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I. BASICS OF QCD

The theory of strong interactions, quantum chromodynamics (QCD), has been put-forward on the basis of scat-
tering experiments that showed an internal SU(3)-symmetry and related charges much the same way quantum-
electrodynamics (QED) shows the U(1)-symmetry related to the electric charge. The corresponding gauge theory,
SU(3) Yang-Mills theory, is non-Abelian and hence self-interacting, i.e. the (quantised) pure gauge theory is already
non-trivial in contradistinction to the pure U(1)-theory.

A. Yang-Mills theory

1. Classical action

As in QED, the classical action can be derived from the gauge-invariant (minimal) extension of the action of a free
spin-one particle. The requirement of invariance of physics under local SU(Nc)-rotations with U 2 SU(Nc) (and the
minimal coupling) leads us from partial to covariant derivatives,

@µ ! Dµ(A) = @µ � i g Aµ . (1)

The gauge field Aµ is Lie-algebra–valued,

Aµ = Aa
µ ta , with a = 1, ..., N2

c � 1 . (2)

where ta are the generators of SU(N) with

[ta, tb] = i fabctc , trf (t
atb) =

1

2
�ab , (3)

where trf is the trace in the fundamental representation and the expansion coe�cients fabc are the structure constants
of the Lie algebra. In the adjoint representation the covariant derivative (1) reads

Dab
µ (A) = @µ�

ab � g fabcAc
µ , with (tcad)ab = �i fabc. (4)

The covariant derivative Dµ has to transform as a tensor under gauge transformations,

Dµ(A) ! Dµ(AU ) = U Dµ U† , with U = ei! 2 SU(Nc) , (5)

where ! 2 su(Nc) is the corresponding Lie algebra element. This implies

Aµ ! AU
µ = U Aµ U† � i

g
U @µU† , (6)

Consequently, in a non-Abelian gauge theory the gauge boson Aµ carries the corresponding color charge. In physical
QCD we have Nc = 3, the gauge group has eight generators, a = 1, ..., 8, the Gell-Mann matrices. Often one also
considers the SU(2)-theory as it has the same qualitative features (asymptotic freedom and confinement) but is
technically simpler. There are various notations on the market leading to factors i and � in the Lie algebra relations
above. In the present lecture notes we have chosen hermitian generators which leads to the factor +1/2 for the trace
in (3). It also entails real structure constants fabc in the Lie-algebra in (3).

The fieldstrength tensor is defined analoguously to QED with the commutator of covariant derivatives. Due to (1)
and (3) we find

Fµ⌫ =
i

g
[Dµ , D⌫ ] , (7)

and the fieldstrength tensor Fµ⌫ can be computed as

Fµ⌫ = F a
µ⌫t

a , with F a
µ⌫ = @µAa

⌫ � @⌫A
a
µ + g fabcAb

µ Ac
⌫ . (8)
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FIG. 1: Diagrammatical form of the Yang-Mills action.

It is easily shown with (7) that the fieldstrength Fµ⌫ transforms covariantly (as a tensor) under gauge transformations,

Fµ⌫(A
U ) =

i

g
[Dµ(AU

µ ), D⌫(A
U
⌫ )]

= U 1

g
[Dµ(Aµ), D⌫(A⌫)] U†

= U Fµ⌫(A) U†. (9)

This leads us finally to the Yang-Mills (YM) action,

SYM[A] =
1

2

Z

x
trf Fµ⌫ Fµ⌫ =

1

4

Z

x
F a

µ⌫ F a
µ⌫ , (10)

with
R

x =
R

ddx. Its gauge invariance follows from (9),

SYM[AU ] =
1

2

Z

x
trf U Fµ⌫(A)Fµ⌫(A) U† = SYM[A] , (11)

where the last equality holds due to cyclicity of the trace in color space. Clearly the action (10) with (8) is a self-
interacting theory with coupling constant g. It has a quadratic kinetic term and three-gluon and four-gluon vertices.
This is illustrated diagrammatically by Fig. 1. This allows us to read-o↵ the Feynman rules for the purely gluonic
vertices. The full Feynman rules of QCD in the general covariant gauge are summerised in Fig. 23. As in QED we
identify color-electric and color-magnetic fields as the components in the fieldstrength tensor,

Ea
i = F a

0i

Ba
i =

1

2
✏ijkF a

jk. (12)

In contradisctinction to QED the above color-electric and magentic fields are no observables, they change under gauge
transformations. Only tr ~E2, tr ~B2 are observables.

2. Generating functional of Yang-Mills theory

The quantisation of Yang-Mills theory is done within the path integral. Naively, the generating functional of pure
YM-theory would read

Z[J ] =

Z
dA exp

✓
�SY M [A] +

Z

x
Ja

µ Aa
µ

◆
, (13)

which contains redundent integrations due to gauge invariance of the action, see (11). These redundant integrations
are usually removed by introducing a gauge fixing,

F [Agf ] = 0 (14)
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Often used gauge fixings are provided by

@µAµ = 0 , covariant or Lorentz gauge ,

@iAi = 0 , Coulomb gauge ,

nµAµ = 0 , axial gauge . (15)

The general covariant gauge has the technical advantage that it does not single out a space-time direction. This prop-
erty reduces the possible tensor structure of correlation functions and hence simplifies computations. The Coulomb
gauge and the axial gauge single out specific frames. At finite temperature (and density) this might be useful as the
temperature singles out the thermal rest frame. It is here were the Coulomb gauge and the temporal or Weyl gauge
(nµ = �µ0) is used often.

Gauge fields that are connected by gauge transformations are physically equivalent, i.e. their actions agree. They
lie in so-called gauge orbits, {AU , U 2 SU(N)}, and fixing a gauge is equivalent to choosing a representative of such an
orbit A ! Agf , up to potential (Gribov) copies. The occurance of Gribov copies and how to handle them is discussed
in Appendix B. To keep things simple we ignore them for the time being and proceed with

The path integral measure dA in (13) can be split into an integration over physically inequivalent configurations
Agf and the gauge group,

dA = dAgf dU · J [Agf ], (16)

where J [Agf ] is the Jacobian of the transformation A ! (Agf , U) and dU is the Haar measure of the gauge group, see
e.g. [? ]. The coordinate transformation (16) and the computation of the Jacobian J is done within the Faddeev-Popov
quantisation, [1]. Within this procedure one inserts unity in the path integral,

1 =

Z
dU � ⇥F [AU ]

⇤
�F [A] with �F [A] =

✓Z
dU � ⇥F [AU ]

⇤◆�1

, (17)

where �F [A] is gauge-invariant due to the property d(UV) = dU of the Haar measure. Let us consider a general
observable O, like e.g. trF 2(x) trF 2(0). The expectation value of this observable can be calculated by

hOi =

R
dA O[A] e�S

YM [A]R
dA e�S

YM

[A]
=

R
dA dU � ⇥F [AU ]

⇤
�F [A] O[A] e�S

YM

[A]

R
dA dU � [F [AU ]] �F [A] e�S

YM

[A]
, (18)

where we have simply inserted (17) into the path integral. In (18) all terms are gauge invariant except for the �-

function. Hence we can absorb the U -dependence via A ! AU†
. Then the (infinite) integral over the Haar measure

decouples in numerator and denominator, and we arrive at

hOi =

R
dA � [F [A]] �F [A] O[A] e�S

YM [Agf ]R
dA � [F [A]] �F [A] e�S

YM [A]
,

It is left to compute the Jacobian J [A] = �F [A]. To that end we use the representation of the Dirac �-function

�[F [AU ]] =
1

|det �F�! |�[! � !1] with U = ei! and F [Agf = AU(!
1

)] = 0 . (19)

This leads to

�F [A] = | detMF [Agf ] | with MF [A] =
�F
�!

����
!=0

[A] . (20)

where Agf is the solution with the minimal distance to A = 0. In (20) we introduced the Faddeev-Popov determinant
detMF . For the Landau gauge,

@µAa
µ = 0 , a = 1, ..., N2

c � 1 , (21)
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we get

g MF [A] = ��@µDµ!

�!
= �@µDµ1. (22)

where we have used that the gauge transformation of the gauge field, (6) reads for infinitesimal gauge transformations
U = 1 + i!,

AU
µ = Aµ � 1

g
Dµ! . (23)

Note that the factor 1/g in the definition cancels in the normalised expectation values and we drop it. Furthermore
we assume that �@µDµ is a positive definite operator and we arrive at

�F [A] = det (�@µDµ) , or generally �F [A] = det M[A] . (24)

For the final expression for the generating functional (13) we slightly modify the gauge by introducing a Gaußian
average over the gauges

�[F [AU ]] !
Z

dC �[F [AU � C]] exp

⇢
� 1

2⇠

Z

x
CaCa

�
. (25)

This leads us to the gauge fixed generating functional

Z[J ] =

Z
dA �F [A] e�S

YM

[A]+ 1

2⇠

R
x

FaFa

, (26)

The Faddeev-Popov determinant, (24), can be represented by means of a Grassmann integration,

det MF [A] =

Z
dC dC̄ exp

⇢Z
ddx ddy C̄a(x)Mab

F (x, y)Cb(y)

�
. (27)

Restricting ourselves to the averaged Landau gauge, (21) with (25) we finally arrive at

Z[JA, JC , J̄C ] =

Z
dA dC dC̄ e�S[A,c,c̄]+

R
x

(J
A

·A+J̄
C

·C�C̄·J
C

) , (28)

with

SA =
1

4

Z

x
F a

µ⌫F
a
µ⌫ +

1

2⇠

Z

x

�
@µAa

µ

�2
+

Z

x
C̄a@µDab

µ Cb , (29)

where
R

x =
R

ddx and the Landau gauge is achieved for ⇠ = 0. Note that the ghost action implies a negative
dispersion for the ghost, related to the determinant of the positive operator MF = �@µDµ. However, this is a matter
of convention, we might as well use a positive dispersion, the minus sign drops out for all correlation functions which
do not involve ghosts, and only those are related to scattering amplitudes. The source term reads in full details

Z

x

�
JA · A + J̄C · C � C̄ · JC

�
=

Z

x

�
Ja

A,µAa
µ + J̄a

CCa � C̄aJa
C

�
. (30)

The Feynman rules derived from (29) are summarised in Appendix A.

B. QCD

1. Classical action of the matter sector

The classical action of the matter sector of QCD is given by the Dirac action of the quarks,

SDirac[ ,  ̄, A] =

Z

x
 ̄ · (D/ + m + µ�0) ·  , (31)
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where

D/ = �µDµ , with {�µ , �⌫} = 2 �µ⌫ . (32)

In (31), the fermions carry Dirac ⇠, gauge group indices A (fundamental representation) as well flavour indices f , that
is  A

⇠,f . The Dirac operator D/ AB
⇠⇠0 is diagonal in the flavour space as is the chemical potential term. The mass term

depends on the current quark masses related to spontanous symmetry breaking of the Higgs sector of the Standard
Model and the mass matrix mef

 with e, f = 1, ..., Nf is slightly o↵-diagonal (CKM-matrix). The up and down current

quark masses are of the order 2 � 5 MeV whereas the current quark mass of the strange quark is of the order 102

MeV. The other quark masses are of order 1 � 2 ⇤ 102 GeV. In low energy QCD this has to be compared with the
scale of strong chiral symmetry breaking �m ⇡ 300 MeV. This situation is summarised in Table I. Evidently for most

Generation first second third Charge

Mass [MeV] 1.5-4 1150-1350 170⇥103

Quark u c t 2
3

Quark d s b � 1
3

Mass [MeV] 4-8 80-130 (4.1-4.4)⇥103

TABLE I: Quark masses and charges. The scale of strong chiral symmetry breaking is �m ⇡ 300 MeV as is ⇤
QCD

. This entails
that only 2 + 1 flavours have to be considered for most applications to the phase diagram of QCD.

applications to the phase diagram of QCD we only have to consider the three lightest quark flavours, that is up, down
and strange quark, to be dynamical. The current quark masses of up and down quarks are two order of magnitude
smaller than the QCD infrared scales ⇤QCD, �m, Tconf , T�. Note that all of the latter scales in fact related to ⇤QCD.
Hence the up and down quarks can be considered to be massless. This leads to the important observation that the
physical masses of neutrons and protons –and hence the masses of the world around us– comes about from strong
chiral symmetry breaking and has but nothing to do with the Higgs sector.

In turn, the mass of the strange quark is of the order of ⇤QCD and has to be considered as heavy for application in
low energy QCD. The three heavier flavours, charm, bottom and top, are essentially static they do not contribute to
the QCD dynamics relevant for its phase structure even though in particular the c-quark properties and bound states
are much influenced by the infrared dynamics of QCD. In summary we will consider the Nf = 2 and Nf = 2 + 1
flavour cases for the phase structure of QCD, while for LHC physics all flavours are relevant.

2. Generating functional of QCD and perturbation theory

The generating functional of QCD is the straightforward extension of that of Yang-Mills as presented in the previous
Section I A, see (28). The quark fields are Grassmannian due to their fermionic nature and we are led to the generating
functional

Z[J ] =

Z
d� e�S

QCD

[�]+
R

x

J·� , (33)

The gauge fixed action SQCD in (33) in the Landau gauge is given by

SQCD[�] =
1

4

Z

x
F a

µ⌫F
a
µ⌫ +

1

2⇠

Z

x

�
@µAa

µ

�2
+

Z

x
c̄a@µDab

µ cb +

Z

x
 ̄ · (D/ + m + iµ�0) ·  ,

and we have introduced super-fields and super-currents

� = (A, C, C̄, ,  ̄) , J = (JA, JC , J̄C , J , J̄ ) , (34)

with

d� =

Z
dA dC dC̄ d d ̄ , and J · � = JA · A + J̄C · C � C̄ · JC + J̄ ·  �  ̄ · J . (35)

The action in (34) is illustrated diagrammatically by Fig. 2, the gauge dependence being displayed by the last two
graphs in the first line, the ghost terms, as well as the hidden gauge fixing dependence of the inverse gluon propagator.
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FIG. 2: Diagrammatical form of the QCD action.

The Feynman rules are summarised in Appendix A. The two equations (33), (34) define the fundamental quantum
theory of strong interactions and have, apart from the mass matrix mq of the quarks one input parameter, the strong
coupling. In the full quantum theory we have a running coupling

↵s(p) =
g2

4⇡
, (36)

where p is the relevant momentum/energy scale of a given process. The scale-dependence of ↵s(p) is inflicted by
quantum corrections. For perturbation theory being applicable the expansion parameter ↵s/(4⇡) should be small.
Moreover, the perturbative expansion is an asymptotic series (with convergence radius ↵s,max = 0). The gluon
self-coupling in QCD, depicted in Fig. 2 leads to a running coupling which decreases with the momentum scale, i.e. ,

�g =
1

2
p@p↵s = ��0↵

2 + O(↵3
s) with �0 =

↵2
s

12⇡
(11Nc + 2Nf ) . (37)

Integrating the �-function (37) at one loop leads to the running coupling

↵s(p) =
↵s(µ)

1 + �0↵s(µ) log p2

µ2

+ O(↵2
s) , (38)

with some reference (momentum) scale µ2. The running coupling in (38) tends to zero logarithmically for p ! 1.
This property is called asymptotic freedom (Nobel prize 2004) and guarantees the existence of the the perturbative
expansion of QCD. Its validity for large energies and momenta is by now impressively proven in various scattering
experiments, see e.g. [2]. These experiments can also be used to define a running coupling (which is not unique beyond
two loop, see e.g. [3]) and the related plot of ↵s(p2) in Fig. 3 has been taken from [2].

FIG. 3: Experimental tests of the running coupling, figure taken from [2].
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In turn, in the infrared regime of QCD at low momentum scales, perturbation theory is not applicable any more.
The coupling grows and the failure of perturbation theory is finally signaled by the so-called Landau pole with
↵s(⇤QCD) = 1. We emphasise that a large or diverging coupling does not imply confinement, the theory could still
be QEDsS-like showing a Coulomb-potential with a large coupling. The latter would not lead to the absence of colored
asymptotic states but rather to so-called color charge superselection sectors as in QED. There, we have asymptotic
charged states and no physics process can change the charge.
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Appendix A: Feynman rules for QCD in the covariant gauge

In this Appendix we depict the Feynman rules for QCD in the general covariant gauge.

= g2(2⇡)4�(4)

 
4X

i=1

ki

!
f iabf icd (�µ⇢�⌫� � �µ��⌫⇢) + f iacf ibd (�µ⌫�⇢� � �µ��⌫⇢) + f iadf ibc (�µ⌫�⇢� � �µ⇢�⌫�)

�

d k4,�

a k1,µ b k2,⌫

c k3,⇢

= i gfabc(2⇡)4�(4)(k1 + k2 + k3)

"
(k2 � k1)⇢ �µ⌫ + (k1 � k3)⌫ �µ⇢ + (k3 � k2)µ �⌫⇢

#
a k1,µ

c k3,⇢ b k2,⌫

= �ab�(4)(p + k)

✓
�µ⌫ � (1 � ⇠)

pµp⌫

p2

◆
1

p2

a b

k⌫pµ

p k
= ��ab�(4)(p + k)

1

p2
-1ba

a kµ

= �i g�µT a (2⇡)4 �(4)(p � q � k)

q p

-1

p k
= �(4)(p + k)

1

i p/ + m

a

b c

!

!

!

kµ

pq

c pb q

a kµ

= �i gfabcpµ(2⇡)4�(4)(p � q � k)

FIG. 23: Feynman rules.

Appendix B: Gribov copies

In Chapter I A 2 we have derived the gauge-fixed path integral under the assumption that there is only one repre-
sentative of the gauge orbit that satisfies the gauge fixing condition. However, there might be several (Gribov) copies,
i.e. several physically equivalent solutions to the gauge fixing condition that are related by gauge transformations not
yet fixed by the gauge fixing condition F = 0. Indeed, any su�ciently smooth gauge exhibits (infinite many) Gribov
copies,

P
Gribov copies = #Gr. As for the integration over the gauge group, #Gr occurs in the numerator as well as

the denominator in (18) and hence cancels. It is left to compute the Jacobian J [A] = �F [A]. To that end we use the
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representation of the Dirac �-function

�[F [AU ]] =
#

GrX

i=1

1

|det �F�! |�[! � !i] with U = ei!. (B1)

which leads to

�F [A] =

 
#

GrX

i=1

1�� detMF [Aei!

i ]
��

!�1

with MF [A] =
�F
�!

����
!=0

[Aei!

] . (B2)

In the QFTII lecture notes in chapter IV, Appendix A the occurance of the Gribov copies in gauge field reparam-
eterisations due to gauge fixings is elucidated at the simple example of the reparameterisation of a two-dimensional
intergal.
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