Institute for Theoretical Physics \Rightarrow Group Home \Rightarrow Teaching \Rightarrow Geometry & Topology in Physics

Geometry & Topology in Physics

Jan Martin Pawlowski, Thomas Gasenzer, winter term 2011/2012

Tuesday, 11:15-13:00, Pw 19 / SR [LSF]

Wednesday, 11:15-13:00, every 2nd week, kHS Pw 12 [LSF]

- Content
- Literature
- Exercises & bonus material
- Script

Prerequisites: Theoretical Physics I-IV, basic knowledge of QFT

Content of lecture series

The lecture course provides an introduction to geometrical and topological effects in physics, applications range from quantum mechanics to quantum field theory.

Outline in key words

- Symmetries & topological exitations: Scalar field theory, solitons, fermions & index theorems, dilute gas expansion
- Gauge theories & homotopy: Abelian Higgs model, Bogomol'nyi bound, homotopy, topological invariants & classification
- Non-Abelian gauge theories: Setting, instantons, zero modes, collective coordinates & moduli space, fermionic zero modes & Atiyah-Singer index theorem, topology & confinement

LINKS Institute for Theoretical Physics

ExtreMe Matter Institute EMMI

DFG research group FOR 723

Research Training Group Quantum Many-body Dynamics and Nonequilibrium Physics

Department of Physics and Astronomy

Graduate School of Fundamental Physics

Graduate Academy

- Gauge anomalies: Cocycles, Wess-Zumino consistency condition, consistent & covariant anomalies
- Seiberg-Witten: Supersymmetry, chiral multiplets, N=2 Susy Yang-Mills, superconformal Ward-Id's, dualities
- Topology & dynamics: Dynamics, vortices, scaling

Literature

Coleman	Aspects of Symmetry	Cambridge University Press
Göckeler & Schücker	Differential Geometry, gauge theories, and gravity	Cambridge University Press
Nakahara	Geometry, Topology and Physics	Hilger
Nash & Sen	Topology and Geometry For Physicists	Academic
Rajaraman	Solitons and Instantons	North-Holland
Wu-Ki Tung	Group Theory in Physics	World Scientific
Zinn-Justin	Quantum Field Theory and Critical Phenomena	Oxford
	Locturo notos	
	Lecture notes	
Bruckmann	Topological objects in QCD	Lecture notes, Schladming winter school 2007
Bruckmann Lenz	Topological objects in QCD Topological concepts in gauge theories	Lecture notes, Schladming winter school 2007 Lecture notes

Motivation
EOM: SIGJ action, SIGJ=filed(4)
Jield theory:
$$\phi = \phi(t, t)$$

mechanics: $\phi = \vec{q}(t)$
Physics: $\frac{SS}{S\phi}\Big|_{\vec{q}} = 0$
Set of $\vec{\phi}$ possible physics evolution
uniquely determined by initial condo)
boundary conditions.
Ruantum Regulass
EOM: FIGJ effective action
 $\frac{ST}{S\phi}\Big|_{\vec{q}} = 0$
 $\vec{\phi}$ mean field (classical field < ϕ >

I

(____)

(\$\overline(t=+\mathbf{v}), \$\overline(t=+\mathbf{v}), \$\over

)

()

IV

)