Viscous Hydrodynamics in Heavy Ion Collisions

Jochen Klein

EMMI Seminar 2009

11/05/2009

Outline

Why Hydrodynamics in Heavy Ion Collisions?

Flow measurements

Viscosity

Conclusions

Stages of a Heavy Ion Collision

Collision of two Lorentz-contracted nuclei: $t_{\text {coll }} \approx \frac{R}{\gamma} \frac{2}{c}$
Nuclear collisions and the QGP expansion

Landau already considered hydrodynamics for high-energy physics (1953)

Hydrodynamic Stage

- explains dynamics: pressure gradients \Rightarrow expansion
- assumes local equilibration \Rightarrow few variables
- amenable to numerics
- access to EoS
- easy to account for phase transitions
- fluid-like behaviour (one fluid) in contrast to thermal equilibrium

m_{T} spectra

- m_{T} scaling for indepent particles (thermal source):

$$
\begin{gathered}
\frac{\mathrm{d}^{3} N}{\mathrm{~d} p^{3}} \propto \exp \left\{-\frac{E}{T}\right\} \\
\mathrm{d} p^{3}=E m_{T} \mathrm{~d} m_{T} \mathrm{~d} y \mathrm{~d} \phi \\
E=m_{T} \cdot \cosh y \\
\frac{\mathrm{~d}^{2} N}{m_{T} \mathrm{~d} m_{T} \mathrm{~d} y} \propto \\
m_{T} \cdot \cosh y \cdot \exp \left\{-\frac{m_{t} \cosh y}{T}\right\}
\end{gathered}
$$

pp

m_{T} spectra

- m_{T} scaling for indepent particles (thermal source):

$$
\begin{gathered}
\frac{\mathrm{d}^{3} N}{\mathrm{~d} p^{3}} \propto \exp \left\{-\frac{E}{T}\right\} \\
\mathrm{d} p^{3}=E m_{T} \mathrm{~d} m_{T} \mathrm{~d} y \mathrm{~d} \phi \\
E=m_{T} \cdot \cosh y \\
\frac{\mathrm{~d}^{2} N}{m_{T} \mathrm{~d} m_{T} \mathrm{~d} y} \propto
\end{gathered}
$$

$m_{T} \cdot \cosh y \cdot \exp \left\{-\frac{m_{t} \cosh y}{T}\right\}$

- in AuAu: scaling violated \rightarrow collective motion

Relativistic Hydrodynamics

- energy momentum tensor: $T^{\mu \nu}$
- energy momentum conservation:

$$
\partial_{\mu} T^{\mu \nu}=0
$$

- in ideal hydrodynamics only dependent on ϵ, P.
- in local restframe:

- in any frame:

Relativistic Hydrodynamics

- energy momentum tensor: $T^{\mu \nu}$
- energy momentum conservation:

$$
\partial_{\mu} T^{\mu \nu}=0
$$

- in ideal hydrodynamics only dependent on ϵ, P.
- in local restframe:

$$
T^{\mu \nu}=\left(\begin{array}{cccc}
\epsilon & & & \\
& P & & \\
& & P & \\
& & & P
\end{array}\right)
$$

- in any frame:

$$
T^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}-P g^{\mu \nu}
$$

Analogy to non-relativistic case

$$
\partial_{\mu} T^{\mu \nu}=\partial_{\mu}\left((\epsilon+P) u^{\mu} u^{\nu}-P g^{\mu \nu}\right)=0
$$

- projection parallel to u^{μ} :

$$
u_{\nu} \partial_{\mu} T^{\mu \nu}=\underbrace{D}_{:=u^{\mu} \partial_{\mu}} \epsilon+(\epsilon+p) \partial_{\mu} u^{\mu}=0
$$

- projection perpendicular to $u^{\mu}\left(\Delta^{\mu \nu}=g^{\mu \nu}-u^{\mu} u^{\nu}\right)$:

$$
\Delta_{\nu}^{\alpha} \partial_{\mu} T^{\mu \nu}=(\epsilon+p) D u^{\alpha}-\underbrace{\nabla^{\alpha}}_{:=\Delta^{\alpha \beta} \partial_{\beta}} p=0
$$

- non-relativistic limit:

$$
\begin{aligned}
D & \approx \partial_{t}+\vec{v} \cdot \vec{\nabla}+O\left(|\vec{v}|^{2}\right) \\
\nabla^{i} & \approx \partial^{i}+O(|\vec{v}|)
\end{aligned}
$$

Ideal Relativistic Hydrodynamics

- No dissipative processes:

$$
\partial_{\mu} s^{\mu}=0
$$

- Additional continuity equations for conserved charges:

$$
\partial_{\mu} N^{\mu}=0
$$

- Equation of State needed, e.g. for ultrarelativistic gas:

$$
P=\frac{\epsilon}{3}
$$

- Prediction of momentum anisotropy from initial spatial anisotropy

Flow - Introduction

- azimuthal anisotropy of non-central events
- sensitive to early stages (high pressure gradients)
- reaction and participant plane

- in momentum space:

radial flow
- $v_{n}\left(p_{T}, \eta\right)$ for given $\sqrt{S_{N N}}$

Flow - Introduction

- azimuthal anisotropy of non-central events
- sensitive to early stages (high pressure gradients)
- reaction and participant plane

- in momentum space:

$$
E \frac{\mathrm{~d}^{3} N}{\mathrm{~d}^{3} p}=\frac{1}{2 \pi} \frac{\mathrm{~d}^{2} N}{p_{\mathrm{T}} \mathrm{~d} p_{\mathrm{T}} \mathrm{~d} y}
$$

radial flow
> $V_{n}\left(p_{T}, \eta\right)$ for given $\sqrt{S_{N N}}$

Flow - Introduction

- azimuthal anisotropy of non-central events
- sensitive to early stages (high pressure gradients)
- reaction and participant plane

- in momentum space:

$$
E \frac{\mathrm{~d}^{3} N}{\mathrm{~d}^{3} p}=\frac{1}{2 \pi} \frac{\mathrm{~d}^{2} N}{p_{\mathrm{T}} \mathrm{~d} p_{\mathrm{T}} \mathrm{~d} y}\left(1+\sum_{n=1}^{\infty} 2 v_{n} \cos \left(n\left(\phi-\Psi_{\mathrm{RP}}\right)\right)\right)
$$

radial flow, directed flow v_{1}, elliptic flow v_{2}
${ }^{-} V_{n}\left(p_{\mathrm{T}}, \eta\right)$ for given $\sqrt{S_{N N}}$

Flow - Introduction

- azimuthal anisotropy of non-central events
- sensitive to early stages (high pressure gradients)
- reaction and participant plane

- in momentum space:

$$
E \frac{\mathrm{~d}^{3} N}{\mathrm{~d}^{3} p}=\frac{1}{2 \pi} \frac{\mathrm{~d}^{2} N}{p_{\mathrm{T}} \mathrm{~d} p_{\mathrm{T}} \mathrm{~d} y}\left(1+\sum_{n=1}^{\infty} 2 v_{n} \cos \left(n\left(\phi-\Psi_{\mathrm{RP}}\right)\right)\right)
$$

radial flow, directed flow v_{1}, elliptic flow v_{2}

- $v_{n}\left(p_{\mathrm{T}}, \eta\right)$ for given $\sqrt{s_{N N}}$

Flow - Measurement

- Reconstruction from particle trajectories
- event-plane method:

$$
Q_{n,{ }_{y}^{x}}=\sum_{i} w_{i}^{\cos }\left(n \phi_{i}\right)
$$

reaction-plane:

$$
\begin{gathered}
\Psi_{n}=\frac{1}{n} \arctan \frac{Q_{n, y}}{Q_{n, x}} \\
v_{n}^{\mathrm{obs}}=\left\langle\cos \left[n\left(\phi_{i}-\Psi_{n}\right)\right]\right\rangle
\end{gathered}
$$

- correlation method:

fitted to data

Flow - Measurement

- Reconstruction from particle trajectories
- event-plane method:

$$
Q_{n,{ }_{y}^{x}}=\sum_{i} w_{i} \frac{\cos }{\sin }\left(n \phi_{i}\right)
$$

reaction-plane:

$$
\begin{gathered}
\Psi_{n}=\frac{1}{n} \arctan \frac{Q_{n, y}}{Q_{n, x}} \\
v_{n}^{\text {obs }}=\left\langle\cos \left[n\left(\phi_{i}-\Psi_{n}\right)\right]\right\rangle
\end{gathered}
$$

- correlation method:

$$
\frac{\mathrm{d} N^{\text {pairs }}}{\mathrm{d} \Delta \phi} \propto\left(1+\sum_{n=1}^{\infty} 2 v_{n}^{2} \cos (n \Delta \phi)\right)
$$

fitted to data

Mass splitting in v_{2}

- heavy particles shifted to higher p_{T}
- sensitive to equation of state

$p_{\mathrm{T}^{-}}$and $\sqrt{s_{N N}}$-dependence of v_{2}

- Change from out-of-plane (squeezing) to in-of-plane

- decreasing slope with increasing p_{T}

- hint for viscosity: $\frac{\eta}{s}>0$

$p_{\mathrm{T}^{-}}$and $\sqrt{s_{N N}}$-dependence of v_{2}

- Change from out-of-plane (squeezing) to in-of-plane

- decreasing slope with increasing p_{T}
- hint for viscosity: $\frac{\eta}{s}>0$

Relativistic Hydrodynamics - Viscous

$$
\begin{gathered}
\partial_{\mu} T^{\mu \nu}=\partial_{\mu}\left(T_{\text {ideal }}^{\mu \nu}+\Pi^{\mu \nu}\right)=0 \\
D \epsilon+(\epsilon+p) \partial_{\mu} u^{\mu}-u_{\nu} \partial_{\mu} \Pi^{\mu \nu}=0 \\
(\epsilon+p) D u^{\alpha}-\nabla^{\alpha} p+\Delta_{\nu}^{\alpha} \partial_{\mu} \Pi^{\mu \nu}=0
\end{gathered}
$$

- $\Pi^{\mu \nu}=\underbrace{\pi^{\mu \nu}}_{\text {shear }}+\underbrace{\Delta^{\mu \nu} \Pi}_{\text {bulk }}$
- require: $\partial_{\mu} s^{\mu} \geq 0$ given for:

$$
\pi^{\mu \nu}=\eta \nabla^{<\mu} u^{\nu>}, \quad \Pi=\zeta \nabla_{\alpha} u^{\alpha}
$$

- in non-relativistic limit \rightarrow Navier-Stokes equation:

$$
\Pi^{k i}=\eta\left(\partial^{k} v^{i}+\partial^{i} v^{k}-\frac{2}{3} \delta^{k i} \partial_{l} v^{\prime}\right)-\zeta \delta^{i k} \partial_{l} v^{\prime}
$$

Acausality problem

- Consider small perturbation in homogeneous system at rest:

$$
\epsilon=\epsilon_{0}+\delta \epsilon(t, x) \text { and } u^{\mu}=(1, \overrightarrow{0})+\delta u^{\mu}(t, x)
$$

for y-direction leads to:

$$
\partial_{t} \delta u^{y}-\frac{\eta_{0}}{\epsilon_{0}+p_{0}} \partial_{x}^{2} \delta u^{y}=O\left(\delta^{2}\right)
$$

ansatz: $\delta u^{y}=e^{-\omega t+i k x} f_{\omega, k}$

$$
\begin{gathered}
\Rightarrow \omega=\frac{\eta_{0}}{\epsilon_{0}+p_{0}} k^{2} \\
v_{T}(k)=\frac{\partial \omega}{\partial k}=2 \frac{\eta_{0}}{\epsilon_{0}+p_{0}} k^{k \rightarrow \infty} \infty
\end{gathered}
$$

- perturbations travel faster than c

Acausality (cont.)

- Maxwell-Cattaneo:

$$
\tau_{\pi} \partial_{t}^{2} \delta u^{y}+\partial_{t} \delta u^{y}-\frac{\eta_{0}}{\epsilon_{0}+p_{0}} \partial_{x}^{2} \delta u^{y}=0
$$

"artificial" solution

- higher orders in viscosity

Higher orders in viscosity

- classification as gradient expansion
- ideal hydro, zeroth order (complete)

$$
\pi^{\mu \nu}=0
$$

- Navier-Stokes equation, first order (complete)
- second order:
complete $\pi^{\mu \nu}$ constructable from symmetry considerations

Higher orders in viscosity

- classification as gradient expansion
- ideal hydro, zeroth order (complete)

$$
\pi^{\mu \nu}=0
$$

- Navier-Stokes equation, first order (complete)

$$
\pi^{\mu \nu}=\eta \nabla^{<\mu} u^{\nu>}
$$

- second order:
complete $\pi^{\mu \nu}$ constructable from symmetry considerations

Higher orders in viscosity

- classification as gradient expansion
- ideal hydro, zeroth order (complete)

$$
\pi^{\mu \nu}=0
$$

- Navier-Stokes equation, first order (complete)

$$
\pi^{\mu \nu}=\eta \nabla^{<\mu} u^{\nu>}
$$

- second order: complete $\pi^{\mu \nu}$ constructable from symmetry considerations

Numerical implementation

- calculations on discretized space-time
- ideal hydro: turbulences discretization of space-time (and derivations) adds numerical viscosity
- viscous hydrodynamics (in first order) acausal \Rightarrow numerically problematic
- higher order viscous hydrodynamics well-behaved

Viscous v_{2}

- Significant reduction of v_{2}

- Indication for small viscosity close to theoretical boundary of $\frac{\eta}{s}=\frac{1}{4 \pi}$

Caveats

- Determination of initial conditions: Monte-Carlo Glauber calculations
- Freeze-out at some temperature trying to match $T^{\mu \nu}$
- How to disentangle different stages?

Conclusions

- Hydrodynamic description of Heavy Ion Collisions promising
- Viscosity seems to be needed:
- How large is η ?
- bulk viscosity?
- Constraints from theory (next talks)
- Caveats for quantitative interpretations

References

围 J．Ollitrault
Relativistic hydrodynamics for heavy－ion collisions
http：／／arxiv．org／abs／0708．2433
嗇 S．Voloshin，A．Poskanzer and R．Snellings
Collective phenomena in non－central nuclear collisions
http：／／arxiv．org／abs／0809．2949
图 P．Sorensen
Elliptic Flow：A study of space－momentum correlations in relativistic nuclear collisions
http：／／arxiv．org／abs／0905．0174
目 P．Romatschke
New Developments in Relativistic Viscous Hydrodynamics
http：／／arxiv．org／abs／0902．3663

Landau vs. Eckart restframe

- with conserved charges restframe not uniquely defined any more
- Landau:

Consider energy flos

$$
u_{\mu} T^{\mu \nu}=\epsilon U^{\nu}
$$

- Eckart: Consider conserved charge:

$$
u_{\mu} J^{\mu}=j^{0}
$$

$\pi^{\mu \nu}$ in second order

not to be discussed here:

$$
\begin{aligned}
\pi^{\mu \nu}= & \eta \nabla^{<\mu} u^{\nu>}-\tau_{\pi}\left[\Delta_{\alpha}^{\mu} \Delta_{\beta}^{\nu} u^{\lambda} \partial_{\lambda} \pi^{\alpha \beta}+\frac{4}{3} \pi^{\mu \nu}\left(\nabla_{\alpha} u^{\alpha}\right)\right] \\
& +\frac{\kappa}{2}\left[R^{<\mu \nu>}+2 u_{\alpha} R^{\alpha<\mu \nu>\beta} u_{\beta}\right] \\
& -\frac{\lambda_{1}}{2 \eta^{2}} \pi_{\lambda}^{<\mu} \pi^{\nu>\lambda}-\frac{\lambda_{2}}{2 \eta} \pi_{\lambda}^{<\mu} \Omega^{\nu>\lambda}-\frac{\lambda_{3}}{2} \Omega_{\lambda}^{<\mu} \Omega^{\nu>\lambda}
\end{aligned}
$$

with:

$$
\Omega_{\mu \nu}=\nabla_{[\mu} u_{\nu]}
$$

by Baier et al., 2007

