Exercise 4

1) Two vortices in a superfluid
a) Consider two parallel vortices of strengths n_{1} and n_{2} separated by a distance d in a cylindrical container of radius R. The vortices move in a uniform medium of density ϱ and are well-separated from each other and from the boundary. Show that the interaction energy per unit length is given by

$$
\begin{equation*}
\mathcal{E}_{i n t}=\frac{\varrho}{2} \int d^{2} x \vec{v}_{1} \cdot \vec{v}_{2}=4 \pi n_{1} n_{2} \varrho \ln \frac{R}{d}, \tag{1}
\end{equation*}
$$

up to logarithmic corrections.
b) Calculate the energy of a pair of $n_{1,2}= \pm 1$ vortices with separation d. Show that one can define an effective momentum for the vortex pair.

1) Two-dimensional point-vortex gas
a) Now, consider N parallel vortices of strengths $n_{i}, i=1, \ldots, N$ in an infinite uniform medium. Construct the Hamiltonian for the N-point vortex system and derive the equations of motion.
b) Calculate the temperature of the N point-vortex gas in the microcanonical ensemble. What happens in the different temperature regimes?
