- 1 -

Critical Phenomena

1) One dimensional physical systems, in which the interactions have a finite length, can always be divided into subsystems Γ_i , i = 1..N such that there is interaction only between neighbouring subsystems, such that the Hamiltonian is written as:

$$H(\mathbf{S}) = \sum_{i} H_0(s_i) + \sum_{i} H'(s_i, s_{i+1})$$
(1)

where s_i is the classical variable that describes the *i*-th subsystem. When s_i can only take values in a finite set, we write the *transfer matrix* of the system as:

$$\langle s_i | \hat{T} | s_{i+1} \rangle = \exp\left[-\beta \left(\frac{1}{2} H_0(s_i) + \frac{1}{2} H_0(s_{i+1}) + H'(s_i, s_{i+1}) \right) \right]$$
(2)

We assume that the system is periodic, i.e. $\Gamma_{N+1} \equiv \Gamma_1$.

a) Show that

$$Z = \operatorname{tr}(\hat{T}^N) \tag{3}$$

b) Show that in the limit $N \to \infty$ the free energy can be written as:

$$F = -NkT\ln\lambda_1\tag{4}$$

where λ_1 is the biggest eigenvalue of the transfer matrix.

2) The Ising model is defined by the Hamiltonian:

$$H = -J\sum_{i=1}^{N} s_i s_{i+1}$$
(5)

Use the transfer matrix method to calculate the following quantities:

- a) the partition function,
- b) the internal energy and specific heat of the system,
- c) the correlation function $\langle s_i s_j \rangle$, and its fourier transform:

$$G(q) = \sum_{n=-\infty}^{\infty} e^{iqn} \langle s_0 s_n \rangle \tag{6}$$

d) the susceptibility χ , and the correlation length ξ using the result for the correlation function calculated above.