Critical Phenomena

1) Renormalize the effective potential in three dimensions! The Hamiltonian is given by:

$$
\begin{equation*}
H[M]=\int d^{3} x\left(\frac{1}{2}\left(\partial_{\mu} M(x)\right)^{2}+\frac{1}{2} r_{0} M(x)^{2}+\frac{1}{4!} u_{0} M(x)^{4}+B(x) M(x)\right) \tag{1}
\end{equation*}
$$

The renormalised, finite mass parameter is defined as

$$
\begin{equation*}
r=\left.\frac{\partial^{2} \Gamma[M]}{\partial M^{2}}\right|_{M=0} \tag{2}
\end{equation*}
$$

Show that

$$
\begin{equation*}
r=r_{0}+\frac{u_{0}}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{p^{2}+r_{0}}+\text { higher order terms } \tag{3}
\end{equation*}
$$

What does this imply for r_{0} ? What does change in 4 d ? (Bonus question: Compute the renormalized masses \& couplings!)

