Geometry and Topology in Physics

Exercise 5

1) Fundamental group

a) Recall the definition of the product between two loops α_x and β_x at $x \in \mathcal{M}$ denoted by $\alpha_x * \beta_x$ (see lecture). Verify that the product of homotopy classes $[\alpha_x]$ and $[\beta_x]$, as given by

$$[\alpha_x] * [\beta_x] = [\alpha_x * \beta_x] , \qquad (1)$$

is well defined and satisfies the group axioms.

b) Let \mathcal{M} be arcwise connected. Show that the fundamental group $\pi_1(\mathcal{M}, x)$ is independent of the base point $x \in \mathcal{M}$, i.e.

$$\pi_1(\mathcal{M}, x) \cong \pi_1(\mathcal{M}, y) , \quad \forall x, y \in \mathcal{M} .$$
 (2)

1) Higher homotopy groups and Hopf invariant

In 1931 Hopf showed that the third homotopy group of the two-sphere $\pi_3(S^2)$ is nontrivial. As an example he considered what is now known as the Hopf map $\pi: S^3 \to S^2$, defined by

$$y^{1} = 2\left(x^{1}x^{3} + x^{2}x^{4}\right) , \qquad (3)$$

$$y^2 = 2\left(x^2x^3 - x^1x^4\right) , (4)$$

$$y^{3} = (x^{1})^{2} + (x^{2})^{2} - (x^{3})^{2} - (x^{4})^{2} , \qquad (5)$$

where the 3-sphere S^3 is embedded in \mathbb{R}^4 , i.e.

$$S^{3} = \left\{ x \in \mathbb{R}^{4} \,|\, (x^{1})^{2} + (x^{2})^{2} + (x^{3})^{2} + (x^{4})^{2} = 1 \right\} , \tag{6}$$

and the 2-sphere S^2 is parametrized by

$$(y^1)^2 + (y^2)^2 + (y^3)^2 = 1.$$
(7)

Let $\{U_N, U_S\}$ be an open covering of S^2 , with U_N (U_S) being the northern (southern) hemisphere. Their intersection $U_N \cap U_S = S^1$ is simply the equator (compare Fig.1). For both U_N and U_S in the open cover we have a *local trivialization* $\phi_i : U_i \times U(1) \to \pi^{-1}(S^2)$, $i = N, S. \phi_N$ and ϕ_S are related on the intersection $U_N \cap U_S$, where

$$\phi_N(p,g) = \phi_S(p, t_{NS}(p) \circ g) , \quad p \in U_N \cap U_S = S^1 , \ g \in U(1) , \tag{8}$$

Figure 1: Stereographic projection of the sphere S^2 .

and the transition function is given by $t_{NS}: S^1 \to U(1)$.

a) Find the local trivializations $\phi_i^{-1} : \pi^{-1}(U_i) \to U_i \times U(1), i = N, S$.

Hint: Use the coordinates (X, Y) (and (U, V)) of the stereographic projection with respect to the north (south) pole to express Z = X + iY (and W = U + iV) in terms of the complex coordinates $z^1 = x^1 + ix^2$ and $z^2 = x^3 + ix^4$ of the 3-sphere S^3 .

b) Show that the map $\pi: S^3 \to S^2$ belongs to the element 1 of $\pi_3(S^2) \cong \pi_1(U(1)) = \mathbb{Z}$.