Phase-Transitions in Ultracold Atomic Gases

G. Günter

Quantendynamik atomarer und molekularer Systeme Ruprecht-Karls-Universität Heidelberg Physikalisches Institut

Overview

- Thermal cloud \leftrightarrow BEC
- Ultracold atoms in optical lattices:
 - Superfluidity

 Mott-Insulator (Bosonic Fermionic)
 - Supersolid
- BCS-BEC-Crossover
- Critical behavior of strongly interacting ultracold Rydberg Gases
- Self-organization of BEC in a cavity field
- New phases in dipolar quantum gases

Phase-Transition to BEC (1)

• 1995 first Observation of BEC

http://cua.mit.edu/ketterle_group/Nice_pics.htm

BUT: Not much known quantitatively about the transition itself !

• What do we want to know about the transition?

$$\frac{\langle n_{k=0} \rangle}{N_{\text{total}}} = 1 - \left(\frac{T}{T_C}\right)^{\alpha} \quad \text{or} \quad \left(\xi \propto \left(\frac{T - T_C}{T_C}\right)^{-\nu}\right)$$

T. Donner et al, Science 315, 1556 (2007)

Phase-Transition to BEC (2)

• Correlation function
$$G(\boldsymbol{r}, \boldsymbol{r'}) = \left\langle \hat{\Psi}^{\dagger}(\boldsymbol{r}) \hat{\Psi}(\boldsymbol{r'}) \right\rangle$$

Phase-Transition to BEC (3)

Double-slit experiment with matter-waves

T. Bourdel et al, Phys. Rev. A 73, 043602 (2006)

Phase-Transition to BEC (4)

Phase-Transition to BEC (5)

- Direct measurement of the critical exponent
- Confirms universality:
- weakly interacting Bose-gas
- liquid ⁴He
- 3D-XY-Model Magnet
- Renormalization Theory: v = 0.67
- ⁴He (spaceborne experiment): v = 0.67005
- Weakly interacting Bose-gas : $v = 0.67 \pm 0.13$

Critical Behavior in Rydberg Gases (1)

Weimer et al, Phys. Rev. Lett. 101 250601 (2008)

• Rydberg-atom:

- atom with an electron in an highly exited shell
- large dipole moment $d \sim n^2$
- large polarizability $p \sim n^7$

electron

- Strong interactions among Rydberg-atoms:

• Van-der-Waals interaction:

$$V(\boldsymbol{r}, \boldsymbol{r'}) = rac{C_6}{|\boldsymbol{r} - \boldsymbol{r'}|^6}$$

with $C_6 \sim n^{11}$

Critical Behavior in Rydberg Gases (2)

Critical Behavior in Rydberg Gases (3)

• Effects due to interaction: **Blockade**

Critical Behavior in Rydberg Gases (4)

• Hamiltonian of the system

$$\begin{split} \hat{H} &= -\frac{\Delta}{2} \sum_{i} \hat{\sigma}_{z}^{(i)} + \frac{\hbar\Omega}{2} \sum_{i} \hat{\sigma}_{x}^{(i)} + C_{6} \sum_{j < i} \frac{\hat{P}_{ee}^{(i)} \hat{P}_{ee}^{(j)}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|^{6}} \\ \text{with} \quad \hat{\sigma}_{z}^{(i)} &= |e\rangle \left\langle e|_{i} - |g\rangle \left\langle g|_{i} \right\rangle \end{split}$$

• Properties of the Hamiltonian for $\Omega=0$

$\Delta < 0$: Paramagnet

- all particles in the ground state - $f_R = 0$
- translation symmetry

$\Delta > 0$: Crystalline Phase

- finite number of excitations
- $f_R > 0$
- translation symmetry is broken
- FCC-crystal ???

Critical Behavior in Rydberg Gases (5)

Comparison: Ferromagnet – Rydberg Gas

Critical Behavior in Rydberg Gases (6)

• Determine the critical exponents:

1) $\Omega = 0$: $\beta = \frac{1}{2}$ (one can analytically find the ground-state of the system)

2) $\Delta = 0$: Meanfield-model

Rescaled Rabi-frequency

$$\alpha = \frac{\hbar\Omega}{C_6 n^2}$$

Blockade: $\left\langle \hat{P}_{ee}^{(j)} \right\rangle \rightarrow g_2(\boldsymbol{r}_i, \boldsymbol{r}_j) \left\langle \hat{P}_{ee}^{(j)} \right\rangle$

Power law:

$$f_R \sim c \, \alpha^{1/\delta}$$

Self-consistency:

$$\delta = \frac{12+d}{2d}$$

Critical Behavior in Rydberg Gases (7)

• Solve Schrödinger equation numerically:

Numerics	5	Meanfield	
δ = (0.404) ⁻¹	3D	$\delta = (0.40)^{-1}$	3D
$\delta = (0.15)^{-1}$	1D	δ = (0.15) ⁻¹	1D

Critical Behavior in Rydberg Gases (8)

• Experiment:

- a) ⁸⁷Rb (5S_{1/2}, F = 2, $m_F = 2$), N = 1.5*10⁷ atoms
- b) Landau-Zener-Sweep: Remove particles $\rightarrow N = 5^*10^5 1.5^*10^7$ atoms
- c) Excite the atoms: $\Omega = 2 \pi (31-154) \text{ kHz}$
- d) Field-ionize and detect ions with MCP

Critical Behavior in Rydberg Gases (9)

• Open questions:

- Why does meanfield work so well ?
- Upper critical dimension $d_c = 1$?
- New universality class ?!