Exercise 2

1) Solitons in the sine-Gordon model

The sine-Gordon equation is given by

$$
\begin{equation*}
\square \phi+\mu^{2} / \lambda \sin \lambda \phi=0 \tag{1}
\end{equation*}
$$

where μ is the mass parameter, and λ is the coupling. It is convenient to work in light-cone coordinates (u, v), where $u=\frac{1}{2}\left(x^{1}+x^{0}\right)$, and $v=\frac{1}{2}\left(x^{1}-x^{0}\right)$, and the d'Alembertian is given by $\square \equiv-\partial_{u} \partial_{v}$.
a) Show that it is possible to establish a relationship between two independent solutions ϕ_{1} and ϕ_{2} of eq. (1) in the form of two coupled ordinary differential equations (ODEs):

$$
\begin{align*}
\partial_{u}\left(\phi_{1}+\phi_{2}\right) & =f\left(\phi_{1}-\phi_{2}\right), \tag{2}\\
\partial_{v}\left(\phi_{1}-\phi_{2}\right) & =g\left(\phi_{1}+\phi_{2}\right) . \tag{3}
\end{align*}
$$

Determine the functions f and g !
b) Integrate the above system of ODEs to determine the 1-soliton solution. Show that it takes the form

$$
\begin{equation*}
\phi=4 / \lambda \arctan \exp (\mu \alpha u+\mu / \alpha v+\delta) . \tag{4}
\end{equation*}
$$

What is the significance of the parameters α and δ ?
2) Two kinks meet...
a) Find the 2-soliton (kink-kink) solution in analogy to exercise $\mathbf{1 b}$).
b) What are the asymptotic states at large times for the 2 -soliton solution? What happens in the scattering region?

