Exercise 5

1) Fundamental group
a) Recall the definition of the product between two loops α_{x} and β_{x} at $x \in \mathcal{M}$ denoted by $\alpha_{x} * \beta_{x}$ (see lecture). Verify that the product of homotopy classes $\left[\alpha_{x}\right]$ and $\left[\beta_{x}\right]$, as given by

$$
\begin{equation*}
\left[\alpha_{x}\right] *\left[\beta_{x}\right]=\left[\alpha_{x} * \beta_{x}\right], \tag{1}
\end{equation*}
$$

is well defined and satisfies the group axioms.
b) Let \mathcal{M} be arcwise connected. Show that the fundamental group $\pi_{1}(\mathcal{M}, x)$ is independent of the base point $x \in \mathcal{M}$, i.e.

$$
\begin{equation*}
\pi_{1}(\mathcal{M}, x) \cong \pi_{1}(\mathcal{M}, y), \quad \forall x, y \in \mathcal{M} \tag{2}
\end{equation*}
$$

1) Higher homotopy groups and Hopf invariant

In 1931 Hopf showed that the third homotopy group of the two-sphere $\pi_{3}\left(S^{2}\right)$ is nontrivial. As an example he considered what is now known as the Hopf map $\pi: S^{3} \rightarrow S^{2}$, defined by

$$
\begin{align*}
y^{1} & =2\left(x^{1} x^{3}+x^{2} x^{4}\right) \tag{3}\\
y^{2} & =2\left(x^{2} x^{3}-x^{1} x^{4}\right) \tag{4}\\
y^{3} & =\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2}-\left(x^{4}\right)^{2} \tag{5}
\end{align*}
$$

where the 3 -sphere S^{3} is embedded in \mathbb{R}^{4}, i.e.

$$
\begin{equation*}
S^{3}=\left\{x \in \mathbb{R}^{4} \mid\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}+\left(x^{4}\right)^{2}=1\right\} \tag{6}
\end{equation*}
$$

and the 2 -sphere S^{2} is parametrized by

$$
\begin{equation*}
\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2}+\left(y^{3}\right)^{2}=1 \tag{7}
\end{equation*}
$$

Let $\left\{U_{N}, U_{S}\right\}$ be an open covering of S^{2}, with $U_{N}\left(U_{S}\right)$ being the northern (southern) hemisphere. Their intersection $U_{N} \cap U_{S}=S^{1}$ is simply the equator (compare Fig.1). For both U_{N} and U_{S} in the open cover we have a local trivialization $\phi_{i}: U_{i} \times U(1) \rightarrow \pi^{-1}\left(S^{2}\right)$, $i=N, S . \phi_{N}$ and ϕ_{S} are related on the intersection $U_{N} \cap U_{S}$, where

$$
\begin{equation*}
\phi_{N}(p, g)=\phi_{S}\left(p, t_{N S}(p) \circ g\right), \quad p \in U_{N} \cap U_{S}=S^{1}, g \in U(1) \tag{8}
\end{equation*}
$$

Figure 1: Stereographic projection of the sphere S^{2}.
and the transition function is given by $t_{N S}: S^{1} \rightarrow U(1)$.
a) Find the local trivializations $\phi_{i}^{-1}: \pi^{-1}\left(U_{i}\right) \rightarrow U_{i} \times U(1), i=N, S$.

Hint: Use the coordinates (X, Y) (and (U, V)) of the stereographic projection with respect to the north (south) pole to express $Z=X+i Y$ (and $W=U+i V$) in terms of the complex coordinates $z^{1}=x^{1}+i x^{2}$ and $z^{2}=x^{3}+i x^{4}$ of the 3 -sphere S^{3}.
b) Show that the map $\pi: S^{3} \rightarrow S^{2}$ belongs to the element 1 of $\pi_{3}\left(S^{2}\right) \cong \pi_{1}(U(1))=\mathbb{Z}$.

