxies  3K   today 

= Succession of phase transitions  
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Topics not treated 
other phase transitions: 

 Bose-Einstein condensates 
 Superfluidity   

  Quantum phase transitions 
 Aggregates 
 Fragmentation   
 Percolation 
 Liquid crystals 
 Isolator-metal transitions 
 Topological defects 
 Traffic jams 
 … 

other 'critical phenomena' (non-linear physics) 
 Route to chaos 
 Turbulence 
 Self organized criticality (forest fires, avalanches, …) 
 … 
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2. Phenomenology: control parameter 
Phase transition = sudden change of the state of a system  

  upon variation of an external control-parameter: 
  which reaches 'critical value'. 

Here:   control-parameter is temperature 
  (it can also be pressure, atomic composition,  
  connectivity, traffic density, public mood, taxation rate, …): 

example: magnet 
  TC = critical temperature: 

  above TC: paramagnet   PM 
  below TC: ferromagnet  FM 
   

here:   TC = Curie temperature 
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critical phenomena 

Why are phase transistions so sudden? 

example: liquid 

 below TC: liquid   L 
 above TC: gas       G 

Example of boiling water: 
 bond between 2 molecules breaks due to thermal fluctuation 
 increased probability that 2nd bond breaks, too: chain reaction 

below TC: broken bond heals, before 2nd bond breaks – water in boiler is noisy 
above TC: broken bond does not heal, before 2nd bond breaks – water boils: 

A 'run-away' or 'critical' phenomenon: L → G 
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order parameter 

At TC the probe acquires a new property,  
the order-parameter M: 

    above TC: M=0. 
    below TC: M≠0, 

here = magnetisation M 

N.B.:  Disorder:  high symmetry:  S 
      ↓              ↓            U 
  Order:   low symmetry:   
S' 

↑TC 

FM       PM 

PM: rotational 
        symmetry 
            U 
FM: cylindrical  
        symmetry 
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critical exponent 

Observation: 

At T <≈ TC the order M parameter depends 
on temperature T like: 

  below TC:  M(T ) = M0 (1−T/TC)β   

with   critical exponent β 

Examples:  M(T ) ~√TC−T  : 

  critical exponent β = ½  

  M(T )~3rd√TC−T  :  

  critical exponent β = ⅓  

1-dimensional magnet: 
"bifurcation" 

Mz 

FM       PM 
T 

TC 
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reduced temperature 

With reduced temperature   

  t = (TC−T)/TC 

and   m = M/M0: 

the order parameter scales with temperature 

like   m = tβ, 

or   ln m = β ln t 

Temperature dependence of 
magnetisation measured by 
magnetic scattering of neutrons  

log-log linear-
linear 

M(T) 

T 
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six main critical exponents 

          critical expon't: 
1. Order parameter  m = tβ   β  

2. Susceptibility        χ = | t |−γ  γ  

3. Critical order param. Mc = | h |1/δ  δ  

4. Specific heat         C = | t |−α  α  

5. Coherence length   ξ = | t |−ν  ν 

6. Correlation function G = 1/r d−2+η  η  

m

T 

TC 

     FM    PM 

χ 
        FM          PM 
               χ−           χ+  

 TC              T 

            critical  
 magnetization → 

←FM 
←PM 

ξ, τ 
           FM          PM 

 TC                 T 

  P          Exp.: 

PC 
        L       G 

         TC 

                    VC              V 

water: 
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universality 

All systems belonging to the same universality class  
have the same critical exponents. 

Example: Water near critical point and (1-dim) Magnet 

What defines a universality class? 
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latent heat 
Heat a block of ice: 
Melting  S → L 
Transition: order → short range order 
Boiling  L → G 
Transition: short range order → disorder 

Breaking of bonds requires energy =  
latent heat = difference in electrostatic potential, 
without change in kinetic energy (temperature). 

At critical temperature TC: 
Addition of heat only changes ratios ice/water or water/vapor, 
but not the temperature 

--S-|     |---L---|       |-G-- 

boiling: Tb=1000→ 

melting Tm= 00→ 

T 

Q ~ t 

| Qm| 

|  Qb  | 

Water (H2O):  
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divergence of heat capacity 

S        L              G 

T / 0C 

T / 0C 

C=dQ/dT 

    Q 
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1st and 2nd order phase transitions 

Latent heat:  Qb = ∫L→GPdV   
             = area in P-V diagr. 

When latent heat:  Qb > 0:  
  1st-order phase transition. 

At the critical point latent heat Qb = 0:  
  Continuous phase transition 
  (or 2nd order phase transition) 

Boiling water: 
  Order parameter = ρliquid−ρgas 

p-V phase diagram for water (H2O): 

| order param. | 

↑ Vc 
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equation of state 

Equations of State:  
describes reaction to variation of external parameters:  

Pressure P = P(V,T,…) 
Magnetization M = M(B,T,…) 

Example: 
Ideal gas: P = RT/V = ρkT  Gas equation    

        (ρ = NA/V,  R = NAk) 
Real gas: (P +a/V2)(V−b) = RT  

    attractive ↑          ↑ repulsive potential 
             van der Waals-equation 

    same in P-ρ diagram: 

P 

V 

G      L+G 
      L 

P 

ρ  
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universality of v.d.W.-equation 
        Bild Yeomans p. 28: 

Reduced van der Waals-equation:  

(P/PC +3(VC/V)2) (V/VC−1/3) = 8RTC 

with critical values PC, VC, TC 
seems to be universal  
even far away from TC. 

G    G+L   L 

ρ/ρC 

T/TC 
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free energy → everything else 

Yeomans p.17: (β=1/kT) 
master plan 
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example: paramagnetism    

spin ½: 
energy/molecule  E± = ±µB 

partition function for N molecules: 
                   β=1/kT 

magnetisation 

Saturation magnetis. M0 = Nµ 
Susceptibility      χ = ∂M/∂B ≈ Nµ2/kT:    χ ~ 1/T 

             = Curie Law, for kT >> µB 

M

B 

T 

PM: 
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3. Landau model 

Landau 1930 (Landau-Lifschitz 5: Statistical Physics ch. XIV)    1-dim 
magnet: 

'Landau' free energy of ferromagnet F = F(m)  
with magnetization m = <M>/M0 (mean field approx.) 

Taylor-expanded about m = 0:   
 F = F0(T) + (½a' m2 + ¼λ m4)V 

(only even powers of m, λ > 0) 
         2-dim magnet: 

a' changes sign at T = TC:  a' = a·(T−TC): 

Free energy density f = (F − F0)/V  then is: 
 f = ½a(T−TC) m2 + ¼λ m4 

F 

M 

T<TC 

T>TC 

FM 

PM 
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Spontaneous magnetization in zero external field 

Landau:  f = ½a(T−TC) m2 + ¼λm4 

At equilibrium → minimum of free energy: 
   ∂f/∂m = a(T−TC) m + λm3 = 0 

and    a(T−TC) + λm2 = 0 

for T≥TC:  Magnetization   m = 0:        PM 

for T<TC:  Magnetization  m = ±(a/λ)½(TC−T)½ FM 
  first critical exponent β = ½   

Same result for order parameter of v.d.W. gas: 
   ρL − ρG ~ (TC − T)½. 

 ρ     L 

     L+G      Δρ 
     2 phases          1 phase 

    G  

      TC        T 

m 

T 
TC 

          FM        PM 
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Magnetization in external field 

Magnetic energy in external magnetic field h: 
 f = ½a(T−TC) m2 + ¼λm4 − hm  

At equilibrium: from 
 ∂f/∂m = a(T−TC) m + λm3 − h = 0  

follows magnetization ±m(T), see Fig.,  
in particular: 
critical magnetization at T = TC: 

 h = λm3 
third critical exponent δ = 3 

Same result for critical isotherm parameter of v.d.W. gas: 

m          FM       PM 

T 
h=0↑  ↓h>0 

                 TC 

               ↑h<0 

            critical  
 magnetization → 

←FM 

←PM 

P

ρ  
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Magnetic susceptibility 

Susceptibility  χ = ∂m/∂h diverges at T=TC       
Reason: Free energy has flat bottom at T=TC:     

above TC:  χ+ = [a(T−TC)]−1   PM 

below TC:  χ− = [2a(TC−T)]−1 = ½χ+  FM 
 Curie-Weiss law  
 second critical exponent γ = 1 

Same result for v.d.W.-compressibility κ− and κ+: 

χ 
        FM          PM 
          χ−           χ+  

 TC                 T 

κ 
        L          G 
          κ−          κ+  

 TC                 T 

f 

↔ 
     m 
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Specific heat in zero field 

Entropy density 
s−s0(T) = −∂f/∂T  

Specific heat  
c−c0(T) = −∂s/∂T 

Result: Specific heat makes a jump at TC: 
 fourth critical exponent α = 0 

Same result as for specific heat of v.d.W. gas: 

c−c0(T)  

 TC  T 

FM  PM 

c−c0(T)  

 TC  T 

L  G 

↨ 

s−s0(T)  

 TC  T 
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Compare with experiment 
Magnetization: M ~ (TC−T)β   

M 

T/TC 

Landau:  

c          M           χ  Mc  

specific heat has a small α>0 
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4. Ginzburg-Landau theory of superconductivity  

Non-uniform superconductor (mixed phases, Meissner effect, etc.):   
order parameter = cooper pair wavefct. is position dependent: ψ=ψ(r) 

like in elasticity theory: 
energy penalty for deviations from homogeneity is ~ |∇ψ|2.  
Free energy: 

 Fs = Fn + ∫V ((ħ2/2m*) |∇ψ|2 + ½µ2·(T −Tc) |ψ|2 + ¼λ|ψ|4)dV  
                     Ekin    +  Epot 

(Ginzburg-Landau, 1950) 
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superconductor in magnetic field  

  B = B(r) = ∇×A(r), with vector potential A, 
A changes momentum mυ of a particle to 

  p = mυ + eA 
but does not change its energy   

  E = (mυ2)/2m = (p−eA)2/2m 
so for B ≠ 0  

Fs = Fn + ∫V (|−iħ∇ψs−e*Aψ|2 /2m* + ½µ2·(T −Tc) |ψs|2 + ¼λ|ψs|4 + B2/2µ0 − B·M) 
dV  

   Tsc               + Vsc                  +  Efield    +  Emagn 
 m*=2me, e*=2e 

Lit.: C.P. Poole et al.: Superconductivity, ch.5, Academic Press 1995 
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two scales in superconductivity 

Mean field theory of superconductivity (Ginzburg-Landau):  

Superconductor has 2 characteristic scales: 

1.  of the order parameter = superconducting condensate ψ: 
  coherence length ξ = ħ/µc of the condensate 

2. of the magnetic field, via the Meissner effect:  
  London penetration depth λL = ħ/(eυc)  

       ψs 
vacuum    supercond. 

   x 
   ξ=ħ/µc 

          B 
vacuum    supercond 
         B0 

x      λL =ħ/mphc 
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Superconductivity and Standard Model  

<ψ1> 

B = ∇×A 
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Comparison of coefficients: 
G.-L.:  Uel-mag(1) W.-S.:  SUL(2)×UY(1) 

order parameter: super-conducting 
condensate 
ψ = ψ1 + iψ2 

Higgs doublet 
   Φ1 + iΦ2 

          Φ = 
     Φ3 + iΦ4 

boson mass generation 
by Higgs field: 

Meissner effect 
mph = e <ψ1> 

Higgs mechanism 
mW = g <Φ3> 

Compton wavelength 
λ of interacting boson: 

London penetration depth 
λL= ħ/(mphc) 

range of weak 
interaction λW=ħ/(mWc) 

Compton wavelength 
λ of Higgs: 

coherence length 
ξ = ħ/(µc) 

"coherence length" 
λH= ħ/(mHc) 

N.B.: die maximale Reichweite einer WW durch virtuellen Austausch ist  
R = cΔt = ħc/E0 = ħ/mc ≡ λCompton 
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Dasselbe im Detail: 

Im Folgenden zeigen wir: 

1.  das Entstehen von Goldstone Bosonen  
 anhand der Magnonen-Anregung in einem Ferromagneten im Landau 
Modell (spontane Brechung einer globalen Symmetrie)  

2.  den Higgs-Mechanismus, dh. das Verschwinden des Goldstone Bosons  
 und die Entstehung der Masse des Eichbosons 
 anhand eines Supraleiters im Landau-Gintzburg Modell 
 (spontane Brechung einer lokalen Eichsymmetrie)  
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Goldstone's theorem for Landau magnet 
Goldstone's theorem:  
Each spontaneous breaking of a continuous symmetry  
creates a massless particle (i.e. an excitation without an energy gap) 

  = Goldstone Boson 

Simple example: Landau ferromagnet: like in elasticity theory: 
energy penalty for deviations from homogeneity is ~ |∇m|2.  

   
solution above TC is rotationally symmetric: 
solution below TC is cylindrically symmetric: 

Goldstone mode belonging to broken symmetry = magnon 
           magnon dispersion relation: 

my 

            <mplane> 

       θ           mx 

magnon: 
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Magnon = Goldstone of broken PM→FM symm. 

 iMy 

            χ  Mx 

         φ 

        ↑ 
<M> = υ 

M 
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spontaneous symm.breaking in superconductor 
Gauge invariance requires interaction with massless field Aµ. 
However, in a superconductor, the photon Aµ becomes massive. 
Still: Ginzburg-Landau model is gauge invariant (Dr.-thesis Ginzburg ~ 1950) 

The reason is what is now called the Higgs mechanism: 
 When a scalar, gauge invariant field ψ  
 suffers a spontaneous symmetry breaking,  
 then the vectorfield Aµ can become massive,  
 without losing its gauge invariance, 
 while at the same time the Goldstone disappears. 

Ginzburg-Landau superconductor: Cooper pairs = Higgs field ψ: 
 Ls = Ln + |∇ψ−i2eAψ|2 −½µ2|ψ|2−¼λ|ψ|4 − B2/µ0* + B·M 

with charge of Cooper pairs e*=2e. 
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Higgs-mechanism for superconductor 
As before: Fluctuations of ψ(x) about <ψ> = υ at "bottom of bottle" 

 ψ(x) = (υ + χ(x)) exp(iθ(x)/υ) 

Then |∇ψ−ie*Aψ|2 = |∇χ + i(υ+χ)(∇θ/υ−e*A)|2, with χ<<υ: 

 if we choose gauge to A=A'+∇θ/e*υ, this becomes  ≈ (∇χ)2 −υ2e*2A2,  
and the massless Goldstone term (∇θ)2 disappears,  
and the photon  A becomes massive (but remains gauge invariant): 

Ls = const. + (ħ2/2m*) (∇χ)2 −½µ2|χ|2  = "Higgs" with mass µ 
  −mph

2A2   = heavy photon with mass mph=υe* = (a·(T−TC)/λ)½ 2e 
  − B2/2µ0 + B·M  = field terms as before 
    + some residual terms 

The coherence length found before turns out to be ξ = 1/µ (ħ=c=1),  
or ξ = ħ/µc = Compton wave length of the Higgs of mass µ =(4ma·(TC−T))½,   
and the London penetration depth λL = 1/mph, or λL = ħ/mphc  
= Compton wave length of the heavy photon 

  N.B.: number of degrees of freedom remains the same   

 iψ2 

   υ      χ  
ψ1 

        θ 
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5. Fluctuations  

Ginzburg-Landau and Weinberg-Salam are mean-field theories, 
which is sufficient.  

But: in general time-dependent fluctuations must be included. 

Correlation length ξ ~ mean size of a region of same density 
Correlation time    τ ~ mean time of existence of such a region 

When T → TC, then density fluctuations  
on all length scales and all time scales 

Divergence: ξ → ∞, τ → ∞ 

MOVIE: CRITICAL SCATTERING 

ξ, τ 
        L          G 

 TC                 T 

  P          Exp.: 

PC 

            TC 

               VC  V 
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Critical fluctuations 

Fluctuations are intimately linked to the susceptibilities  

In a magnet: mean square fluctuations of magnetization: 
   <M2> − <M>2 = kT·χ,  with magnetic susceptibility χ. 

At the Curie temperature: T=TC the critical magnetic fluctuations  
diverge like the static susceptibility χ, 
therefore critical exponents cannot be all independent of each other. 

(same in liquid: density fluctuations are linked to compressibility κ)  

(cf: dissipation-fluctuation theorem, Nyquist theorem) 
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Measurement of magnetic critical opalescence 

Staatsexamens-Arbeit N. Thake 1999 

χ+(T) ~ (T−TC)−γ 
χ−(T) = ½ χ+(T) 
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Correlation function near the critical point 

For many systems the spatial correlation function decays with distance r like: 
  G(r) ~ exp(−r/ξ)/rn 

Near the critical point the correlation length ξ diverges like 
  ξ ~ |T−TC|−ν,  

and the correlation function becomes 
   G(r) ~ 1/rd+2−η, 

with dimension d, and with two further critical exponents ν and η. 



15.06.2009  Phase Transitions UHD 39 

only 2 independent critical exponents 

Empirically: 

Only 2 of the 6 critical exponents are independent, 
since the following  4 empirical relations hold: 

  α + 2β +γ = 2 
  α + β(1+δ) = 2 
  γ = (2−η)ν 
  dν = 2−α 

What is the deeper reason for this? 
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Scale invariance and renormalization 
Mean field: Averaging over the fluctuations is not permitted  
because fluctuation amplitudes diverge at the critical point. 

Way out: successive averaging, separately for each scale, 
starting with a small length scale L << coherence length ξ 

  (when working in real space).  

Example for d=2 dimensional ('block-spin') iteration process:  
Divide systems in blocks of volume Ld = 32 = 9 cells. 
1.  Take a majority vote in each block. 
2.  Combine the cells in a block and assign the majority vote to the 

cell. 
3.   Shrink new cells to the size of the original cells and renumber 

them. Number of configurations shrinks from 29=512 to 21=2. 
4.   'Renormalize' the interaction Ĥ between the averaged elements 

such that the new partition function stays the same:  
         ZN'' = ∑2^N' config. e−βĤ' = ∑2^N config. e−βĤ = ZN , 
 so that the physics remains the same (scale invariance). Go to 1. 

+ + − 

− + + 

+ − − 

+ + −

− + +

+ − −

+ − + + − − + + −

− − + − + + − + −

+ + − − + + − −

− + − + − − − + −

+ − − + + + + − +

+ + − − − + + − +

+ − + − + − − + −

− + − + + − + + −

+ − + + − − + − −
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Block-spin operation in 2-dim. 
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Block-spin operation in 2-dim.: T=TC 
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Transformation of reduced temperature and field 
At each iteration step:  
coherence length shrinks from ξ to ξ ' = ξ /L, 
that is temperature T moves away fromTC,  
either to higher T → ∞ or to lower T → 0 temperatures: 

Under an iteration the reduced temperature t = |(T−TC)/TC| changes  
from t to t'= g(L) t, the function g(L) is to be determined: 
Upon two iterations, successive shrinking is by L1, then by L2, in total by L1L2.  
Reduced temperature changes to t' = g(L2) g(L1) t = g(L1L2) t. 
A function with the property g(L2) g(L1) = g(L1L2) necessarily has the form g(L) = L y, 
Check: L1

y L2 
y = (L1L2) y. 

Hence the reduced temperature t transforms as:    t' = L y t  with exponent y>0. 

Same argument for magnetic field: it increases when coherence length shrinks: 
i.e.  reduced field h transforms as:  h' = Lx h with exponent x>0. 
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Critical exponent relations from scaling 

Order parameter magnetization:  
m = −∂f (t, h), /∂h|h→0  
    = L−d Lx ∂f (Ly t, Lx h)/∂h|h→0; 
this holds for any L, in particular for 
|Ly t| = 1, i.e. L = t−1/y: 
m = | t |(d−x)/y ∂f (±1, 0)/∂h = const. | t |β, 
with critical exponent β = (d−x)/y. 
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Critical exponent relations from scaling 
With similar arguments: 

2.  Susceptibility χ = −∂2f (t, h)/∂h2| h→0 ~ | t |−γ,  
  with critical exponent γ = (2x−d)/y 

3.  Critical isotherm m = − ∂f (t, h)/∂h| t→0 ~ | h |1/δ 

  with critical exponent δ = x/(d−x) 

4.  Specific heat (h=0) CV = − ∂2f(t, 0)/∂t2 ~ | t |−α 

     with critical exponent α = 2−d/y 

5.  Coherence length ξ ~ | t |−ν 

  with critical exponent ν =1/y 

6.  Correlation function G ~ 1/r d−2+η 

  with critical exponent η = 2+d−2x 

which can in principle be resolved to write all  
critical exponents as functions of two variables x and y. 
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universality classes  
The critical exponents depend on only two paramters x and y.  
Can these take any value?  

No, because they can be shown to depend only on  
two other geometrical entities:  
1.  the spatial dimensionality d of the system 
2.  the dimensionality n of the order parameter 

Example: Magnetization M: 
n = 1: Ising model sz = ±1 in d = 1, 2, 3 dimensions 
n = 2: xy-model with planar spin Mxy moving in x-y plane 
n = 3: Heisenberg model with 3-vector M. 

As d and n are discrete numbers, there is a countable number of  
universality classes (d, n), and within each class the  
critical behaviour in continuous phase transitions is identical. 
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Values of the critical exponents for (d, n) 

with ε = 4 − d: 

The higher the dimension, the less the system is disturbed by fluctuations. 
(example: Domino in various dimensions) 
For d = 4, we are back at the mean field results. 
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Critical exponents β and γ 
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various universality classes 
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