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These lecture notes are the ambitious attempt to combine the two QCDs of the two lecturers
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including the basic theoretical concepts we need to compute observables at hadron colliders.
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I. BASICS

The theory of strong interactions, quantum chromodynamics (QCD), has been developed on the basis of scat-
tering experiments that showed an internal SU(3)-symmetry and related charges much the same way quantum-
electrodynamics (QED) shows the U(1)-symmetry related to the electric charge. The corresponding gauge theory,
SU(3) Yang-Mills theory, is non-Abelian and hence self-interacting, i.e. the (quantized) pure gauge theory is already
non-trivial, in contrast to the U(1)-based QED.

A. Yang-Mills theory

We start by constructing the pure gauge part or Yang-Mills part of QCD as an SU(3) gauge theory, fixing our
conventions and repeating the main features known from the QFT II lecture. The weak SU(2)-theory turns out to
have the same qualitative features as QCD (asymptotic freedom and confinement), but is technically simpler. On the
other hand, the SU(2) gauge bosons in the Standard Model are massive, leading to a major modification of this theory.
Instead, we will assume massless gauge bosons throughout this lecture. As for QED, the classical action of QCD can
be derived from the gauge-invariant (minimal) extension of the action of a free spin-one particle. The requirement
of invariance of physics under local SU(Nc) or color rotations with U ∈ SU(Nc), combined with a minimal coupling,
leads us from partial to covariant derivatives,

∂µ → Dµ(A) = ∂µ − i g Aµ . (I.1)

The gauge field Aµ in the adjoint representation is Lie-algebra–valued,

Aµ = Aaµ t
a , with a = 1, ..., N2

c − 1 . (I.2)

The matrices ta are the generators of SU(Nc). In physical QCD the gauge group has eight generators, a = 1, ..., 8,
the Gell-Mann matrices. They are defined through

[ta, tb] = i fabctc , trf (t
atb) =

1

2
δab , (I.3)

where the coefficients fabc are the structure constants of the Lie algebra. and trf is the trace in the fundamental
representation. The covariant derivative (I.1) does not carry any indices. In the adjoint representation it links to
SU(Nc) indices and reads

Dab
µ (A) = ∂µδ

ab − g fabcAcµ . with (tcad)
ab

= −i fabc. (I.4)

The covariant derivative Dµ with its two color indices then has to transform as a tensor under gauge transformations,

Dµ(A)→ Dµ(AU ) = U Dµ U† , with U = eiω ∈ SU(Nc) , (I.5)

where ω ∈ su(Nc) is the corresponding Lie algebra element. The covariance of D under gauge transformations in (I.5)
implies

Aµ → AUµ =
i

g
U (DµU

†) = U Aµ U† +
i

g
U (∂µU†) . (I.6)

From the first term we confirm that in a non-Abelian gauge theory the gauge boson Aµ carries the corresponding
color charge. There are various notations on the market leading to factors i and − in the Lie algebra relations above.
In the present lecture notes we have chosen hermitian generators which leads to the factor +1/2 for the trace in (I.3).
It also entails real structure constants fabc in the Lie-algebra in (I.3).

In analogy to QED the field strength tensor is defined through the commutator of covariant derivatives, it is the
curvature tensor of the gauge theory. Based on the definitions in (I.1) and (I.3) we find

Fµν =
i

g
[Dµ , Dν ] = F aµνt

a with F aµν = ∂µA
a
ν − ∂νAaµ + g fabcAbµA

c
ν . (I.7)
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Defined as in (I.7) the field strength Fµν also transforms covariantly (as a tensor) under gauge transformations,

Fµν(AU ) =
i

g
[Dµ(AU ), Dν(AU )]

=
i

g
U [Dµ(Aµ), Dν(Aν)]U† = U Fµν(A)U† . (I.8)

This allows us to define a gauge-invariant Yang-Mills (YM) action,

SYM[A] =
1

2

∫

x

trf (Fµν Fµν) =
1

4

∫

x

F aµν F
a
µν , (I.9)

with
∫
x

=
∫
ddx. Its gauge invariance follows from (I.8),

SYM[AU ] =
1

2

∫

x

trf

(
U Fµν(A)Fµν(A)U†

)
= SYM[A] , (I.10)

where the last equality holds due to cyclicity of the trace in color space. Clearly, the action (I.9) with the field
strength (I.7) is a self-interacting theory with coupling constant g. It has a quadratic kinetic term and three-gluon
and four-gluon vertices. This is illustrated diagrammatically as

+ +
−1

SYM[A] ∝

This allows us to read off the Feynman rules for the purely gluonic vertices. The full Feynman rules of QCD in
the general covariant gauge are summarized in Fig. 25 in Appendix A. As in QED we can identify color-electric and
color-magnetic fields as the components in the field strength tensor,

Eai = F a0i

Bai =
1

2
εijkF

a
jk. (I.11)

In contrast to QED these color-electric and magnetic fields are no observables, they change under gauge transforma-

tions. Only tr ~E2, tr ~B2 are observables.

A Yang-Mills theory can most easily be quantized through the path integral. Naively, the generating functional of
pure YM-theory would read

Z[J ] =

∫
dA exp

(
−SYM[A] +

∫

x

Jaµ A
a
µ

)
. (I.12)

The fundamental problem is that it contains redundant integrations due to gauge invariance of the action, see (I.10).
These redundant integrations are usually removed by introducing a gauge fixing condition

F [Agf] = 0 (I.13)

Commonly used gauge fixings are

∂µAµ = 0 , covariant or Lorenz gauge ,

∂iAi = 0 , Coulomb gauge ,

nµAµ = 0 , axial gauge . (I.14)

The general covariant gauge has the technical advantage that it does not single out a space-time direction. This prop-
erty reduces the possible tensor structure of correlation functions and hence simplifies computations. The Coulomb
gauge and the axial gauge single out specific frames. At finite temperature (and density) this might be useful as the
temperature singles out the thermal rest frame. In that case the Coulomb gauge and the temporal or Weyl gauge
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(nµ = δµ0) are used often.

Gauge fields that are connected by gauge transformations are physically equivalent, i.e. their actions agree. They
lie in so-called gauge orbits, {AU ,U ∈ SU(N)}, and fixing a gauge is equivalent to choosing a representative of such
an orbit A → Agf , up to potential (Gribov) copies. The occurrence of Gribov copies and how to handle them is
discussed in Appendix B. To keep things simple we ignore them for the time being and continue with the construction
of the QCD Lagrangian.

The path integral measure dA introduced in (I.12) can be split into an integration over physically inequivalent
configurations Agf and the gauge transformations U ,

dA = J dAgf dU (I.15)

In (I.15) J denotes the Jacobian of the transformation A→ (Agf,U), and we include dU as the Haar measure of the
gauge group, see e.g. [1]. The coordinate transformation (I.15) and the computation of the Jacobian J are done using
the Faddeev-Popov quantization, [2]. To separate the integral (I.12) into the two parts shown in (I.15) we insert a
very convoluted unity into the path integral,

1 =

∫
dU δ

[
F [AU ]

]
∆F [A] = ∆F [A]

∫
dU δ

[
F [AU ]

]
⇔ ∆F [A] =

(∫
dU δ

[
F [AU ]

])−1

, (I.16)

where ∆F [A] is gauge-invariant due to the property d(UV) = dU of the Haar measure. For the path integral this
gives us

∫
dA e−SYM[A] =

∫
dA dU δ

[
F [AU ]

]
∆F [A] e−SYM[A] . (I.17)

Let us now consider a general observable O, like e.g. trF 2(x) trF 2(0). Observables are necessarily gauge invariant
and local. The expectation value of O is defined as

〈O〉 =

∫
dAO[A] e−SYM[A]

∫
dA e−SYM[A]

=

∫
dA dU δ

[
F [AU ]

]
∆F [A]O[A] e−SYM[A]

∫
dAdU δ [F [AU ]] ∆F [A] e−SYM[A]

, (I.18)

where we have simply inserted (I.16) into the path integral. In (I.18) all terms are gauge invariant except for the

δ-function. Hence we can absorb the U-dependence via A→ AU
†
. Then the (infinite) integral over the Haar measure

decouples in numerator and denominator, and we arrive at

〈O〉 =

∫
dAδ [F [A]] ∆F [A]O[A] e−SYM[Agf]

∫
dAδ [F [A]] ∆F [A] e−SYM[Agf]

.

To compute the Jacobian ∆F [A] we apply a coordinate transformation to the δ-distribution

δ[F [AU ]] =
δ[ω − ω1]

|det δFδω |
≡ δ[ω − ω1]

|detMF [A]| with U = eiω , (I.19)

combined with a gauge fixing condition in the form (I.13)

F [Agf = AU(ω1)] = 0 . (I.20)

Using the definition (I.16) this leads to

∆F [A] = |detMF [Agf] | with MF [A] =
δF
δω

∣∣∣∣
ω=0

[A] . (I.21)

Here Agf is the solution with the minimal distance to A = 0. The inverse Jacobian detMF of the ansatz (I.15) is called
the Faddeev-Popov determinant. For its computation we consider an infinitesimal gauge transformation U = 1 + i g ω
where we have rescaled the transformation with the strong coupling g for convenience. Such a rescaling gives global
factors of powers of 1/g that drop out in normalized expectation values. Then, the infinitesimal variation of the
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covariant gauge ∂µAµ = 0 follows as

F [AU ] = ∂µA
U
µ = ∂µAµ − ∂µDµω +O(ω2)

!
= 0 . (I.22)

This gives us the Faddeev-Popov matrix

MF [A] = −δ∂µDµω

δω
= −∂µDµ

δω

δω
= −∂µDµ1. (I.23)

We assume that −∂µDµ is a positive definite operator and we arrive at

∆F [A] = detM[A] = det (−∂µDµ) . (I.24)

A useful observation is that determinants can be represented by a Gaussian integral. In regular space such a Gaussian
integral reads

∫

x

e−
1
2x
TMx =

(2π)n√
detM

. (I.25)

We want to use this relation to replace the Faddeev-Popov determinant (I.24) in the Lagrangian. It turns out that the
usual form does not give a useful action or Lagrangian. However, we can instead use two anti-commuting Grassmann
fields C and switch the sign in the exponent to

detMF [A] =

∫
dcdc̄ exp

{∫
ddx ddy c̄a(x)Mab

F (x, y)cb(y)

}
. (I.26)

Finally we slightly modify the gauge by introducing a Gaußian average over the gauges

δ[F [AU ]]→
∫

dC δ[F [AU − C]] exp

{
− 1

2ξ

∫

x

CaCa
}
. (I.27)

In summary, and restricting ourselves to the covariant gauge we then arrive at the generating functional for our
Yang-Mills theory

Z[JA, Jc, J̄c] =

∫
dA dcdc̄ e−SA[A,c,c̄]+

∫
x (JA·A+J̄c·c−c̄·Jc) . (I.28)

The action including a general gauge fixing term and the Faddeev-Popov ghosts ca is

SA[A, c, c̄] =
1

4

∫

x

F aµνF
a
µν +

1

2ξ

∫

x

(
∂µA

a
µ

)2
+

∫

x

c̄a∂µD
ab
µ c

b , (I.29)

where
∫
x

=
∫
ddx and the Landau gauge is achieved for ξ = 0. Note that the ghost action implies a negative

dispersion for the ghost, related to the determinant of the positive operatorMF = −∂µDµ. However, this is a matter
of convention, we might as well use a positive dispersion, the minus sign drops out for all correlation functions which
do not involve ghosts, and only those are related to scattering amplitudes. The source term with all indices reads

∫

x

(
JA ·A+ J̄c · c− c̄ · Jc

)
≡
∫

x

(
JaA,µA

a
µ + J̄ac c

a − c̄aJac
)
. (I.30)

The Feynman rules derived from (I.29) are summarized in Appendix A.

B. QCD

After briefly sketching the gauge part of QCD we now add fermionic matter fields. As before we start with the
classical action, now given by the Dirac action of a quark doublet,

SDirac[ψ, ψ̄, A] = i

∫

x

ψ̄ (D/ + mψ + µγ0) ψ , (I.31)
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where the Dirac matrices are defined through

{γµ , γν} = 2 δµν (I.32)

In (I.31), the fermions carry a Dirac index defining the 4-component spinor, gauge group indices in the fundamental
representation of SU(3), as well flavor indices. The latter we will ignore as long as we only talk about QCD and
neglect the doublet nature of the matter fields in the Standard Model. The Dirac operator D/ is diagonal in the flavor
space as is the chemical potential term. The mass term depends on the current quark masses related to spontaneous
symmetry breaking of the Higgs sector of the Standard Model. The up and down current quark masses are of the
order 2 − 5 MeV whereas the current quark mass of the strange quark is of the order 102 MeV. The other quark
masses are of order 1−200 GeV. In low energy QCD this has to be compared with the scale of strong chiral symmetry
breaking ∆m ≈ 300 MeV. This mass scales are summarized in Table I.

Generation first second third Charge
Mass [MeV] 1.5-4 1150-1350 170×103

Quark u c t 2
3

Quark d s b − 1
3

Mass [MeV] 4-8 80-130 (4.1-4.4)×103

TABLE I: Quark masses and charges. The scale of strong chiral symmetry breaking is ∆m ≈ 300 MeV as is ΛQCD.
This entails that only 2 + 1 flavours have to be considered for most applications to the phase diagram of QCD.

Evidently, for most applications of the QCD phase diagram we only have to consider the three lightest quark flavors,
that is up, down and strange quark, to be dynamical. The current quark masses of up and down quarks are two order
of magnitude smaller than all QCD infrared scales related to ΛQCD. Hence, the up and down quarks can be considered
to be massless. This leads to the important observation that the physical masses of neutrons and protons — and
hence the masses of the world around us — comes about from strong chiral symmetry breaking and has nothing to
do with the Higgs sector.

In turn, the mass of the strange quark is of the order of ΛQCD and has to be considered heavy for application in low
energy QCD. The three heavier flavors, charm, bottom and top, are essentially static they do not contribute to the
QCD dynamics relevant for its phase structure even though in particular the c-quark properties and bound states are
much influenced by the infrared dynamics of QCD. In summary we will consider the Nf = 2 and Nf = 2 + 1 flavor
cases for the phase structure of QCD, while for LHC physics all flavors are relevant.

Again in analogy to the Yang-Mills action we describe the quantized theory using its generating functional. The
full generating functional of QCD is the straightforward extension of the Yang-Mills version in (I.28). The quark
fields are Grassmann fields because of their fermionic nature and we are led to the generating functional

Z[J ] =

∫
dΦ e−SQCD[Φ]+

∫
x
J·φ , (I.33)

As a notation we have introduced super-fields and super-currents

Φ = (A, c, c̄, ψ, ψ̄) J = (JA, Jc, J̄c, Jψ, J̄ψ)

dΦ =

∫
dAdcdc̄dψ dψ̄ J · Φ = JA ·A+ J̄c · c− c̄ · Jc + J̄ψ · ψ − ψ̄ · Jψ . (I.34)

The gauge-fixed action SQCD in (I.33) in the Landau gauge is given by

SQCD[Φ] =
1

4

∫

x

F aµνF
a
µν +

1

2ξ

∫

x

(
∂µA

a
µ

)2
+

∫

x

c̄a∂µD
ab
µ c

b + i

∫

x

ψ̄ (D/ + mψ + µγ0)ψ . (I.35)

The action in (I.35) is illustrated diagrammatically as
For physical observables the gauge dependence entering through the last two graphs in the first line, the ghost terms, is
cancelled by the hidden gauge fixing dependence of the inverse gluon propagator. The Feynman rules are summarized
in Appendix A.
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SQCD ∝ + +
−1

+
-1

+
−1

-1
+

−1
+

FIG. 1: Diagrammatical form of the QCD action.

II. PHYSICS OF DIVERGENCES

Now that we know the quantized action of QCD we can compute all kinds of processes to leading order in the strong
couplings and beyond. From general field theory we know that when we are interested for example in cross section
prediction with higher precision we need to compute further terms in its perturbative series in αs. This computation
will lead to ultraviolet divergences which can be absorbed into counter terms for any parameter in the Lagrangian.
The crucial feature is that for a renormalizable theory like our Standard Model the number of counter terms is finite,
which means once we know all parameters including their counter terms our theory becomes predictive.

We will see that in QCD processes we also encounter another kind of divergences. They arise from the infrared
momentum regime. To understand their effects in LHC physics it is instructive to see what happens to the much
better understood ultraviolet divergences. First, we will review how such ultraviolet divergences arise and how they are
removed. Next, we will remind ourselves how running parameters appear in this procedure, i.e. how scale dependence
is linked to the appearance of divergences. Finally, we need to interpret the use of running parameters physically and
see that in perturbation theory they resum classes of logarithms to all orders in perturbation theory. For the infrared
divergences we will follow exactly the same steps and develop some crucial features of hadron collider physics.

A. Ultraviolet divergences

Renormalization as the proper treatment of ultraviolet divergences is one of the most important things to understand
about field theories; you can find more detailed discussions in any book on advanced field theory. The particular aspect
of renormalization which will guide us through this section is the appearance of the renormalization scale.

In perturbation theory, scales automatically arise from the regularization of infrared or ultraviolet divergences. We
can see this by writing down a simple scalar loop integral, with to two virtual scalar propagators with masses m1,2

and an external momentum p flowing through a diagram

B(p2;m1,m2) ≡
∫

d4q

16π2

1

q2 −m2
1

1

(q + p)2 −m2
2

. (II.1)

Such two-point functions appear for example in the gluon self energy with virtual gluons, with massless ghost scalars,
with a Dirac trace in the numerator for quarks, and with massive scalars for supersymmetric scalar quarks. In those
cases the two masses are identical m1 = m2. The integration measure 1/(16π2) is dictated by the Feynman rule for
the integration over loop momenta. Counting powers of q in Eq.(II.1) we see that the integrand is not suppressed by
powers of 1/q in the ultraviolet, so it is logarithmically divergent and we have to regularize it. Regularizing means
expressing the divergence in a well–defined manner or scheme, allowing us to get rid of it by renormalization.

One regularization scheme is to introduce a cutoff into the momentum integral Λ, for example through the so-
called Pauli—Villars regularization. Because the ultraviolet behavior of the integrand or integral cannot depend on
any parameter living at a small energy scales, the parameterization of the ultraviolet divergence in Eq.(II.1) cannot
involve the mass m or the external momentum p2. The scalar two-point function has mass dimension zero, so its
divergence has to be proportional to log(Λ/µR) with a dimensionless prefactor and some scale µ2

R which is an artifact
of the regularization of such a Feynman diagram.

A more elegant regularization scheme is dimensional regularization. It is designed not to break gauge invariance
and naively seems to not introduce a mass scale µR. When we shift the momentum integration from 4 to 4 − 2ε
dimensions and use analytic continuation in the number of space–time dimensions to renormalize the theory, a
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renormalization scale µR nevertheless appears once we ensure the two-point function and with it observables like
cross sections keep their correct mass dimension

∫
d4q

16π2
· · · −→ µ2ε

R

∫
d4−2εq

16π2
· · · = iµ2ε

R

(4π)2

[
C−1

ε
+ C0 + C1 ε+O(ε2)

]
. (II.2)

At the end, the scale µR might become irrelevant and drop out after renormalization and analytic continuation, but
to be on the safe side we keep it. The constants Ci in the series in 1/ε depend on the loop integral we are considering.
To regularize the ultraviolet divergence we assume ε > 0 and find mathematically well defined poles 1/ε. Defining
scalar integrals with the integration measure 1/(iπ2) will make for example C−1 come out as of the order O(1). This
is the reason we usually find factors 1/(4π)2 = π2/(2π)4 in front of the loop integrals.

The poles in 1/ε will cancel with the universal counter terms once we renormalize the theory. Counter terms we
include by shifting parameters in the Lagrangian and the leading order matrix element. They cancel the poles in the
combined leading order and virtual one-loop prediction

|MLO(g) +Mvirt|2 = |MLO(g)|2 + 2 ReMLO(g)Mvirt + · · ·
→ |MLO(g + δg)|2 + 2 ReMLO(g)Mvirt + · · ·

with g → gbare = g + δg and δg ∝ αs/ε . (II.3)

The dots indicate higher orders in αs, for example absorbing the δg corrections in the leading order and virtual
interference. As we can see in Eq.(II.3) the counter terms do not come with a factor µ2ε

R in front. Therefore, while
the poles 1/ε cancel just fine, the scale factor µ2ε

R will not be matched between the actual ultraviolet divergence and
the counter term.

We can keep track of the renormalization scale best by expanding the prefactor of the regularized but not yet
renormalized integral in Eq.(II.2) in a Taylor series in ε, no question asked about convergence radii

µ2ε
R

[
C−1

ε
+ C0 +O(ε)

]
= e2ε log µR

[
C−1

ε
+ C0 +O(ε)

]

=
[
1 + 2ε logµR +O(ε2)

] [C−1

ε
+ C0 +O(ε)

]

=
C−1

ε
+ C0 + C−1 logµ2

R +O(ε)

→ C−1

ε
+ C0 + C−1 log

µ2
R

M2
+O(ε) . (II.4)

In the last step we correct by hand for the fact that logµ2
R with a mass dimension inside the logarithm cannot appear

in our calculations. From somewhere else in our calculation the logarithm will be matched with a logM2 where M2 is
the typical mass or energy scale in our process. This little argument shows that also in dimensional regularization we
introduce a mass scale µR which appears as log(µ2

R/M
2) in the renormalized expression for our observables. There is

no way of removing ultraviolet divergences without introducing some kind of renormalization scale.

In Eq.(II.4) there appear two contributions to a given observable, the expected C0 and the renormalization–induced
C−1. Because the factors C−1 are linked to the counter terms in the theory we can often guess them without actually
computing the loop integral, which is very useful in cases where they numerically dominate.

Counter terms as they schematically appear in Eq.(II.3) are not uniquely defined. They need to include a given
divergence to return finite observables, but we are free to add any finite contribution we want. This opens many ways
to define a counter term for example based on physical processes where counter terms do not only cancel the pole but
also finite contributions at a given order in perturbation theory. Needless to say, such schemes do not automatically
work universally. An example for such a physical renormalization scheme is the on–shell scheme for masses, where we
define a counter term such that external on–shell particles do not receive any corrections to their masses. For the top
mass this means that we replace the leading order mass with the bare mass, for which we then insert the expression
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in terms of the renormalized mass and the counter term

mbare
t = mt + δmt

= mt +mt
αsCF

4π

(
3

(
−1

ε
+ γE − log(4π)− log

µ2
R

M2

)
− 4 + 3 log

m2
t

M2

)

≡ mt +mt
αsCF

4π

(
−3

ε̃
− 4 + 3 log

m2
t

M2

)
⇔ 1

ε̃

(
µ2
R

M2

) ≡ 1

ε
− γE + log

4πµ2
R

M2
, (II.5)

with the color factor CF = (N2− 1)/(2N). The convenient scale dependent pole 1/ε̃ includes the universal additional
terms like the Euler gamma function and the scaling logarithm. This logarithm is the big problem in this universality
argument, since we need to introduce the at this stage arbitrary energy scale M to separate the universal logarithm
of the renormalization scale and the parameter-dependent logarithm of the physical process.

A theoretical problem with this on–shell renormalization scheme is that it is not gauge invariant. On the other
hand, it describes for example the kinematic features of top pair production at hadron colliders in a stable perturbation
series. This means that once we define a more appropriate scheme for heavy particle masses in collider production
mechanisms it better be numerically close to the pole mass. For the computation of total cross sections at hadron
colliders or the production thresholds at e+e− colliders the pole mass is not well suited at all, but as we will see later
this is not where we expect to measure particle masses at the LHC, so we should do fine with something very similar
to the pole mass.

Another example for a process dependent renormalization scheme is the mixing of γ and Z propagators. There we
choose the counter term of the weak mixing angle such that an on–shell Z boson cannot oscillate into a photon, and
vice versa. We can generalize this scheme for mixing scalars as they for example appear in supersymmetry, but it is
not gauge invariant with respect to the weak gauge symmetries of the Standard Model either. For QCD corrections,
on the other hand, it is the most convenient scheme keeping all exchange symmetries of the two scalars.

To finalize this discussion of process dependent mass renormalization we quote the result for a scalar supersymmetric
quark, a squark, where in the on–shell scheme we find

mbare
q̃ = mq̃ + δmq̃

= mq̃ +mq̃
αsCF

4π

(
−2r

ε̃
− 1− 3r − (1− 2r) log r − (1− r)2

log

∣∣∣∣
1

r
− 1

∣∣∣∣− 2r log
m2
q̃

M2

)
. (II.6)

with r = m2
g̃/m

2
q̃. The interesting aspect of this squark mass counter term is that it also depends on the gluino mass,

not just the squark mass itself. The reason why QCD counter terms tend to depend only on the renormalized quantity
itself is that the gluon is massless. In the limit of vanishing gluino contribution the squark mass counter term is again
only proportional to the squark mass itself

mbare
q̃

∣∣∣∣∣
mg̃=0

= mq̃ + δmq̃ = mq̃ +mq̃
αsCF

4π

(
−1

ε̃
− 3 + log

m2
q̃

M2

)
. (II.7)

Taking the limit of Eq.(II.6) to derive Eq.(II.7) is computationally not trivial, though.

One common feature of all mass counter terms listed above is δm ∝ m, which means that we actually encounter a
multiplicative renormalization

mbare = Zmm = (1 + δZm)m =

(
1 +

δm

m

)
m = m+ δm , (II.8)

with δZm = δm/m linking the two ways of writing the mass counter term. This form implies that particles with
zero mass will not obtain a finite mass through renormalization. If we remember that chiral symmetry protects a
Lagrangian from acquiring fermion masses this means that on–shell renormalization does not break this symmetry. A
massless theory cannot become massive by mass renormalization. Regularization and renormalization schemes which
do not break symmetries of the Lagrangian are ideal.

When we introduce counter terms in general field theory we usually choose a slightly more model independent
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scheme — we define a renormalization point. This is the energy scale at which the counter terms cancels all higher
order contributions, divergent as well as finite. The best known example is the electric charge which we renormalize
in the Thomson limit of zero momentum transfer through the photon propagator

e→ ebare = e+ δe . (II.9)

Looking back at δmt as defined in Eq.(II.5) we also see a way to define a completely general counter term: if
dimensional regularization, i.e. the introduction of 4 − 2ε dimensions does not break any of the symmetries of our
Lagrangian, like Lorentz symmetry or gauge symmetries, we can simply subtract the ultraviolet pole and nothing
else. The only question is: do we subtract 1/ε in the MS scheme or do we subtract 1/ε̃ in the MS scheme. In the MS
scheme the counter term is then scale dependent.

Carefully counting, there are three scales present in such a scheme. First, there is the physical scale in the process.
In our case of a top self energy this is for example the top mass mt appearing in the matrix element for the process
pp → tt̄. Next, there is the renormalization scale µR, a reference scale which is part of the definition of any counter
term. And last but not least, there is the scale M separating the counter term from the process dependent result,
which we can choose however we want, but which as we will see implies a running of the counter term. The role of
this scale M will become clear when we go through the example of the running strong coupling αs. Of course, we
would prefer to choose all three scales the same, but in a complex physical process this might not always be possible.
For example, any massive (2→ 3) production process naturally involves several external physical scales.

Just a side remark for completeness: a one loop integral which has no intrinsic mass scale is the two-point function
with zero mass in the loop and zero momentum flowing through the integral: B(p2 = 0; 0, 0). It appears for example in
the self energy corrections of external quarks and gluons. Based on dimensional arguments this integral has to vanish
altogether. On the other hand, we know that like any massive two-point function it has to be ultraviolet divergent
B ∼ 1/εUV because setting all internal and external mass scales to zero is nothing special from an ultraviolet point of
view. This can only work if the scalar integral also has an infrared divergence appearing in dimensional regularization.
We can then write the entire massless two-point function as

B(p2 = 0; 0, 0) =

∫
d4q

16π2

1

q2

1

(q + p)2
=

iπ2

16π2

(
1

εUV
− 1

εIR

)
, (II.10)

keeping track of the divergent contributions from the infrared and the ultraviolet regimes. For this particular integral
they precisely cancel, so the result for B(0; 0, 0) is zero, but setting it to zero too early will spoil any ultraviolet and
infrared finiteness test. Treating the two divergences strictly separately and dealing with them one after the other
also ensures that for ultraviolet divergences we can choose ε > 0 while for infrared divergences we require ε < 0.

To get an idea what these different scales which appear in the process of renormalization mean let us compute such
a scale dependent parameter, namely the running strong coupling αs(µ

2
R). The Drell–Yan process is one of the very

few relevant processes at hadron colliders where the strong coupling does not appear at tree level, so we cannot use it
as our toy process this time. Another simple process where we can study this coupling is bottom pair production at
the LHC, where at some energy range we will be dominated by valence quarks: qq̄ → bb̄. The only Feynman diagram
is an s-channel off–shell gluon with a momentum flow p2 ≡ s. At next–to–leading order this gluon propagator will be
corrected by self energy loops, where the gluon splits into two quarks or gluons and re-combines before it produces the
two final–state bottoms. Let us for now assume that all quarks are massless. The Feynman diagrams for the gluon
self energy include a quark look, a gluon loop, and the ghost loop which removes the unphysical degrees of freedom
of the gluon inside the loop. The gluon self energy correction or vacuum polarization, as propagator corrections to
gauge bosons are usually labelled, will be a scalar. This way, all fermion lines close in the Feynman diagram and the
Dirac trace is computed inside the loop. In color space the self energy will (hopefully) be diagonal, just like the gluon
propagator itself, so we can ignore the color indices for now. In unitary gauge the gluon propagator is proportional
to the transverse tensor Tµν = gµν − pνpµ/p2. As mentioned in the context of the effective gluon–Higgs coupling, the
same should be true for the gluon self energy, which we therefore write as Πµν ≡ ΠTµν . We find the simple relations

Tµνgρν =

(
gµν − pµpν

p2

)
gρν = Tµρ

TµνT ρν =

(
gµν − pµpν

p2

) (
gρν −

pνp
ρ

p2

)
= gµρ − 2

pµpρ

p2
+ p2 p

µpρ

p4
= Tµρ . (II.11)
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Including the gluon, quark, and ghost loops the regularized gluon self energy with a momentum flow p2 through the
propagator reads

− 1

p2
Π

(
µ2
R

p2

)
=
αs
4π

(
− 1

ε̃(µ2
R/M

2)
+ log

p2

M2

) (
13

6
Nc −

2

3
nf

)
+O(logm2

t )

≡ αs
(
− 1

ε̃(µ2
R/M

2)
+ log

p2

M2

)
b0 +O(logm2

t )

with b0 =
1

4π

(
11

3
Nc −

2

3
nf

)
SM
> 0 . (II.12)

The minus sign arises from the factors i in the propagators. The number of fermions coupling to the gluons is nf .
From the comments on B(p2; 0, 0) we could guess that the loop integrals will only give a logarithm log p2 which is
then matched by the logarithm logM2 implicitly included in the definition of ε̃.

The factor b0 arises from one-loop corrections, i.e. from diagrams which include one additional power of αs. Strictly
speaking, it gives the first term in a perturbative series in the strong coupling αs = g2

s/(4π). Later on, we will indicate
where additional higher order corrections would enter.

In the second step of Eq.(II.12) we have sneaked in additional contributions to the renormalization of the strong
coupling from the other one-loop diagrams in the process, replacing the factor 13/6 by a factor 11/3. This is related
to the fact that there are actually three types of divergent virtual gluon diagrams in the physical process qq̄ → bb̄:

the external quark self energies with renormalization factors Z
1/2
f , the internal gluon self energy ZA, and the vertex

corrections ZAff . The only physical parameters we can renormalize in this process are the strong coupling and, if
finite, the bottom mass. Wave function renormalization constants are not physical, but vertex renormalization terms
are. The entire divergence in our qq̄ → bb̄ process which needs to be absorbed in the strong coupling through Zg is
given by the combination

ZAff = ZgZ
1/2
A Zf ⇔ ZAff

Z
1/2
A Zf

≡ Zg . (II.13)

We can check this definition of Zg by comparing all vertices in which the strong coupling gs appears, namely the
gluon coupling to quarks, ghosts as well as the triple and quartic gluon vertex. All of them need to have the same
divergence structure

ZAff

Z
1/2
A Zf

!
=

ZAηη

Z
1/2
A Zη

!
=

Z3A

Z
3/2
A

!
=

√
Z4A

Z2
A

. (II.14)

If we had done the same calculation in QED and looked for a running electric charge, we would have found that the
vacuum polarization diagrams for the photon do account for the entire counter term of the electric charge. The other
two renormalization constants ZAff and Zf cancel because of gauge invariance.

In contrast to QED, the strong coupling diverges in the Thomson limit because QCD is confined towards large
distances and weakly coupled at small distances. Lacking a well enough motivated reference point we are lead to
renormalize αs in the MS scheme. From Eq.(II.12) we know that the ultraviolet pole which needs to be cancelled by
the counter term is proportional to the function b0

gbare
s = Zggs = (1 + δZg) gs =

(
1 +

δgs
gs

)
gs

⇒ (g2
s)bare = (Zggs)

2 =

(
1 +

δgs
gs

)2

g2
s =

(
1 + 2

δgs
gs

)
g2
s =

(
1 +

δg2
s

g2
s

)
g2
s

⇒ αbare
s =

(
1 +

δαs
αs

)
αs

!
=


1− Π

p2

∣∣∣∣∣
pole


αs(M

2)
Eq.(II.12)

=


1− αs

ε̃
(µR
M

) b0


αs(M

2) . (II.15)

Only in the last step we have explicitly included the scale dependence of the counter term. Because the bare coupling
does not depend on any scales, this means that αs depends on the artifical external scale M . Similar to the top
mass renormalization scheme we can switch to a more physical scheme for the strong coupling as well: we can absorb
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also the finite contributions of Π(µ2
R/p

2) into the strong coupling by simply identifying M2 = p2. Based again on
Eq.(II.12) this implies

αbare
s = αs(p

2)

(
1− αs(p

2)b0
ε̃(µ2

R/M
2)

+ αs(p
2)b0 log

p2

M2

)
. (II.16)

On the right hand side αs is consistently evaluated as a function of the physical scale p2. The lograrithm just shifts
the argument of ε̃ from M2 to p2. This formula defines a running coupling αs(p

2), because the definition of the
coupling now has to account for a possible shift between the original argument p2 and the scale M2 coming out of the
MS scheme. Since according to Eqs.(II.15) and (II.16) the bare strong coupling can be expressed in terms of αs(M

2)
as well as in terms of αs(p

2) we can link the two scales through

αs(M
2) = αs(p

2) + α2
s(p

2)b0 log
p2

M2
= αs(p

2)

(
1 + αs(p

2)b0 log
p2

M2

)

⇔ αs(p
2) =

αs(M
2)

1 + αs(p2)b0 log
p2

M2

⇔ dαs(p
2)

d log p2
= −α2

s(p
2)b0 +O(α3

s) . (II.17)

To the given loop order the argument of the strong coupling squared in this formula can be neglected — its effect is of
higher order. We nevertheless keep the argument as a higher order effect and remember the additional terms neglected
above to later distinguish different approaches to the running coupling. From Eq.(II.12) we know that b0 > 0, which
means that towards larger scales the strong coupling has a negative slope. The ultraviolet limit of the strong coupling
is zero. This makes QCD an asymptotically free theory. We can compute the function b0 in general models by simply
adding all contributions of strongly interacting particles in this loop

b0 = − 1

12π

∑

colored states

Dj TR,j , (II.18)

where we need to know some kind of counting factor Dj which is -11 for a vector boson (gluon), +4 for a Dirac
fermion (quark), +2 for a Majorana fermion (gluino), +1 for a complex scalar (squark) and +1/2 for a real scalar.
Note that this sign is not given by the fermionic or bosonic nature of the particle in the loop. The color charges are
TR = 1/2 for the fundamental representation of SU(3) and CA = Nc for the adjoint representation. The masses of the
loop particles are not relevant in this approximation because we are only interested in the ultraviolet regime of QCD
where all particles can be regarded massless. This is a fundamental problem when we work with a running strong
coupling constant: it is not an observable, which means that it does not have to ensure the decoupling of heavy states.
On the other hand, if we treat it like an observable we need to modify it by hand, so it does not ruin the automatic
decoupling of heavy particles. When we really model the running of αs we need to take into account threshold effects
of heavy particles at their respective masses. When we really model the running of αs we need to take into account
threshold effects of heavy particles at their respective masses.

We can do even better than this fixed order in perturbation theory: while the correction to αs in Eq.(II.16) is
perturbatively suppressed by the usual factor αs/(4π) it includes a logarithm of a ratio of scales which does not need
to be small. Instead of simply including these gluon self energy corrections at a given order in perturbation theory
we can instead include chains of one-loop diagrams with Π appearing many times in the off–shell gluon propagator.
It means we replace the off–shell gluon propagator by

Tµν

p2
→Tµν

p2
+

(
T

p2
· (−T Π) · T

p2

)µν

+

(
T

p2
· (−T Π) · T

p2
· (−T Π) · T

p2

)µν
+ · · ·

=
Tµν

p2

∞∑

j=0

(
−Π

p2

)j
=
Tµν

p2

1

1 + Π/p2
, (II.19)

schematically written without the factors i. To avoid indices we abbreviate TµνT ρν = T · T which make sense because
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of (T · T · T )µν = TµρTσρ T
ν
σ = Tµν . This resummation of the logarithm which appears in the next–to–leading order

corrections to αs moves the finite shift in αs shown in Eqs.(II.12) and (II.16) into the denominator, while we assume
that the pole will be properly taken care off in any of the schemes we discuss

αbare
s = αs(M

2)− α2
sb0

ε̃(µ2
R/M

2)
≡ αs(p

2)

1− αs(p2) b0 log
p2

M2

− α2
sb0

ε̃(µ2
R/M

2)
. (II.20)

Just as in the case without resummation, we can use this complete formula to relate the values of αs at two reference
points, i.e. we consider it a renormalization group equation (RGE) which evolves physical parameters from one scale
to another in analogy to the fixed order version in Eq.(II.17)

1

αs(M2)
=

1

αs(p2)

(
1− αs(p2) b0 log

p2

M2

)
=

1

αs(p2)
− b0 log

p2

M2
. (II.21)

The factor αs inside the parentheses we can again evaluate at either of the two scales, the difference is a higher
order effect. If we keep it at p2 we see that the expression in Eq.(II.21) is different from the un-resummed version
in Eq.(II.16). If we ignore this higher order effect the two formulas become equivalent after switching p2 and M2.
Resumming the vacuum expectation bubbles only differs from the un-resummed result once we include some next–
to–leading order contribution. When we differentiate αs(p

2) with respect to the momentum transfer p2 we find, using
the relation d/dx(1/αs) = −1/α2

s dαs/dx

1

αs(p2)

dαs(p
2)

d log p2
= −αs(p2)

d

d log p2

1

αs(p2)
= −αs(p2) b0 or p2 dαs

dp2
≡ dαs
d log p2

= β = −α2
s

∑

n=0

bnα
n
s .

(II.22)

In the second form we replace the one-loop running b0 by its full perturbative series. This is the famous running of
the strong coupling constant including all higher order terms bn.

In the running of the strong coupling constant we relate the different values of αs through multiplicative factors of
the kind

(
1± αs(p2)b0 log

p2

M2

)
. (II.23)

Such factors appear in the un-resummed computation of Eq.(II.17) as well as in Eq.(II.20) after resummation. Because
they are multiplicative, these factors can move into the denominator, where we need to ensure that they do not vanish.
Dependent on the sign of b0 this becomes a problem for large scale ratios |αs log p2/M2| > 1, where it leads to the
Landau pole. For the strong coupling with b0 > 0 and large coupling values at small scales p2 �M2 the combination
(1 + αsb0 log p2/M2) can indeed vanish and become a problem.

It is customary to replace the renormalization point of αs in Eq.(II.20) with a reference scale defined by the Landau
pole. At one loop order this reads

1 + αs b0 log
Λ2

QCD

M2

!
= 0 ⇔ log

Λ2
QCD

M2
= − 1

αs(M2)b0
⇔ log

p2

M2
= log

p2

Λ2
QCD

− 1

αs(M2)b0

1

αs(p2)

Eq.(II.21)
=

1

αs(M2)
+ b0 log

p2

M2
(II.24)

=
1

αs(M2)
+ b0 log

p2

Λ2
QCD

− 1

αs(M2)
= b0 log

p2

Λ2
QCD

⇔ αs(p
2) =

1

b0 log
p2

Λ2
QCD

.

This scheme can be generalized to any order in perturbative QCD and is not that different from the Thomson
limit renormalization scheme of QED, except that with the introduction of ΛQCD we are choosing a reference point
which is particularly hard to compute perturbatively. One thing that is interesting in the way we introduce ΛQCD

is the fact that we introduce a scale into our theory without ever setting it. All we did was renormalize a coupling
which becomes strong at large energies and search for the mass scale of this strong interaction. This trick is called
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dimensional transmutation.

In terms of language, there is a little bit of confusion between field theorists and phenomenologists: up to now
we have introduced the renormalization scale µR as the renormalization point, for example of the strong coupling
constant. In the MS scheme, the subtraction of 1/ε̃ shifts the scale dependence of the strong coupling to M2 and
moves the logarithm logM2/Λ2

QCD into the definition of the renormalized parameter. This is what we will from now
on call the renormalization scale in the phenomenological sense, i.e. the argument we evaluate αs at. Throughout
this section we will keep the symbol M for this renormalization scale in the MS scheme, but from Section II C on we
will shift back to µR instead of M as the argument of the running coupling, to be consistent with the literature.

B. Scaling logarithms

In the last section we have introduced the running strong coupling in a fairly abstract manner. For example, we
did not link the resummation of diagrams and the running of αs in Eqs.(II.17) and (II.22) to physics. In what way
does the resummation of the one-loop diagrams for the s-channel gluon improve our prediction of an observable? To
illustrate this we best look at a simple observable which depends on just one energy scale p2. The first observable
coming to mind is again the Drell–Yan cross section σ(qq̄ → µ+µ−), but since we are not really sure what to do with
the parton densities which are included in the actual hadronic observable, we better use an observable at an e+e−

collider. Something that will work and includes αs at least in the one-loop corrections is the R parameter

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= Nc

∑

quarks

Q2
q =

11Nc
9

. (II.25)

The numerical value at leading order assumes five quarks. Including higher order corrections we can express the result
in a power series in the renormalized strong coupling αs. In the MS scheme we subtract 1/ε̃(µ2

R/M
2) and in general

include a scale dependence on M in the individual prefactors rn

R

(
p2

M2
, αs

)
=
∑

n=0

rn

(
p2

M2

)
αns (M2) r0 =

11Nc
9

. (II.26)

The rn we can assume to be dimensionless — if they are not, we can scale R appropriately using p2. This implies
that the rn only depend on ratios of two scales, the externally fixed p2 on the one hand and the artificial M2 on the
other.

At the same time we know that R is an observable, which means that including all orders in perturbation theory
it cannot depend on any artificial scale choice M . Writing this dependence as a total derivative and setting it to zero
we find an equation which would be called a Callan–Symanzik equation if instead of the running coupling we had
included a running mass

0
!
= M2 d

dM2
R

(
p2

M2
, αs(M

2)

)
= M2

[
∂

∂M2
+

∂αs
∂M2

∂

∂αs

]
R

(
p2

M2
, αs

)

=

[
M2 ∂

∂M2
+ β

∂

∂αs

] ∑

n=0

rn

(
p2

M2

)
αns

=
∑

n=1

M2 ∂rn
∂M2

αns +
∑

n=1

β rn nα
n−1
s with r0 =

11Nc
9

= const

= M2
∑

n=1

∂rn
∂M2

αns −
∑

n=1

∑

m=0

nrn α
n+m+1
s bm with β = −α2

s

∑

m=0

bmα
m
s

= M2 ∂r1

∂M2
αs +

(
M2 ∂r2

∂M2
− r1b0

)
α2
s +

(
M2 ∂r3

∂M2
− 2r2b0 − r1b1

)
α3
s +O(α4

s) . (II.27)

In the second line we have to remember that the M dependence of αs is already included in the appearance of β, so
αs should be considered a variable by itself. This perturbative series in αs has to vanish in each order of perturbation
theory. The non–trivial structure, namely the mix of rn derivatives and the perturbative terms in the β function we
can read off the α3

s term in Eq.(II.27): first, we have the appropriate NNNLO corrections r3. Next, we have one loop
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in the gluon propagator b0 and two loops for example in the vertex r2. And finally, we need the two-loop diagram
for the gluon propagator b1 and a one-loop vertex correction r1. The kind–of–Callan–Symanzik equation Eq.(II.27)
requires

∂r1

∂ logM2/p2
= 0

∂r2

∂ logM2/p2
= r1b0

∂r3

∂ logM2/p2
= r1b1 + 2r2(M2)b0

· · · (II.28)

The dependence on the argument M2 vanishes for r0 and r1. Keeping in mind that there will be integration constants
cn and that another, in our case, unique momentum scale p2 has to cancel the mass units inside logM2 we find

r0 = c0 =
11Nc

9
r1 = c1

r2 = c2 + r1b0 log
M2

p2
= c2 + c1b0 log

M2

p2

r3 =

∫
d log

M ′2

p2

(
c1b1 + 2

(
c2 + c1b0 log

M ′2

p2

)
b0

)

= c3 + (c1b1 + 2c2b0) log
M2

p2
+ c1b

2
0 log2 M

2

p2

· · · (II.29)

This chain of rn values looks like we should interpret the apparent fixed-order perturbative series for R in Eq.(II.26)
as a series which implicitly includes terms of the order logn−1M2/p2 in each rn. They can become problematic if
this logarithm becomes large enough to spoil the fast convergence in terms of αs ∼ 0.1, evaluating the observable R
at scales far away from the scale choice for the strong coupling constant M .

Instead of the series in rn we can use the conditions in Eq.(II.29) to express R in terms of the cn and collect the
logarithms appearing with each cn. The geometric series we then resum to

R =
∑

n

rn

(
p2

M2

)
αns (M2) = c0 + c1

(
1 + αs(M

2)b0 log
M2

p2
+ α2

s(M
2)b20 log2 M

2

p2
+ · · ·

)
αs(M

2)

+ c2

(
1 + 2αs(M

2)b0 log
M2

p2
+ · · ·

)
α2
s(M

2) + · · ·

= c0 + c1
αs(M

2)

1− αs(M2)b0 log
M2

p2

+ c2




αs(M
2)

1− αs(M2)b0 log
M2

p2




2

+ · · ·

≡
∑

cn α
n
s (p2) . (II.30)

In the original ansatz αs is always evaluated at the scale M2. In the last step we use Eq.(II.21) with flipped
arguments p2 and M2, derived from the resummation of the vacuum polarization bubbles. In contrast to the rn
integration constants the cn are by definition independent of p2/M2 and therefore more suitable as a perturbative
series in the presence of potentially large logarithms. Note that the un-resummed version of the running coupling in
Eq.(II.16) would not give the correct result, so Eq.(II.30) only holds for resummed vacuum polarization bubbles.

This re-organization of the perturbation series for R can be interpreted as resumming all logarithms of the kind

logM2/p2 in the new organization of the perturbative series and absorbing them into the running strong coupling
evaluated at the scale p2. All scale dependence in the perturbative series for the dimensionless observable R is moved
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into αs, so possibly large logarithms logM2/p2 have disappeared. In Eq.(II.30) we also see that this series in cn will
never lead to a scale-invariant result when we include a finite order in perturbation theory. Some higher–order factors
cn are known, for example inserting Nc = 3 and five quark flavors just as we assume in Eq.(II.25)

R =
11

3

(
1 +

αs(p
2)

π
+ 1.4

(
αs(p

2)

π

)2

− 12

(
αs(p

2)

π

)3

+O
(
αs(p

2)

π

)4
)
. (II.31)

This alternating series with increasing perturbative prefactors seems to indicate the asymptotic instead of convergent
behavior of perturbative QCD. At the bottom mass scale the relevant coupling factor is only αs(m

2
b)/π ∼ 1/14,

so a further increase of the cn would become dangerous. However, a detailed look into the calculation shows that
the dominant contributions to cn arise from the analytic continuation of logarithms, which are large finite terms for
example from Re(log2(−E2)) = log2E2 + π2. In the literature such π2 terms arising from the analytic continuation
of loop integrals are often phrased in terms of ζ2 = π2/6.

Before moving on we collect the logic of the argument given in this section: when we regularize an ultraviolet
divergence we automatically introduce a reference scale µR. Naively, this could be an ultraviolet cutoff scale, but even
the seemingly scale invariant dimensional regularization in the conformal limit of our field theory cannot avoid the
introduction of a scale. There are several ways of dealing with such a scale: first, we can renormalize our parameter at
a reference point. Secondly, we can define a running parameter and this way absorb the scale logarithm into the MS
counter term. In that case introducing ΛQCD leaves us with a compact form of the running coupling αs(M

2; ΛQCD).
Strictly speaking, at each order in perturbation theory the scale dependence should vanish together with the

ultraviolet poles, as long as there is only one scale affecting a given observable. However, defining the running strong
coupling we sum one-loop vacuum polarization graphs. Even when we compute an observable at a given loop order,
we implicitly include higher order contributions. They lead to a dependence of our perturbative result on the artificial
scale M2, which phenomenologists refer to as renormalization scale dependence.

Using the R ratio we see what our definition of the running coupling means in terms of resumming logarithms: reor-
ganizing our perturbative series to get rid of the ultraviolet divergence αs(p

2) resums the scale logarithms log p2/M2

to all orders in perturbation theory. We will need this picture once we introduce infrared divergences in the following
section.

C. Infrared divergences

After our brief discussion into ultraviolet divergences and renormalization we move to LHC processes, like the Drell–
Yan process qq̄ → µ+µ−, in perturbative QCD. We know that the partons inside the proton are described by parton
distributions (pdfs), which at this stage are only probability functions in terms of the collinear momentum fraction
of the partons inside the proton. The question we need to ask for a quantum-level description of µ+µ− production
at the LHC is: what happens if together with the two leptons we produce additional jets which for one reason or
another we do not observe in the detector. Such jets could for example come from the radiation of a gluon from the
initial–state quarks. We will first study the kinematics of radiating such jets and specify the infrared divergences this
leads to. Next we will show that these divergences have a generic structure and can be absorbed into a re-definition of
the parton densities, similar to an ultraviolet renormalization of a Lagrangian parameter. Finally, we will follow the
example of the ultraviolet divergences and see what absorbing these divergences means in terms logarithms appearing
in QCD calculations.

Let us get back to the radiation of additional partons in the Drell–Yan process. We can start for example by
computing the cross section for the partonic process qq̄ → Zg. However, this partonic process involves renormalization
of ultraviolet divergences as well as loop diagrams which we have to include before we can say anything reasonable.
Instead, we look at the crossed process

It should behave similar to any other (2 → 2) jet radiation, except that it has a different incoming state than the
leading order Drell–Yan process and hence does not involve virtual corrections. This means we do not have to deal
with ultraviolet divergences and renormalization, and can concentrate on parton or jet radiation from the initial state.
Moreover, let us go back to Z production instead of a photon, to avoid confusion with additional massless particles
in the final state.

The amplitude for this (2→ 2) process is — modulo charges and averaging factors, but including all Mandelstam
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variables

|M|2 ∼ − t
s
− s2 − 2m2

Z(s+ t−m2
Z)

st
. (II.32)

The Mandelstam variable t for one massless final–state particle can be expressed as t = −s(1 − τ)y in terms of the
rescaled gluon emission angle y = (1 − cos θ)/2 and τ = m2

Z/s. Similarly, we obtain u = −s(1 − τ)(1 − y), so as a
first check we can confirm that t+ u = −s(1− τ) = −s+m2

Z . The collinear limit when the gluon is radiated in the
beam direction is given by y → 0, corresponding to negative t→ 0 with finite u = −s+m2

Z . In this limit the matrix
element can also be written as

|M|2 ∼ s2 − 2sm2
Z + 2m4

Z

s(s−m2
Z)

1

y
+O(y0) . (II.33)

This expression is divergent for collinear gluon radiation or gluon splitting, i.e. for small angles y. We can translate
this 1/y divergence for example into the transverse momentum of the gluon or Z

sp2
T = tu = s2(1− τ)2 y(1− y) = (s−m2

Z)2y +O(y2) (II.34)

In the collinear limit our matrix element squared in Eq.(II.33) becomes

|M|2 ∼ s2 − 2sm2
Z + 2m4

Z

s2

s−m2
Z

p2
T

+O(p0
T ) . (II.35)

The matrix element for the tree level process qg → Zq has a leading divergence proportional to 1/p2
T . To compute the

total cross section for this process we need to integrate the matrix element over the entire two-particle phase space.
Using the appropriate Jacobian this integration can be written in terms of the reduced angle y. Approximating the
matrix element as C ′/y or C/p2

T , we then integrate

∫ ymax

ymin

dy
C ′

y
=

∫ pmax
T

pmin
T

dp2
T

C

p2
T

= 2

∫ pmax
T

pmin
T

dpT pT
C

p2
T

' 2C

∫ pmax
T

pmin
T

dpT
1

pT
= 2C log

pmax
T

pmin
T

(II.36)

The form C/p2
T for the matrix element is of course only valid in the collinear limit; in the non–collinear phase space

C is not a constant. However, Eq.(II.36) describes well the collinear divergence arising from quark radiation at the
LHC.

We now follow the same strategy as for the ultraviolet divergence. First, we regularize the divergence for example
using dimensional regularization. Then, we find a well–defined way to get rid of it. Dimensional regularization means
writing the two-particle phase space in n = 4 − 2ε dimensions. Just for reference, the complete formula in terms of
the angular variable y then reads

s
dσ

dy
=
π(4π)−2+ε

Γ(1− ε)

(
µ2
F

m2
Z

)ε
τ ε(1− τ)1−2ε

yε(1− y)ε
|M|2 ∼

(
µ2
F

m2
Z

)ε |M|2
yε(1− y)ε

. (II.37)

In the second step we only keep the factors we are interested in. The additional factor 1/yε regularizes the integral
at y → 0, as long as ε < 0 by slightly increasing the suppression of the integrand in the infrared regime. This means
that for infrared divergences we can as well choose n = 4 + 2ε space–time dimensions with ε > 0. After integrating
the leading collinear divergence 1/y1+ε we are left with a pole 1/(−ε). This regularization procedure is symmetric
in y ↔ (1 − y). What is important to notice is again the appearance of a scale µ2ε

F with the n-dimensional integral.
This scale arises from the infrared regularization of the phase space integral and is referred to as factorization scale.
The actual removal of the infrared pole — corresponding to the renormalization in the ultraviolet case — is called
mass factorization and works exactly the same way as renormalizing a parameter: in a well–defined scheme we simply
subtract the pole from the fixed-order matrix element squared.

From the discussion of the process qg → Zq we can at least hope that after taking care of all other infrared and
ultraviolet divergences the collinear structure of the process qq̄ → Zg will be similar. In this section we will show that
we can indeed write all collinear divergences in a universal form, independent of the hard process which we choose
as the Drell–Yan process. In the collinear limit, the radiation of additional partons or the splitting into additional
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FIG. 2: Splitting of one gluon into two gluons. Figure from Ref. [3].

partons will be described by universal splitting functions.

Infrared divergences occur for massless particles in the initial or final state, so we need to go through all ways
incoming or outgoing gluons and quark can split into each other. The description of the factorized phase space, with
which we will start, is common to all these different channels. The first and at the LHC most important case is
the splitting of one gluon into two, shown in Figure 2. The two daughter gluons are close to mass shell while the
mother has to have a finite positive invariant mass p2

a � p2
b , p

2
c . We again assign the direction of the momenta as

pa = −pb − pc, which means we have to take care of minus signs in the particle energies. The kinematics of this
approximately collinear process we can describe in terms of the energy fractions z and 1− z defined as

z =
|Eb|
|Ea|

= 1− |Ec||Ea|
p2
a = (−pb − pc)2 = 2(pbpc) = 2z(1− z)(1− cos θ)E2

a = z(1− z)E2
aθ

2 +O(θ4)

⇔ θ ≡ θb + θc '
1

|Ea|

√
p2
a

z(1− z) , (II.38)

in the collinear limit and in terms of the opening angle θ between ~pb and ~pc. Because p2
a > 0 we call this final–state split-

ting configuration time–like branching. For this configuration we can write down the so-called Sudakov decomposition
of the four-momenta

−pa = pb + pc = (−zpa + βn+ pT ) + (−(1− z)pa − βn− pT ) . (II.39)

It defines an arbitrary unit four-vector n, a pT component orthogonal to the mother momentum pa and to n, (papT ) =
0 = (npT ), and a free factor β. This way, we can specify n such that it defines the direction of the pb–pc decay plane.
In this decomposition we can set only one invariant mass to zero, for example that of a radiated gluon p2

c = 0. The
second final state will have a finite invariant mass p2

b 6= 0.

As specific choice for the three reference four-vectors is

pa =



|Ea|

0
0
pa,3


 = |Ea|




1
0
0

1 +O(θ)


 n =




1
0
0
−1


 pT =




0
pT,1
pT,2

0


 . (II.40)

Relative to ~pa we can split the opening angle θ for massless partons according to Figure 2

θ = θb + θc and
θb
θc

=
pT
|Eb|

(
pT
|Ec|

)−1

=
1− z
z

⇔ θ =
θb

1− z =
θc
z
. (II.41)

The momentum choice in Eq.(II.40) has the additional feature that n2 = 0, which allows us to extract β from the
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momentum parameterization shown in Eq.(II.39) and the additional condition that p2
c = 0

p2
c = (−(1− z)pa − βn− pT )

2

= (1− z)2p2
a + p2

T + 2β(1− z)(npa)

= (1− z)2p2
a + p2

T + 4β(1− z)|Ea|(1 +O(θ))
!
= 0 ⇔ β' −p

2
T + (1− z)2p2

a

4(1− z)|Ea|
. (II.42)

Using this specific phase space parameterization we can divide an (n+ 1)-particle process into an n-particle process
and a splitting process of quarks and gluons. First, this requires us to split the (n + 1)-particle phase space into an
n-particle phase space and the collinear splitting. The general (n+1)-particle phase space separating off the n-particle
contribution

dΦn+1 = · · · d3~pb
2(2π)3|Eb|

d3~pc
2(2π)3|Ec|

= · · · d3~pa
2(2π)3|Ea|

d3~pc
2(2π)3|Ec|

|Ea|
|Eb|

at fixed pa

= dΦn
dpc,3dpT pT dφ

2(2π)3|Ec|
1

z

= dΦn
dpc,3dp

2
T dφ

4(2π)3|Ec|
1

z
(II.43)

is best expressed in terms of the energy fraction z and the azimuthal angle φ. In other words, separating the (n+ 1)-
particle space into an n-particle phase space and a (1→ 2) splitting phase space is possible without any approximation,
and all we have to take care of is the correct prefactors in the new parameterization.

Our next task is to translate the phase space parameters pc,3 and p2
T appearing in Eq.(II.43) into z and p2

a. Starting
from Eq.(II.39) for pc,3 with the third components of pa and pT given by Eq.(II.40) we insert β from Eq.(II.42) and
obtain

dpc,3
dz

=
d

dz
[−(1− z)|Ea|(1 +O(θ)) + β] =

d

dz

[
−(1− z)|Ea|(1 +O(θ))− p2

T + (1− z)2p2
a

4(1− z)|Ea|

]

= |Ea|(1 +O(θ))− p2
T

4(1− z)2Ea
+

p2
a

4|Ea|

=
|Ec|
1− z (1 +O(θ))− θ2z2E2

c

4(1− z)2Ea
+
z(1− z)E2

aθ
2 +O(θ4)

4|Ea|
using Eq.(II.38) and Eq.(II.41)

=
|Ec|
1− z +O(θ) ⇔ dpc,3

|Ec|
' dz

1− z . (II.44)

In addition to substituting dpc,3 by dz in Eq.(II.43) we also replace dp2
T with dp2

a according to

p2
T

p2
a

=
E2
b θ

2
b

z(1− z)E2
aθ

2
=
z2E2

a(1− z)2θ2

z(1− z)E2
aθ

2
= z(1− z) ⇔ dp2

T = z(1− z)dp2
a . (II.45)

This gives us the final result for the separated collinear phase space

dΦn+1 = dΦn
dz dp2

a dφ

4(2π)3
= dΦn

dz dp2
a

4(2π)2
, (II.46)

where in the second step we assume an azimuthal symmetry.

Adding the matrix element to this factorization of the phase space and ignoring the initial–state flux factor which
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is common to both processes we can now postulate a full factorization for one collinear emission in the collinear limit

dσn+1 = |Mn+1|2 dΦn+1

= |Mn+1|2 dΦn
dp2
a dz

4(2π)2
(1 +O(θ))

' 2g2
s

p2
a

P̂ (z) |Mn|2 dΦn
dp2
a dz

16π2
assuming |Mn+1|2 '

2g2
s

p2
a

P̂ (z) |Mn|2 . (II.47)

Using dσn ∼ |Mn|2 dΦn and g2
s = 4παs we can write this relation in its most common form

σn+1 '
∫
σn

dp2
a

p2
a

dz
αs
2π

P̂ (z) . (II.48)

We can show the assumption of factorizing matrix elements step by step, constructing the appropriate splitting kernels

P̂ (z) for all different quark and gluon configurations. If Eq.(II.48) really holds true this means that we can compute
the (n+1) particle amplitude squared from the n-particle case convoluted with appropriate universal splitting kernels.

As the first parton splitting in QCD we study a gluon splitting into two gluons

g(pa)→ g(pb) + g(pc) , (II.49)

also shown in Figure 2. We can compute it in the collinear configuration given in Eq.(II.38) and find

|Mn+1|2 =
2g2
s

p2
a

Nc
2

2

[
z

1− z + z(1− z) +
1− z
z

]
|Mn|2

≡ 2g2
s

p2
a

P̂g←g(z) |Mn|2 ⇔ P̂g←g(z) = CA

[
z

1− z +
1− z
z

+ z(1− z)
]
, (II.50)

using CA = Nc. The form of the splitting kernel is symmetric when we exchange the two gluons z and (1 − z). It

diverges if either of the gluons become soft. The notation P̂i←j ∼ P̂ij is inspired by a matrix notation which we can
use to multiply the splitting matrix from the right with the incoming parton vector to get the final parton vector.
Following the logic described above, with this calculation we prove that the factorized form of the (n + 1)-particle
matrix element squared in Eq.(II.47) holds in a Yang-Mills theory.

The same kind of splitting kernel we can compute for the splitting of a gluon into two quarks

g(pa)→ q(pb) + q̄(pc) . (II.51)

In complete analogy to the gluon splitting into two gluons, we can factorize the (n+ 1)-particle matrix element into

|Mn+1|2 =
g2
s

p2
a

TR
N2
c − 1

N2
c − 1

[
(1− 2z)2 + 1

]
|Mn|2 with trT aT b = TRδ

ab and Na = 2

=
2g2
s

p2
a

TR
[
z2 + (1− z)2

]
|Mn|2

≡ 2g2
s

p2
a

P̂q←g(z) |Mn|2 ⇔ P̂q←g(z) = TR
[
z2 + (1− z)2

]
, (II.52)

with TR = 1/2. This splitting kernel is again symmetric in z and (1− z) because QCD does not distinguish between
the outgoing quark and the outgoing antiquark.

The third splitting we compute is the splitting of a quark into a quark and a gluon

q(pa)→ q(pb) + g(pc) . (II.53)

It involves the same quark–quark–gluon vertex as the gluon splitting into two quarks. The factorized matrix element
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for this channel has the same form as Eq.(II.52), except for the color averaging factor of the now incoming quark,

|Mn+1|2 =
g2
s

p2
a

N2
c − 1

2Nc

(1 + z)2 + (1− z)2

1− z |Mn|2

=
2g2
s

p2
a

CF
1 + z2

1− z |Mn|2

≡ 2g2
s

p2
a

P̂q←g(z) |Mn|2 ⇔ P̂q←q(z) = CF
1 + z2

1− z . (II.54)

The color factor for gluon radiation off a quark is CF = (N2 − 1)/(2N). The averaging factor 1/Na = 2 now is the
number of quark spins in the intermediate state. Just switching z ↔ (1 − z) we can finally read off the kernel for a
quark splitting written in terms of the final–state gluon

P̂g←q(z) = CF
1 + (1− z)2

z
. (II.55)

This result finalizes our calculation of all QCD splitting kernels P̂i←j(z) between quarks and gluons . As alluded to
earlier, similar to ultraviolet divergences which get removed by counter terms these splitting kernels are universal.
They do not depend on the hard n-particle matrix element which is part of the original (n+1)-particle process. Based

on our four results in Eqs.(II.50), (II.52), (II.54), and (II.55) we have by construction of the kernels P̂ shown that the
collinear factorization Eq.(II.48) holds at this level in perturbation theory.

Before using this splitting property to describe QCD effects at the LHC we need to look at the splitting of partons
in the initial state, meaning |p2

a|, p2
c � |p2

b | where pb is the momentum entering the hard interaction. The difference to
the final–state splitting is that now we can consider the split parton momentum pb = pa − pc as a t-channel diagram,
so we already know p2

b = t < 0 from our usual Mandelstam variables argument. This space–like splitting version of

Eq.(II.39) for p2
b gives us

t ≡ p2
b = (−zpa + βn+ pT )2

= p2
T − 2zβ(pan) with p2

a = n2 = (papT ) = (npT ) = 0

= p2
T +

p2
T z

1− z using Eq.(II.42)

=
p2
T

1− z = −
p2
T,1 + p2

T,2

1− z < 0 . (II.56)

The calculation of the splitting kernels and matrix elements is the same as for the time–like case, with the one
exception that for splitting in the initial state the flow factor has to be evaluated at the reduced partonic energy
Eb = zEa and that the energy fraction entering the parton density needs to be replaced by xb → zxb. The factorized
matrix element for initial–state splitting then reads just like Eq.(II.48)

σn+1 =

∫
σn

dt

t
dz

αs
2π

P̂ (z) . (II.57)

How to use this property to make statements about the quark and gluon content in the proton will be the focus of
the next section.

D. DGLAP equation

Before we include the quantum effects from parton splitting in LHC computations, let us briefly review the classical,
statisitical picture of parton densities. At hadron colliders the energy distribution of incoming quarks as parts of the
colliding protons has to be taken into account. We first assume that quarks move collinearly with the surrounding
proton such that at the LHC incoming partons have zero pT . Under that condition we can define a probability
distribution for finding a parton just depending on the respective fraction of the proton’s momentum. For this
momentum fraction x = 0 · · · 1 the parton density function (pdf) is written as fi(x), where i denotes the different
partons in the proton, for our purposes u, d, c, s, g and, depending on the details, b. All incoming partons we assume
to be massless.
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In contrast to so-called structure functions a pdf is not an observable. It is a distribution in the mathematical
sense, which means it has to produce reasonable results when we integrate it together with a test function. Different
parton densities have very different behavior — for the valence quarks (uud) they peak somewhere around x . 1/3,
while the gluon pdf is small at x ∼ 1 and grows very rapidly towards small x. For some typical part of the relevant
parameter space (x = 10−3 · · · 10−1) the gluon density roughly scales like fg(x) ∝ x−2. Towards smaller x values it
becomes even steeper. This steep gluon distribution was initially not expected and means that for small enough x
LHC processes will dominantly be gluon fusion processes.

While we cannot actually compute parton distribution functions fi(x) as a function of the momentum fraction x
there are a few predictions we can make based on symmetries and properties of the hadrons. Such arguments for
example lead to sum rules:

The parton distributions inside an antiproton are linked to those inside a proton through the CP symmetry, which
is an exact symmetry of QCD. Therefore, we know that

f p̄q (x) = fq̄(x) f p̄q̄ (x) = fq(x) f p̄g (x) = fg(x) (II.58)

for all values of x. If the proton consists of three valence quarks uud, plus quantum fluctuations from the vacuum
which can either involve gluons or quark–antiquark pairs, the contribution from the sea quarks has to be symmetric
in quarks and antiquarks. The expectation values for the signed numbers of up and down quarks inside a proton have
to fulfill

〈Nu〉 =

∫ 1

0

dx (fu(x)− fū(x)) = 2 〈Nd〉 =

∫ 1

0

dx (fd(x)− fd̄(x)) = 1 . (II.59)

Similarly, the total momentum of the proton has to consist of sum of all parton momenta. We can write this as the
expectation value of

∑
xi

〈
∑

xi〉 =

∫ 1

0

dx x

(∑

q

fq(x) +
∑

q̄

fq̄(x) + fg(x)

)
= 1 (II.60)

What makes this prediction interesting is that we can compute the same sum only taking into account the measured
quark and antiquark parton densities. We find that this modified momentum sum rule only comes to 1/2. Half of the
proton momentum is then carried by gluons.

We can use everything we now know about collinear parton splitting to describe incoming partons at hadron
colliders. For example in pp → Z production incoming partons inside the protons transform into each other via
collinear splitting until they enter the Z production process as quarks. Taking Eq.(II.57) seriously, a parton density
should depend on two parameters, the final energy fraction and the virtuality,

f(x,−t) . (II.61)

The second parameter t is new compared to the purely probabilistic picture described above. To study the parton
density as a function of these two parameters, we start with a quark inside the proton with an energy fraction x0,
as it enters the hadronic phase space integral. Since this quark is confined inside the proton it can only have small
transverse momentum, which means its four-momentum squared t0 is negative and its absolute value |t0| is small. For
incoming partons which on–shell have p2 = 0 it gives the distance to the mass shell. Let us simplify our kinematic
argument by assuming that there exists only one type of splitting, namely successive gluon radiation off an incoming
quark, where the outgoing gluons are not relevant In that case each collinear gluon radiation will decrease the quark
energy xj+1 < xj and increase its virtuality |tj+1| = −tj+1 > −tj = |tj | through its recoil.

From the last section we know what the successive splitting means in terms of splitting probabilities. We can
describe how the parton density f(x,−t) evolves in the (x − t) plane as depicted in Figure 3. The starting point
(x0, t0) is at least probabilistically given by the energy and kind of the hadron, for example the proton. For a given
small virtuality |t0| we start at some kind of fixed x0 distribution. We then interpret each branching as a step strictly
downward in xj → xj+1 where the t value we assign to this step is the ever increasing virtuality |tj+1| after the
branching. Each splitting means a synchronous shift in x and t, so the actual path in the (x− t) plane really consists
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0

1

x0

δx

|t0| δt |t|

FIG. 3: Path of an incoming parton in the (x− t) plane. Because we define t as a negative number its axis is labelled
|t|.

of discrete points. The probability of such a splitting to occur is given by P̂q←q(z) ≡ P̂ (z) as it appears in Eq.(II.57)

αs
2π

P̂ (z)
dt

t
dz . (II.62)

In this picture we consider this probability a smooth function in t and z. At the end of the path we will probe this
evolved parton density, where xn and tn enter the hard scattering process and its energy–momentum conservation.

When we convert a partonic into a hadronic cross section numerically we need to specify the probability of the
parton density f(x,−t) residing in an infinitesimal square [xj , xj + δx] and, if this second parameter has anything to
do with physics, [|tj |, |tj | + δt]. Using our (x, t) plane we compute the flows into this square and out of this square,
which together define the net shift in f in the sense of a differential equation, similar to the derivation of Gauss’
theorem for vector fields inside a surface

δfin − δfout = δf(x,−t) . (II.63)

We compute the incoming and outgoing flows from the history of the (x, t) evolution. At this stage our picture
becomes a little subtle; the way we define the path between two splittings in Figure 3 it can enter and leave the
square either vertically or horizontally. Because we do not consider the movement in the (x, t) plane continuous we
can choose this direction as vertical or horizontal. Because we want to arrive at a differential equation in t we choose
the vertical drop, such that the area the incoming and outgoing flows see is given by δt. If we define a splitting as
such a vertical drop in x at the target value tj+1 an incoming path hitting the square at some value t can come from
any x value above the square. Using this convention and following the fat solid lines in Figure 3 the vertical flow into
the square (x, t) square is proportional to δt and has the form

δfin(−t) =
δt

t

∫ 1

x

dz

z

αs
2π

P̂ (z)f
(x
z
,−t
)

=
δt

t

∫ 1

0

dz

z

αs
2π

P̂ (z)f
(x
z
,−t
)

assuming f(x′,−t) = 0 for x′ > 1

≡ δt
(
αsP̂

2πt
⊗ f

)
(x,−t) . (II.64)

In the last step we use the definition of a convolution

(f ⊗ g)(x) =

∫ 1

0

dx1dx2f(x1)g(x2) δ(x− x1x2) =

∫ 1

0

dx1

x1
f(x1)g

(
x

x1

)
=

∫ 1

0

dx2

x2
f

(
x

x2

)
g(x2) . (II.65)
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The outgoing flow we define in complete analogy, again leaving the infinitesimal square vertically. Following the fat
solid line in Figure 3 it is also proportional to δt

δfout(−t) = δt

∫ 1

0

dy
αsP̂ (y)

2πt
f(x,−t) =

δt

t
f(x,−t)

∫ 1

0

dy
αs
2π

P̂ (y) . (II.66)

The corresponding y integration, unlike the z integration for the incoming flow is not a convolution. This integration
appears because we do not know the normalization of P̂ (z) distribution which we interpret as a probability. The
reason why it is not a convolution is that for the outgoing flow we know the starting condition and integrate over the
final configurations; this aspect will become important later. Combining Eq.(II.64) and Eq.(II.66) we can compute
the net change in the parton density of the quarks as

δf(x,−t) =
δt

t

[∫ 1

0

dz

z

αs
2π

P̂ (z) f
(x
z
,−t
)
−
∫ 1

0

dy
αs
2π

P̂ (y) f(x,−t)
]

=
δt

t

∫ 1

0

dz

z

αs
2π

[
P̂ (z)− δ(1− z)

∫ 1

0

dyP̂ (y)

]
f
(x
z
,−t
)
≡ δt

t

∫ 1

x

dz

z

αs
2π

P̂ (z)+ f
(x
z
,−t
)

⇔ δf(x,−t)
δ(−t) =

1

(−t)

∫ 1

x

dz

z

αs
2π

P̂ (z)+ f
(x
z
,−t
)
, (II.67)

again assuming f(x) = 0 for x > 1, strictly speaking requiring αs to only depend on t but not on z, and using the
specifically defined plus subtraction

F (z)+ ≡ F (z)− δ(1− z)
∫ 1

0

dy F (y) or

∫ 1

0

dz
f(z)

(1− z)+
=

∫ 1

0

dz

(
f(z)

1− z −
f(1)

1− z

)
. (II.68)

For the second form above we choose F (z) = 1/(1− z), multiply it with an arbitrary test function f(z) and integrate
over z. In contrast to the original z integral the plus–subtracted integral is by definition finite in the limit z → 1,
where some of the splitting kernels diverge. For example, the quark splitting kernel including the plus prescription
becomes CF ((1+z2)/(1−z))+. At this stage the plus prescription is simply a convenient way of writing a complicated
combination of splitting kernels, but we will see that it also has a physics meaning.

Next, we check that the plus prescription indeed acts as a regularization technique for the parton densities. Ob-
viously, the integral over f(z)/(1 − z) is divergent at the boundary z → 1, which we know we can cure using
dimensional regularization. The special case f(z) = 1 illustrates how dimensional regularization of infrared diver-
gences in the phase space integration Eq.(II.37) works

∫ 1

0

dz
1

(1− z)1−ε =

∫ 1

0

dz
1

z1−ε =
zε

ε

∣∣∣∣∣

1

0

=
1

ε
with ε > 0 , (II.69)

for 4 + 2ε dimensions. This change in sign avoids the analytic continuation of the usual value n = 4 − 2ε to ε < 0.
The dimensionally regularized integral in analogy to Eq.(II.68) we can write as

∫ 1

0

dz
f(z)

(1− z)1−ε =

∫ 1

0

dz
f(z)− f(1)

(1− z)1−ε + f(1)

∫ 1

0

dz
1

(1− z)1−ε

=

∫ 1

0

dz
f(z)− f(1)

1− z (1 +O(ε)) +
f(1)

ε

=

∫ 1

0

dz
f(z)

(1− z)+
(1 +O(ε)) +

f(1)

ε
by definition

⇔
∫ 1

0

dz
f(z)

(1− z)1−ε −
f(1)

ε
=

∫ 1

0

dz
f(z)

(1− z)+
(1 +O(ε)) . (II.70)

The dimensionally regularized integral minus the pole, i.e. the finite part of the dimensionally regularized integral,
is the same as the plus–subtracted integral modulo terms of the order ε. The third line in Eq.(II.70) shows that the
difference between a dimensionally regularized splitting kernel and a plus–subtracted splitting kernel manifests itself
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as terms proportional to δ(1− z). Physically, they represent contributions to a soft–radiation phase space integral.

Before we move on introducing a gluon density we can slightly reformulate the splitting kernel P̂q←q in Eq.(II.54).
If the plus prescription regularizes the pole at z → 1, what happens when we include the numerator of the regularized
function, e.g. the quark splitting kernel? The finite difference between these results is

(
1 + z2

1− z

)

+

− (1 + z2)

(
1

1− z

)

+

=
1 + z2

1− z − δ(1− z)
∫ 1

0

dy
1 + y2

1− y −
1 + z2

1− z + δ(1− z)
∫ 1

0

dy
1 + z2

1− y

= −δ(1− z)
∫ 1

0

dy

(
1 + y2

1− y −
2

1− y

)

= δ(1− z)
∫ 1

0

dy
y2 − 1

y − 1
= δ(1− z)

∫ 1

0

dy (y + 1) =
3

2
δ(1− z) . (II.71)

We can therefore write the quark’s splitting kernel in two equivalent ways

Pq←q(z) = CF

(
1 + z2

1− z

)

+

= CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
. (II.72)

Going back to our evolution in (x, t) space, the infinitesimal version of Eq.(II.67) is the Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi or DGLAP integro-differential equation which describes the scale dependence of the quark parton
density. As we already know quarks do not only appear in q → q splitting, but also in gluon splitting. Therefore, we
generalize Eq.(II.67) to include the full set of QCD partons, i.e. quarks and gluons. This generalization involves a
sum over all allowed splittings and the plus–subtracted splitting kernels. For the quark density on the left hand side
it is

dfq(x,−t)
d log(−t) = −t dfq(x,−t)

d(−t) =
∑

j=q,g

∫ 1

x

dz

z

αs
2π

Pq←j(z) fj
(x
z
,−t
)

with Pq←j(z) ≡ P̂q←j(z)+ . (II.73)

Expanding Eq.(II.67) beyond just gluon radiation off hard quarks, we add all relevant parton indices and splittings
which lead to a quark density. Including the splitting from gluon to quark we arrive at

δfq(x,−t) =
δt

t

[∫ 1

0

dz

z

αs
2π

P̂q←q(z) fq
(x
z
,−t
)

+

∫ 1

0

dz

z

αs
2π

P̂q←g(z) fg
(x
z
,−t
)

−
∫ 1

0

dy
αs
2π

P̂q←q(y) fq(x,−t)
]
. (II.74)

Of the three terms on the right hand side the first and the third together define the plus–subtracted splitting kernel
Pq←q(z), just following the argument above. The second term is a proper convolution and the only term proportional
to the gluon parton density. Quarks can be produced in gluon splitting but cannot vanish into it. Therefore, we have
to identify the last term in Eq.(II.74) with Pq←g, without adding a plus–regulator

Pq←g(z) ≡ P̂q←g(z) = TR
[
z2 + (1− z)2

]
. (II.75)

In principle, the splitting kernel P̂g←q also generates a quark, in addition to the final–state gluon. However, comparing

this to the terms proportional to P̂q←q they both arise from the same splitting, namely a quark density leaving the

infinitesimal square in the (x− t) plane via the splitting q → qg. Including the additional P̂g←q(y) would be double
counting and should not appear, as the notation g ← q already suggests.

The second QCD parton density we have to study is the gluon density. The incoming contribution to the infinites-
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imal square is given by the sum of four splitting scenarios each leading to a gluon with virtuality −tj+1

δfin(−t) =
δt

t

∫ 1

0

dz

z

αs
2π

[
P̂g←g(z)

(
fg

(x
z
,−t
)

+ fg

(
x

1− z ,−t
))

+ P̂g←q(z)
(
fq

(x
z
,−t
)

+ fq̄

(x
z
,−t

))]

=
δt

t

∫ 1

0

dz

z

αs
2π

[
2P̂g←g(z)fg

(x
z
,−t
)

+ P̂g←q(z)
(
fq

(x
z
,−t
)

+ fq̄

(x
z
,−t
))]

, (II.76)

using Pg←q̄ = Pg←q in the first line and Pg←g(1 − z) = Pg←g(z) in the second. To leave the volume element in the
(x, t) space a gluon can either split into two gluons or radiate one of nf light-quark flavors. Combining the incoming
and outgoing flows we find

δfg(x,−t) =
δt

t

∫ 1

0

dz

z

αs
2π

[
2P̂g←g(z)fg

(x
z
,−t
)

+ P̂g←q(z)
(
fq

(x
z
,−t
)

+ fq̄

(x
z
,−t
))]

−δt
t

∫ 1

0

dy
αs
2π

[
P̂g←g(y) + nf P̂q←g(y)

]
fg(x,−t) (II.77)

We have to evaluate the four terms in this expression one after the other. Unlike in the quark case they do not
immediately correspond to regularizing the diagonal splitting kernel using the plus prescription.

First, there exists a contribution to δfin proportional to fq or fq̄ which is not matched by the outgoing flow. From
the quark case we already know how to deal with it. For the corresponding splitting kernel there is no regularization
through the plus prescription needed, so we define

Pg←q(z) ≡ P̂g←q(z) = CF
1 + (1− z)2

z
. (II.78)

This ensures that the off-diagonal contribution to the gluon density is taken into account when we extend Eq.(II.73) to
a combined quark/antiquark and gluon form. The structure of the DGLAP equation implies that the two off-diagonal

splitting kernels do not include any plus prescription P̂i←j = Pi←j . We could have expected this, because off-diagonal
kernels are finite in the soft limit, z → 1. Applying a plus prescription would only have modified the splitting kernels
at the isolated (zero-measure) point y = 1 which for a finite value of the integrand does not affect the integral on the
right hand side of the DGLAP equation.

Second, the y integral describing the gluon splitting into a quark pair we can compute directly,

−
∫ 1

0

dy
αs
2π

nf P̂q←g(y) = −αs
2π

nf TR

∫ 1

0

dy
[
1− 2y + 2y2

]
using Eq.(II.75)

= −αs
2π

nf TR

[
y − y2 +

2y3

3

]1

0

= −2

3

αs
2π

nf TR . (II.79)

Finally, the terms proportional to the purely gluonic splitting Pg←g appearing in Eq.(II.77) require some more
work. The y integral coming from the outgoing flow has to consist of a finite term and a term we can use to define
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the plus prescription for P̂g←g. We can compute the integral as

−
∫ 1

0

dy
αs
2π

P̂g←g(y) =− αs
2π

CA

∫ 1

0

dy

[
y

1− y +
1− y
y

+ y(1− y)

]
using Eq.(II.50)

=− αs
2π

CA

∫ 1

0

dy

[
2y

1− y + y(1− y)

]

=− αs
2π

CA

∫ 1

0

dy

[
2(y − 1)

1− y + y(1− y)

]
− αs

2π
CA

∫ 1

0

dy
2

1− y

=− αs
2π

CA

∫ 1

0

dy
[
−2 + y − y2

]
− αs

2π
2CA

∫ 1

0

dz
1

1− z

=− αs
2π

CA

[
−2 +

1

2
− 1

3

]
− αs

2π
2CA

∫ 1

0

dz
1

1− z

=
αs
2π

11

6
CA −

αs
2π

2CA

∫ 1

0

dz
1

1− z . (II.80)

The second term in this result is what we need to replace the first term in the splitting kernel of Eq.(II.50) proportional
to 1/(1 − z) by 1/(1 − z)+. We can see this using f(z) = z and correspondingly f(1) = 1 in Eq.(II.68). The two

finite terms in Eq.(II.79) and Eq.(II.80) we have to include in the definition of P̂g←g ad hoc. Because the regularized
splitting kernel appear inside a convolution the two finite terms require an additional term δ(1− z). Collecting all of
them we arrive at

Pg←g(z) = 2CA

(
z

(1− z)+
+

1− z
z

+ z(1− z)
)

+
11

6
CA δ(1− z)−

2

3
nf TR δ(1− z) . (II.81)

This result concludes our computation of all four regularized splitting functions which appear in the DGLAP equation
Eq.(II.73).

Before discussing and solving the DGLAP equation, let us briefly recapitulate: for the full quark and gluon particle
content of QCD we have derived the DGLAP equation which describes a factorization scale dependence of the quark
and gluon parton densities. The universality of the splitting kernels is obvious from the way we derive them — no
information on the n-particle process ever enters the derivation.

The DGLAP equation is formulated in terms of four splitting kernels of gluons and quarks which are linked to the
splitting probabilities, but which for the DGLAP equation have to be regularized. With the help of a plus–subtraction
all kernels Pi←j(z) become finite, including in the soft limit z → 1. However, splitting kernels are only regularized
when needed, so the finite off-diagonal quark–gluon and gluon–quark splittings are unchanged. This means the plus
prescription really acts as an infrared renormalization, moving universal infrared divergences into the definition of the
parton densities. The original collinear divergence has vanished as well.

The only approximation we make in the computation of the splitting kernels is that in the y integrals we implicitly
assume that the running coupling αs does not depend on the momentum fraction. In its standard form and in terms
of the factorization scale µ2

F ≡ −t the DGLAP equation reads

dfi(x, µF )

d logµ2
F

=
∑

j

∫ 1

x

dz

z

αs
2π

Pi←j(z) fj
(x
z
, µF

)
=
αs
2π

∑

j

(Pi←j ⊗ fj) (x, µF ) . (II.82)

E. Collinear logarithms

Solving the integro-differential DGLAP equation Eq.(II.82) for the parton densities is clearly beyond the scope of
this writeup. Nevertheless, we will sketch how we would approach this. This will give us some information on the
structure of its solutions which we need to understand the physics of the DGLAP equation.

One simplification we can make is to postulate eigenvalues in parton space and solve the equation for them. This
gets rid of the sum over partons on the right hand side. One such parton density is the non–singlet parton density,
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defined as the difference

fNS
q = fu − fū . (II.83)

Since gluons cannot distinguish between massless quarks and antiquarks, the gluon contribution to their evolution
cancels. This will be true at arbitrary loop order, since flavor symmetries commute with the QCD gauge group. The
corresponding DGLAP equation with leading order splitting kernels now reads

dfNS
q (x, µF )

d logµ2
F

=

∫ 1

x

dz

z

αs
2π

Pq←q(z) f
NS
q

(x
z
, µF

)
=
αs
2π

(
Pq←q ⊗ fNS

q

)
(x, µF ) . (II.84)

To solve it we need a transformation which simplifies a convolution, leading us to the Mellin transform. Starting from
a function f(x) of a real variable x we define the Mellin transform into moment space m

M[f ](m) ≡
∫ 1

0

dxxm−1f(x) f(x) =
1

2πi

∫ c−i∞

c−i∞
dm
M[f ](m)

xm
, (II.85)

where for the back transformation we choose an arbitrary appropriate constant c > 0, such that the integration
contour for the inverse transformation lies to the right of all singularities of the analytic continuation of M[f ](m).
The Mellin transform of a convolution is the product of the two Mellin transforms, which gives us the transformed
DGLAP equation

M[Pq←q ⊗ fNS
q ](m) =M

[∫ 1

0

dz

z
Pq←q

(x
z

)
fNS
q (z)

]
(m) =M[Pq←q](m)M[fNS

q ](m,µF )

⇒ dM[fNS
q ](m,µF )

d logµ2
F

=
αs
2π
M[Pq←q](m) M[fNS

q ](m,µF ) . (II.86)

This simple linear, first-order differential equation has the solution

M[fNS
q ](m,µF ) =M[fNS

q ](m,µF,0) exp

(
αs
2π
M[Pq←q](m) log

µ2
F

µ2
F,0

)

=M[fNS
q ](m,µF,0)

(
µ2
F

µ2
F,0

)αs
2πM[Pq←q ](m)

≡M[fNS
q ](m,µF,0)

(
µ2
F

µ2
F,0

)αs
2π γ(m)

, (II.87)

defining γ(m) =M[P ](m).

The solution given by Eq.(II.87) still has the complication that it includes µF and αs as two free parameters. To
simplify our result we can include αs(µ

2
R) in the running of the DGLAP equation and identify the renormalization

scale µR of the strong coupling with the factorization scale µF = µR ≡ µ. This allows us to replace logµ2 in the
DGLAP equation by αs, including the leading order Jacobian. This is clearly correct for all one-scale problems where
we have no freedom to choose either of the two scales. We find

d

d logµ2
=
d logαs
d logµ2

d

d logαs
=

1

αs

dαs
d logµ2

d

d logαs
= −αsb0

d

d logαs
. (II.88)

This additional factor of αs on the left hand side will cancel the factor αs on the right hand side of the DGLAP



30

equation Eq.(II.86)

dM[fNS
q ](m,µ)

d logαs
= − 1

2πb0
γ(m)M[fNS

q ](m,µ)

⇒ M[fNS
q ](m,µ) =M[fNS

q ](m,µ0) exp

(
− 1

2πb0
γ(m) log

αs(µ
2)

αs(µ2
0)

)

=M[fNS
q ](m,µF,0)

(
αs(µ

2
0)

αs(µ2)

) γ(m)
2πb0

. (II.89)

Among other things, in this derivation we neglect that some splitting functions have singularities and therefore the
Mellin transform is not obviously well defined. Our convolution is not really a convolution either, because we cut it
off at Q2

0 etc; but the final structure in Eq.(II.89) really holds.
Because we will need it in the next section we emphasize that the same kind of solution appears in pure Yang–Mills

theory, i.e. in QCD without quarks. Looking at the different color factors in QCD this limit can also be derived as
the leading terms in Nc. In that case there also exists only one splitting kernel defining an anomalous dimension γ.
We find in complete analogy to Eq.(II.89)

M[fg](m,µ) =M[fg](m,µ0)

(
αs(µ

2
0)

αs(µ2)

) γ(m)
2πb0

. (II.90)

To remind ourselves that in this derivation we unify the renormalization and factorization scales we denote them just
as µ. This solution to the DGLAP equation is not completely determined: as a solution to a differential equation
it also includes an integration constant which we express in terms of µ0. The DGLAP equation therefore does not
determine parton densities, it only describes their evolution from one scale µF to another, just like a renormalization
group equation in the ultraviolet.

Remembering how we arrive at the DGLAP equation we notice an analogy to the case of ultraviolet divergences
and the running coupling. We start from universal infrared divergences. We describe them in terms of splitting
functions which we regularize using the plus prescription. The DGLAP equation plays the role of a renormalization
group equation for example for the running coupling. It links parton densities evaluated at different scales µF .

In analogy to the scaling logarithms considered in Section II B we now test if we can point to a type of logarithm
the DGLAP equation resums by reorganizing our perturbative series of parton splitting. To identify these resummed
logarithms we build a physical model based on collinear splitting, but without using the DGLAP equation. We
start from the basic equation defining the physical picture of parton splitting in Eq.(II.48). Only taking into account
gluons in pure Yang–Mills theory it precisely corresponds to the starting point of our discussion leading to the DGLAP
equation, schematically written as

σn+1 =

∫
σn

dt

t
dz

αs
2π

P̂g←g(z) . (II.91)

This form of collinear factorization does not include parton densities and only applies to final state splittings. To
include initial state splittings we need a definition of the virtuality variable t. If we remember that t = p2

b < 0 we
can follow Eq.(II.56) and introduce a positive transverse momentum variable ~p2

T in the usual Sudakov decomposition,
such that

−t = − p2
T

1− z =
~p2
T

1− z > 0 ⇒ dt

t
=
dp2
T

p2
T

=
d~p2
T

~p2
T

. (II.92)

From the definition of pT in Eq.(II.39) we see that ~p2
T is really the transverse three-momentum of of the parton pair

after splitting.

Extending the single parton radiation we consider a ladder of successive splittings of one gluon into two. For a
moment, we forget about the actual parton densities and assume that they are part of the hadronic cross section σn.
In the collinear limit the appropriate convolution gives us

σn+1(x, µF ) =

∫ 1

x0

dxn
xn

P̂g←g

(
x

xn

)
σn(xn, µ0)

∫ µ2
F

µ2
0

d~p2
T,n

~p2
T,n

αs(µ
2
R)

2π
. (II.93)
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The dz in Eq.(II.91) we replace by the proper convolution P̂ ⊗ σn, evaluated at the momentum fraction x. Because
the splitting kernel is infrared divergent we cut off the convolution integral at x0. Similarly, the transverse momentum
integral is bounded by an infrared cutoff µ0 and the physical external scale µF . This is the range in which an additional
collinear radiation is included in σn+1.

For splitting the two integrals in Eq.(II.93) it is crucial that µ0 is the only scale the matrix element σn depends on.
The other integration variable, the transverse momentum, does not feature in σn because collinear factorization is
defined in the limit ~p2

T → 0. For αs we will see in the next step how µR can depend on the transverse momentum. All
through the argument of this subsection we should keep in mind that we are looking for assumptions which allow us
to solve Eq.(II.93) and compare the result to the solution of the DGLAP equation. In other words, these assumptions
we will turn into a physics picture of the DGLAP equation and its solutions.

Making µF the global upper boundary of the transverse momentum integration for collinear splitting is our first
assumption. We can then apply the recursion formula in Eq.(II.93) iteratively

σn+1(x, µF ) ∼
∫ 1

x0

dxn
xn

P̂g←g

(
x

xn

)
· · ·

∫ 1

x0

dx1

x1
P̂g←g

(
x2

x1

)
σ1(x1, µ0)

×
∫ µF

µ0

d~p2
T,n

~p2
T,n

αs(µ
2
R)

2π
· · ·

∫

µ0

d~p2
T,1

~p2
T,1

αs(µ
2
R)

2π
. (II.94)

The two sets of integrals in this equation we will solve one by one, starting with the ~pT integrals.

To be able to make sense of the ~p2
T integration in Eq.(II.94) and solve it we have to make two more assumptions

in our multiple-splitting model. First, we identify the scale of the strong coupling αs with the transverse momentum

scale of the splitting µ2
R = ~p2

T . This way we can fully integrate the integrand αs/(2π) and link the final result to the
global boundary µF .

In addition, we assume strongly ordered splittings in terms of the transverse momentum. If the ordering of the

splitting is fixed externally by the chain of momentum fractions xj , the first splitting, integrated over ~p2
T,1, is now

bounded from above by the next external scale ~p2
T,2, which is then bounded by ~p2

T,3, etc. For the n-fold ~p2
T integration

this means

µ2
0 < ~p2

T,1 < ~p2
T,2 < · · · < µ2

F (II.95)

At this point this is simply an ad hoc assumption which we need to motivate eventually.

Under these three assumptions the transverse momentum integrals in Eq.(II.94) become

∫ µF

µ0

d~p2
T,n

~p2
T,n

αs(~p
2
T,n)

2π
· · ·

∫ pT,3

µ0

d~p2
T,2

~p2
T,2

αs(~p
2
T,2)

2π

∫ pT,2

µ0

d~p2
T,1

~p2
T,1

αs(~p
2
T,1)

2π
· · ·

=

∫ µF

µ0

d~p2
T,n

~p2
T,n

1

2πb0 log
~p2
T,n

Λ2
QCD

· · ·
∫ pT,3

µ0

d~p2
T,2

~p2
T,2

1

2πb0 log
~p2
T,2

Λ2
QCD

∫ pT,2

µ0

d~p2
T,1

~p2
T,1

1

2πb0 log
~p2
T,1

Λ2
QCD

· · ·

=
1

(2πb0)n

∫ µF

µ0

d~p2
T,n

~p2
T,n

1

log
~p2
T,n

Λ2
QCD

· · ·
∫ pT,3

µ0

d~p2
T,2

~p2
T,2

1

log
~p2
T,2

Λ2
QCD

∫ pT,2

µ0

d~p2
T,1

~p2
T,1

1

log
~p2
T,1

Λ2
QCD

· · · . (II.96)
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We can solve the individual integrals by switching variables, for example in the last integral

∫ pT,2

µ0

d~p2
T,1

~p2
T,1

1

log
~p2
T,1

Λ2
QCD

=

∫ log log p2
T,2/Λ

2

log log µ2
0/Λ

2

d log log
~p2
T,1

Λ2
QCD

with
d(ax)

(ax) log x
= d log log x

=

∫ log log p2
T,2/Λ

2−log log µ2
0/Λ

2

0

d

(
log log

~p2
T,1

Λ2
QCD

− log log
µ2

0

Λ2
QCD

)

= log
log ~p2

T,1/Λ
2
QCD

logµ2
0/Λ

2
QCD

∣∣∣∣∣

~p2
T,1≡~p2

T,2

0

= log
log ~p2

T,2/Λ
2
QCD

logµ2
0/Λ

2
QCD

. (II.97)

This gives us for the chain of transverse momentum integrals

∫ pT,n≡µF

0

d log
log ~p2

T,n/Λ
2
QCD

logµ2
0/Λ

2
QCD

· · ·
∫ pT,2≡pT,3

0

d log
log ~p2

T,2/Λ
2
QCD

logµ2
0/Λ

2
QCD

∫ pT,1≡pT,2

0

d log
log ~p2

T,1/Λ
2
QCD

logµ2
0/Λ

2
QCD

=

∫ pT,n≡µF

0

d log
log ~p2

T,n/Λ
2
QCD

logµ2
0/Λ

2
QCD

· · ·
∫ pT,2≡pT,3

0

d log
log ~p2

T,2/Λ
2
QCD

logµ2
0/Λ

2
QCD

(
log

log ~p2
T,2/Λ

2
QCD

logµ2
0/Λ

2
QCD

)

=

∫ pT,n≡µF

0

d log
log ~p2

T,n/Λ
2
QCD

logµ2
0/Λ

2
QCD

· · · 1
2

(
log

log ~p2
T,3/Λ

2
QCD

logµ2
0/Λ

2
QCD

)2

=

∫ pT,n≡µF

0

d log
log ~p2

T,n/Λ
2
QCD

logµ2
0/Λ

2
QCD

(
1

2
· · · 1

n− 1

)(
log

log ~p2
T,n/Λ

2
QCD

logµ2
0/Λ

2
QCD

)n−1

=
1

n!

(
log

logµ2
F /Λ

2
QCD

logµ2
0/Λ

2
QCD

)n
=

1

n!

(
log

αs(µ
2
0)

αs(µ2
F )

)n
. (II.98)

This is the final result for the chain of transverse momentum integrals in Eq.(II.94). By assumption, the strong
coupling is evaluated at the factorization scale µF , which means we identify µR ≡ µF .

To compute the convolution integrals over the momentum fractions in Eq.(II.94),

σn+1(x, µ) ∼ 1

n!

(
1

2πb0
log

αs(µ
2
0)

αs(µ2)

)n ∫ 1

x0

dxn
xn

P̂g←g

(
x

xn

)
· · ·

∫ 1

x0

dx1

x1
P̂g←g

(
x2

x1

)
σ1(x1, µ0) , (II.99)

we again Mellin transform the equation including the transverse momentum integrals in Eq.(II.98) into moment space

M[σn+1](m,µ) ∼ 1

n!

(
1

2πb0
log

αs(µ
2
0)

αs(µ2)

)n
M
[∫ 1

x0

dxn
xn

P̂g←g

(
x

xn

)
· · ·

∫ 1

x0

dx1

x1
P̂g←g

(
x2

x1

)
σ1(x1, µ0)

]
(m)

=
1

n!

(
1

2πb0
log

αs(µ
2
0)

αs(µ2)

)n
γ(m)nM[σ1](m,µ0) using γ(m) ≡M[P ](m)

=
1

n!

(
1

2πb0
log

αs(µ
2
0)

αs(µ2)
γ(m)

)n
M[σ1](m,µ0) . (II.100)

We can now sum the production cross sections for n collinear jets and obtain

∞∑

n=0

M[σn+1](m,µ) =M[σ1](m,µ0)
∑

n

1

n!

(
1

2πb0
log

αs(µ
2
0)

αs(µ2)
γ(m)

)n

=M[σ1](m,µ0) exp

(
γ(m)

2πb0
log

αs(µ
2
0)

αs(µ2)

)
. (II.101)

This way we can write the Mellin transform of the (n + 1) particle production rate as the product of the n-particle
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renormalization scale µR factorization scale µF

source ultraviolet divergence collinear (infrared) divergence

poles cancelled counter terms parton densities
(renormalization) (mass factorization)

summation resum self energy bubbles resum parton splittings
parameter running coupling αs(µ2

R) running parton density fj(x, µF )
evolution RGE for αs DGLAP equation

large scales decrease of σtot increase of σtot for gluons/sea quarks

theory background renormalizability factorization
proven for gauge theories proven all orders for DIS

proven order-by-order DY...

TABLE II: Comparison of renormalization and factorization scales appearing in LHC cross sections.

rate times a ratio of the strong coupling at two scales

∞∑

n=0

M[σn+1](m,µ) =M[σ1](m,µ0)

(
αs(µ

2
0)

αs(µ2)

) γ(m)
2πb0

. (II.102)

This is the same structure as the DGLAP equation’s solution in Eq.(II.90). It means that we should be able to
understand the physics of the DGLAP equation using our model calculation of a gluon ladder emission.

We should remind ourselves of the three assumptions we need to make to arrive at this form. There are two
assumptions which concern the transverse momenta of the successive radiation: first, the global upper limit on all
transverse momenta should be the factorization scale µF , with a strong ordering in the transverse momenta. This
gives us a physical picture of the successive splittings as well as a physical interpretation of the factorization scale.
Second, the strong coupling should be evaluated at the transverse momentum or factorization scale, so all scales are
unified, in accordance with the derivation of the DGLAP equation.

Bending the rules of pure Yang–Mills QCD we can come back to the hard process σ1 as the Drell–Yan process
qq̄ → Z. Each step in n means an additional parton in the final state, so σn+1 is Z production with n collinear
partons On the left hand side of Eq.(II.102) we have the sum over any number of additional collinear partons; on the
right hand side we see fixed order Drell–Yan production without any additional partons, but with an exponentiated
correction factor. Comparing this to the running parton densities we can draw the analogy that any process computed
with a scale dependent parton density where the scale dependence is governed by the DGLAP equation includes
any number of collinear partons.

We can also identify the logarithms which are resummed by scale dependent parton densities. Going back to
Eq.(II.36) reminds us that we start from the divergent collinear logarithms log pmax

T /pmin
T arising from the collinear

phase space integration. In our model for successive splitting we replace the upper boundary by µF . The collinear
logarithm of successive initial–state parton splitting diverges for µ0 → 0, but it gets absorbed into the parton densities
and determines the structure of the DGLAP equation and its solutions. The upper boundary µF tells us to what
extent we assume incoming quarks and gluons to be a coupled system of splitting partons and what the maximum
momentum scale of these splittings is. Transverse momenta pT > µF generated by hard parton splitting are not
covered by the DGLAP equation and hence not a feature of the incoming partons anymore. They belong to the hard
process and have to be consistently simulated. While this scale can be chosen freely we have to make sure that it
does not become too large, because at some point the collinear approximation C ' constant in Eq.(II.36) ceases to
hold and with it our entire argument. Only if we do everything correctly, the DGLAP equation resums logarithms of
the maximal transverse momentum size of the incoming gluon. They are universal and arise from simple kinematics.

Looking back at Sections II A and II C we introduce the factorization and renormalization scales step by step
completely in parallel: first, computing perturbative higher order contributions to scattering amplitudes we encounter
ultraviolet and infrared divergences. We regularize both of them using dimensional regularization with n = 4−2ε < 4
for ultraviolet and n > 4 for infrared divergences, linked by analytic continuation. Both kinds of divergences are
universal, which means that they are not process or observable dependent. This allows us to absorb ultraviolet and
infrared divergences into a re-definition of the strong coupling and the parton density. This nominally infinite shift
of parameters we refer to as renormalization for example of the strong coupling or as mass factorization absorbing
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infrared divergences into the parton distributions.
After renormalization as well as after mass factorization we are left with a scale artifact. Scales arise as part of a

the pole subtraction: together with the pole 1/ε we have a choice of finite contributions which we subtract with this
pole. Logarithms of the renormalization and factorization scales will always be part of these finite terms. Moreover,
in both cases the re-definition of parameters is not based on fixed order perturbation theory. Instead, it involves
summing logarithms which otherwise can become large and spoil the convergence of our perturbative series in αs.
The only special feature of infrared divergences as compared to ultraviolet divergences is that to identify the resummed
logarithms we have to unify both scales to one.

The hadronic production cross section for the Drell–Yan process or other LHC production channels, now including
both scales, reads

σtot(µF , µR) =

∫ 1

0

dx1

∫ 1

0

dx2

∑

ij

fi(x1, µF ) fj(x2, µF ) σ̂ij(x1x2S, αs(µ
2
R), µF , µR) . (II.103)

The Drell–Yan process has the particular feature that at leading order σ̂qq̄ only involves weak couplings, it does not
include αs with its implicit renormalization scale dependence at leading order. Strictly speaking, in Eq.(II.103) the
parton densities also depend on the renormalization scale because in their extraction we identify both scales. Carefully
following their extraction we can separate the two scales if we need to. Lepton pair production and Higgs production
in weak boson fusion are the two prominent electroweak production processes at the LHC.

The evolution of all running parameters from one renormalization/factorization scale to another is described either
by renormalization group equation in terms of a beta function in the case of renormalization or by the DGLAP
equation in the case of mass factorization. Our renormalization group equation for αs is a single equation, but in
general they are sets of coupled differential equations for all relevant parameters, which again makes them more similar
to the DGLAP equation.

There is one formal difference between these two otherwise very similar approaches. The fact that we can absorb
ultraviolet divergences into process–independent, universal counter terms is called renormalizability and has been
proven to all orders for the kind of gauge theories we are dealing with. The universality of infrared splitting kernels
has not (yet) in general been proven, but on the other hand we have never seen an example where is fails for sufficiently
inclusive observables like production rates. For a while we thought there might be a problem with factorization in
supersymmetric theories using the MS scheme, but this issue has been resolved. A summary of the properties of the
two relevant scales for LHC physics we show in Table II.

The way we introduce factorization and renormalization scales clearly labels them as an artifact of perturbation
theories with divergences. What actually happens if we include all orders in perturbation theory? For example, the
resummation of the self energy bubbles simply deals with one class of diagrams which have to be included, either
order-by-order or rearranged into a resummation. Once we include all orders in perturbation theory it does not
matter according to which combination of couplings and logarithms we order it. An LHC production rate will then
not depend on arbitrarily chosen renormalization or factorization scales µ.

Practically, in Eq.(II.103) we evaluate the renormalized parameters and the parton densities at some scale. This
scale dependence will only cancel once we include all implicit and explicit appearances of the scales at all orders.
Whatever scale we choose for the strong coupling or parton densities will eventually be compensated by explicit scale
logarithms. In the ideal case, these logarithms are small and do not spoil perturbation theory. In a process with one
distinct external scale, like the Z mass, we know that all scale logarithms should have the form log(µ/mZ). This
logarithm vanishes if we evaluate everything at the ‘correct’ external energy scale, namely mZ . In that sense we can
think of the running coupling as a proper running observable which depends on the external energy of the process.
This dependence on the external energy is not a perturbative artifact, because a cross section even to all orders does
depend on the energy. The problem in particular for LHC analyses is that after analysis cuts every process will have
more than one external energy scale.

We can turn around the argument of vanishing scale dependence to all orders in perturbation theory. This gives
us an estimate of the minimum theoretical error on a rate prediction set by the scale dependence. The appropriate
interval of what we consider reasonable scale choices depends on the process and the taste of the people doing this
analysis. This error estimate is not at all conservative; for example the renormalization scale dependence of the Drell–
Yan production rate or Higgs production in weak boson fusion is zero because αs only enters are next–to–leading
order. At the same time we know that the next–to–leading order correction to the Drell–Yan cross section is of the
order of 30%, which far exceeds the factorization scale dependence. Moreover, the different scaling behavior of a
hadronic cross section shown in Table II implies that for example gluon–induced processes at typical x values around
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10−2 show a cancellation of the factorization and renormalization scale variation. Estimating theoretical uncertainties
from scale dependence therefore requires a good understanding of the individual process and the way it is affected by
the two scales.

Guessing the right scale choice for a process is hard, often impossible. For example in Drell–Yan production
at leading order there exists only one scale, mZ . If we set µ = mZ all scale logarithms vanish. In reality, LHC
observables include several different scales. Some of them appear in the hard process, for example in the production
of two or three particles with different masses. Others enter through the QCD environment where at the LHC we
only consider final–state jets above a certain minimal transverse momentum. Even others appear though background
rejection cuts in a specific analysis, for example when we only consider the Drell–Yan background for mµµ > 1 TeV
to Kaluza–Klein graviton production. Using likelihood methods does not improve the situation because the phase
space regions dominated by the signal will introduce specific energy scales which affect the perturbative prediction of
the backgrounds. This is one of the reasons why an automatic comparison of LHC events with signal or background
predictions is bound to fail once it requires an estimate of the theoretical uncertainty on the background simulation.

All that means that in practice there is no way to define a ‘correct’ scale. On the other hand, there are definitely
poor scale choices. For example, using 1000×mZ as a typical scale in the Drell–Yan process will if nothing else lead to
logarithms of the size log 1000 whenever a scale logarithm appears. These logarithms eventually have to be cancelled
to all orders in perturbation theory, inducing unreasonably large higher order corrections.

When describing jet radiation, we usually introduce a phase space dependent renormalization scale, evaluating
the strong coupling at the transverse momentum of the radiated jet αs(~p

2
T,j). This choice gives the best kinematic

distributions for the additional partons because in Section II E we have shown that it resums large collinear logarithms.

The transverse momentum of a final–state particle is one of scale choices allowed by factorization; in addition
to poor scale choices there also exist wrong scale choices, i.e. scale choices violating physical properties we need.
Factorization or the Kinoshita–Lee–Nauenberg theorem which ensures that soft divergences cancel between real and
virtual emission diagrams are such properties we should not violate — in QED the same property is called the
Bloch–Nordsieck cancellation. Imagine picking a factorization scale defined by the partonic initial state, for example
the partonic center–of–mass energy s = x1x2S. We know that this definition is not unique: for any final state it
corresponds to the well defined sum of all momenta squared. However, virtual and real gluon emission generate
different multiplicities in the final state, which means that the two sources of soft divergences only cancel until we
multiply each of them with numerically different parton densities. Only scales which are uniquely defined in the final
state can serve as factorization scales. For the Drell–Yan process such a scale could be mZ , or the mass of heavy
new-physics states in their production process. So while there is no such thing as a correct scale choice, there are
more or less smart choices, and there are definitely very poor choices, which usually lead to an unstable perturbative
behavior.

F. Parton shower

In LHC phenomenology we are usually less interested in fixed-order perturbation theory than in logarithmically
enhanced QCD effects, for example collinear jet radiation. After introducing the kernels P̂i←j(z) as something like
splitting probabilities we never applied a probabilistic approach to parton splitting. The basis of such an interpretation
are Sudakov factors describing the splitting of a parton i into any of the partons j based on the factorized form
Eq.(II.48)

∆i(t) ≡ ∆i(t, t0) = exp


−

∑

j

∫ t

t0

dt′

t′

∫ 1

0

dy
αs
2π
P̂j←i(y)


 . (II.104)

We can express all Sudakov factors in terms of splitting functions Γj ,

∆q(t) = exp

(
−
∫ t

t0

dt′ Γq←q(t, t
′)

)

∆g(t) = exp

(
−
∫ t

t0

dt′ [Γg←g(t, t
′) + Γq←g(t

′)]

)
, (II.105)
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which to leading logarithm in log(t/t′) read

Γq←q(t, t
′) =

CF
2π

αs(t
′)

t′

(
log

t

t′
− 3

2

)

Γg←g(t, t
′) =

CA
2π

αs(t
′)

t′

(
log

t

t′
− 11

6

)

Γq←g(t
′) =

nf
6π

αs(t
′)

t′
. (II.106)

These formulas have a slight problem: terms arising from next–to–leading logarithms spoil the limit t′ → t, where a
splitting probability should vanish. Technically, we can deal with the finite terms in the Sudakov factors by requiring
them to be positive semi–definite, i.e. by replacing Γ(t, t′) < 0 with zero. For the general argument this problem with
the analytic expressions for the splitting functions is irrelevant. In practice, many modern parton showers do not use
these approximate formulas and instead integrate the full splitting kernels.

Instead of going in the details of Sudakov factors we only sketch how such exponentials appear in probabilistic
arguments. Using Poisson statistics for something expected to occur 〈n〉 times, the probability of observing it n times
is given by

P(n; 〈n〉) =
〈n〉n e−〈n〉

n!
P(0; 〈n〉) = e−〈n〉 . (II.107)

If the exponent in the Sudakov factor describes the integrated splitting probability of a parton i this means that the
Sudakov itself describes a non–splitting probability of the parton i into any final state j. In other words, we can use
splitting probabilities to describe initial state radiation and final state radiation, including a well-defined probability
of no radiation at all.

While the Sudakov factors and splitting probabilities allow us to describe for example the emission of gluons off a
hard quark line, there is a crucial piece missing from our collinear resummation argument: multiple gluon emission has
to be ordered, and there cannot be interference terms between different emission stages. Such interference diagrams
contributing to the full amplitude squared are called non–planar diagrams. There are three reasons to neglect them,
even though none of them gives exactly zero for soft and collinear splittings. On the other hand, in combination they
make for a very good reason.

First, an arguments for a strongly ordered gluon emission comes from the divergence structure of soft and collinear
gluon emission. We start with the kinematical setup for gluon radiation off a massless or massive hard quark leg

The original massive quark leg with momentum p + k and mass m could be attached to some hard process as
a splitting final state. It splits into a hard quark p and a soft gluon k. The general matrix element without any
approximation reads

Mn+1 = gsT
a ε∗µ(k) ū(p)γµ

/p+ /k +m

(p+ k)2 −m2
Mn

= gsT
a ε∗µ(k) ū(p)

[
−/pγµ + 2pµ +mγµ + γµ/k

] 1

2(pk) + k2
Mn

= gsT
a ε∗µ(k) ū(p)

2pµ + γµ/k

2(pk) + k2
Mn , (II.108)

using the Dirac equation ū(p)(/p −m) = 0. At this level, a further simplification requires for example the soft gluon
limit. In the presence of only hard momenta, except for the gluon, we can define it for example as kµ = λpµ, where pµ

is an arbitrary four-vector combination of the surrounding hard momenta. The small parameter λ then characterizes
the soft limit. For the invariant mass of the gluon we assume k2 = O(λ2), allowing for a slightly off–shell gluon. We
find the leading contribution

Mn+1 ∼ gsT a ε∗µ(k)
pµ

(pk)
ū(p)Mn . (II.109)

To allow for other color states we defines a color operator T̂ aj which we insert into the matrix element of Eq.(II.109)
and which assumes values of +T aij for radiation off a quark, −T aji for radiation off an antiquark and −ifabc for radiation
off a gluon. For a color neutral process like our favorite Drell–Yan process adding an additional soft gluon qq̄ → Zg
we find for the sum of all possible soft emissions

∑
j T̂j = 0.
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Radiating two radiated gluons instead of one look like Each soft splitting comes with a term (ε∗p)(pk), so the two
Feynman diagrams give us the combined kinetic terms

(ε1p)

(p+ k1 + k2)2 −m2

(ε2p)

(p+ k2)2 −m2
+

(ε2p)

(p+ k1 + k2)2 −m2

(ε1p)

(p+ k1)2 −m2

=
(ε1p)

2(pk1) + 2(pk2) + (k1 + k2)2

(ε2p)

2(pk2)
+

(ε2p)

2(pk1) + 2(pk2) + (k1 + k2)2

(ε1p)

2(pk1)
k2

1 = 0 = k2
2

' (ε1p)

2 maxj(pkj)

(ε2p)

2(pk2)
+

(ε2p)

2 maxj(pkj)

(ε1p)

2(pk1)
(pkj) strongly ordered

'





(ε1p)(ε2p)

2 maxj(pkj)

1

2(pk2)
(pk2)� (pk1) k2 softer

(ε1p)(ε2p)

2 maxj(pkj)

1

2(pk1)
(pk1)� (pk2) k1 softer .
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For the two Feynman diagrams this means that once one of the gluons is significantly softer than the other the Feynman
diagrams with the later soft emission dominates. This argument can be generalized to multiple gluon emission by
recognizing that the kinematics will always be dominated by the more divergent propagators towards the final state
quark with momentum p. Note, however, that it is based on an ordering of the scalar products (pkj) interpreted as
the softness of the gluons, and we already know that a small value of (pkj) can as well point to a collinear divergence.

Second, we can derive ordered multiple gluon emission from the phase space integration in the soft limit. For this
we need to square this matrix element of Eq.(II.109). It includes a polarization sum and will therefore depend on the
gauge. We choose the general axial gauge for massless gauge bosons

∑

pol

ε∗µ(k)εν(k) = −gµν +
kµnν + nµkν

(nk)
− n2 kµkν

(nk)2
= −gµν +

kµnν + nµkν
(nk)

, (II.111)

with a light-like reference vector n obeying n2 = 0. The matrix element squared then reads

|Mn+1|2 = g2
s

(
−gµν +

kµnν + nµkν
(nk)

) 
∑

j

T̂ aj
pµj

(pjk)



† 
∑

j

T̂ aj
pνj

(pjk)


 |Mn|2

= g2
s


−


∑

j

T̂ aj
pµj

(pjk)



† 
∑

j

T̂ aj
pjµ

(pjk)


 +

2

(nk)


∑

j

T̂ aj



† 
∑

j

T̂ aj
(pjn)

(pjk)





 |Mn|2

= −g2
s


∑

j

T̂ aj
pµj

(pjk)



† 
∑

j

T̂ aj
pjµ

(pjk)


 |Mn|2 . (II.112)

The insertion operator in the matrix element has the form of an insertion current multiplied by its hermitian conjugate.
This current describes the universal form of soft gluon radiation off an n-particle process

|Mn+1|2 ≡ −g2
s (J† · J) |Mn|2 with Jaµ(k, {pj} =

∑

j

T̂ aj
pµj

(pjk)
. (II.113)
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We can further simplify the squared current to

(J† · J) =
∑

j

T̂ aj T̂
a
j

p2
j

(pjk)2
+ 2

∑

i<j

T̂ ai T̂
a
j

(pipj)

(pik)(pjk)

=
∑

j

T̂ aj


−

∑

i 6=j
T̂ ai


 p2

j

(pjk)2
+ 2

∑

i<j

T̂ ai T̂
a
j

(pipj)

(pik)(pjk)

= −


∑

i<j

+
∑

i>j


 T̂ ai T̂

a
j

p2
j

(pjk)2
+ 2

∑

i<j

T̂ ai T̂
a
j

(pipj)

(pik)(pjk)

= 2
∑

i<j

T̂ ai T̂
a
j

(
(pipj)

(pik)(pjk)
− p2

i

2(pik)2
−

p2
j

2(pjk)2

)
in the general massive case

= 2
∑

i<j

T̂ ai T̂
a
j

(pipj)

(pik)(pjk)
for massless partons . (II.114)

A simple process which will illustrate the relevant point for multiple gluon emission is We first symmetrize the leading
soft radiation term with respect to the two hard momenta in a particular way,

(J† · J)12 =
(p1p2)

(p1k)(p2k)

=
1

k2
0

1− cos θ12

(1− cos θ1k)(1− cos θ2k)
in terms of opening angles θ

=
1

2k2
0

(
1− cos θ12

(1− cos θ1k)(1− cos θ2k)
+

1

1− cos θ1k
− 1

1− cos θ2k

)
+ (1↔ 2)

≡ W
[1]
12 +W

[2]
12

k2
0

. (II.115)

The last term is an implicit definition of the two terms W
[1]
12 . The pre-factor 1/k2

0 is given by the leading soft
divergence. The original form of (J†J) is symmetric in the two indices, which means that both hard partons can take
the role of the hard parton and the interference partner. In the new form the symmetry in each of the two terms is
broken. Each of the two terms we need to integrate over the gluon’s phase space, including the azimuthal angle φ1k.

To compute the actual integral we express the three parton vectors in polar coordinates where the initial parton
p1 propagates into the x direction, the interference partner p2 in the (x − y) plane, and the soft gluon in the full
three-dimensional space described by polar coordinates,

p̂1 = (1, 0, 0) hard parton

p̂2 = (cos θ12, sin θ12, 0) interference partner

k̂ = (cos θ1k, sin θ1k cosφ1k, sin θ1k sinφ1k) soft gluon

⇒ cos θ2k ≡ (p̂2k̂) = cos θ12 cos θ1k + sin θ12 sin θ1k cosφ1k . (II.116)

From the scalar product between these four-vectors we see that of the terms appearing in Eq.(VIII.15) only the
opening angle θ2k includes φ1k, which for the azimuthal angle integration means

∫ 2π

0

dφ1k W
[1]
12 =

1

2

∫ 2π

0

dφ1k

(
1− cos θ12

(1− cos θ1k)(1− cos θ2k)
+

1

1− cos θ1k
− 1

1− cos θ2k

)
.

=
1

2

1

1− cos θ1k

∫ 2π

0

dφ1k

(
1− cos θ12

1− cos θ2k
+ 1− 1− cos θ1k

1− cos θ2k

)

=
1

2

1

1− cos θ1k

(
2π + (cos θ1k − cos θ12)

∫ 2π

0

dφ1k
1

1− cos θ2k

)
. (II.117)
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The azimuthal angle integral in this expression for W
[i]
12 we can solve

∫ 2π

0

dφ1k
1

1− cos θ2k
=

∫ 2π

0

dφ1k
1

1− cos θ12 cos θ1k − sin θ12 sin θ1k cosφ1k

=

∫ 2π

0

dφ1k
1

a− b cosφ1k

=

∮

unit circle

dz
1

iz

1

a− bz + 1/z

2

with z = eiφ1k , cosφ1k =
z + 1/z

2

=
2

i

∮
dz

1

2az − b− bz2

=
2i

b

∮
dz

(z − z−)(z − z+)
with z± =

a

b
±
√
a2

b2
− 1 . (II.118)

This integral is related to the sum of all residues of poles inside the closed integration contour. Of the two poles z−
is the one which typically lies within the unit circle, so we find

∫ 2π

0

dφ1k
1

1− cos θ2k
=

2i

b
2πi

1

z− − z+
=

2π√
a2 − b2

=
2π√

(cos θ1k − cos θ12)2
=

2π

| cos θ1k − cos θ12|
. (II.119)

The entire integral in Eq.(VIII.17) then becomes

∫ 2π

0

dφ1k W
[1]
12 =

1

2

1

1− cos θ1k

(
2π + (cos θ1k − cos θ12)

2π

| cos θ1k − cos θ12|

)

=
π

1− cos θ1k
(1 + sign(cos θ1k − cos θ12))

=





2π

1− cos θ1k
if θ1k < θ12

0 else .
(II.120)

The soft gluon is only radiated at angles between zero and the opening angle of the initial parton p1 and its hard

interference partner or spectator p2. The same integral over W
[2]
12 gives the same result, with switched roles of p1 and

p2. Combining the two permutations this means that the soft gluon is always radiated within a cone centered around
one of the hard partons and with a radius given by the distance between the two hard partons. The coherent sum of
diagrams reduces to an incoherent sum. This derivation angular ordering is exact in the soft limit.

There is a simple physical argument for this suppressed radiation outside a cone defined by the radiating legs. Part
of the deviation is that the over–all process is color–neutral. This means that once the gluon is far enough from the
two quark legs it will not resolve their individual charges but only feel the combined charge. This screening leads to
an additional suppression factor of the kind θ2

12/θ
2
1k. This effect is called coherence.

The third argument for ordered emission comes from color factors. Crossed successive splittings or interference
terms between different orderings are color suppressed. For example in the squared diagram for three jet production
in e+e− collisions the additional gluon contributes a color factor

tr(T aT a) =
N2
c − 1

2
= NcCF (II.121)

When we consider the successive radiation of two gluons the ordering matters. As long as the gluon legs do not cross
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each other we find the color factor

tr(T aT aT bT b) = (T aT a)il(T
bT b)li

=
1

4

(
δilδjj −

δijδjl
Nc

)(
δilδjj −

δijδjl
Nc

)
using T aijT

a
kl =

1

2

(
δilδjk −

δijδkl
Nc

)

=
1

4

(
δilNc −

δil
Nc

)(
δilNc −

δil
Nc

)

= Nc

(
N2
c − 1

2Nc

)2

= NcC
2
F =

16

3
(II.122)

Similarly, we can compute the color factor when the two gluon lines cross. We find

tr(T aT bT aT b) = −N
2
c − 1

4Nc
= −CF

2
= −2

3
. (II.123)

Numerically, this color factor is suppressed compared to 16/3. This kind of behavior is usually quoted in powers of
Nc where we assume Nc to be large. In those terms non–planar diagrams are suppressed by a factor 1/N2

c compared
to the planar diagrams.

Once we also include the triple gluon vertex we can radiate two gluons off a quark leg with the color factor

tr(T aT b) facdf bcd =
δab

2
Ncδ

ab =
Nc(N

2
c − 1)

2
= N2

cCF =
36

3
. (II.124)

This is not suppressed compared to successive planar gluon emission, neither in actual numbers not in the large-Nc
limit.

We can try the same argument for a purely gluonic theory, i.e. radiating gluons off two hard gluons in the final
state. The color factor for single gluon emission after squaring is

fabcfabc = Ncδ
aa = Nc(N

2
c − 1) ∼ N3

c , (II.125)

using the large-Nc limit in the last step. For planar double gluon emission with the exchanged gluon indices b and f
we find

fabdfabefdfgfefg = Ncδ
de Ncδ

de ∼ N4
c . (II.126)

Splitting one radiated gluon into two gives

fabc f ceffdef fabd = Ncδ
cd Ncδ

cd ∼ N4
c . (II.127)

This means that planar emission of two gluons and successive splitting of one into two gluons cannot be separated
based on the color factor. We can use the color factor argument only for abelian splittings to justify ordered gluon
emission.
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FIG. 4: Different predictions for the jet veto survival probability Ppass as a function of the maximum allowed pT,j . The
example process chosen is Higgs production in gluon fusion. The shaded regions indicate the independent variation
of the factorization and renormalization scales within [mH/4,mH ] requiring µR/µF to lie within [0.5, 2]. The figure

and the corresponding physics argument are taken from Ref. [? ].

III. JETS

Until now we have described QCD in terms of its fundamental constituents, the quarks and the gluons. This
framework is the same for all applications of QCD, including collider physics. On the other hand, from the running
of the strong coupling we already know that a perturbative theory of quarks and gluons will at some point hit its
self-consistency conditions. At colliders this defines the transition from partons to jets, where jets are defined as a
spray of particles coming from a highly energetic produced parton. In this chapter we will start from quarks and
gluons and slowly transition to jets at the LHC and some very recent developments in this direction.

A. Jet counting

In Higgs physics and other QCD applications the number of jets radiated from the initial (and final) state is an
important observable which separates signals from backgrounds. From our discussion of collinear divergences we know
that any perturbative calculation for a hadron collider by definition includes any number of collinear jets from initial
state splittings. This means that the number of jets in an event in perturbatively very hard to compute: on the one
hand, for a given hard process the number of jets is defined through the process; on the other hand, any number of
collinear jets is always included, but only in the collinear and hence unobservable phase space configuration.

Experimentally, we can assign a probability pattern to the radiation of jets from the core process. As an example
we assume NNLO or two-loop precision for an LHC production rate

σ = σ0 + αsσ1 + α2
sσ2 , (III.1)

where we omit the over–all power of αs in σ0. Consequently, we define the cross section passing a cut on the number
of jets or a jet veto as

σ(pass) ≡ Ppass σ =
∑

j

αjsσ
(pass)
j . (III.2)

This relation defines a survival probability Ppass of a jet veto. If we assume that the leading order prediction only

includes a Higgs or a lepton pair in the final state, we know that σ
(pass)
0 = σ0. Perturbatively we can compute the jet

veto survival probability as

P (a)
pass =

σ(pass)

σ
=

σ0 + αsσ
(pass)
1 + α2

sσ
(pass)
2

σ0 + αsσ1 + α2
sσ2

, (III.3)
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The result as a function of the maximum allowed pT,j is shown as ‘scheme a’ in Figure 24. The shaded region is an
estimate of the theoretical uncertainty of this prediction.

Alternatively, we can argue that the proper perturbative observable is the fraction of vetoed events (1 − Ppass).
Indeed, for small values of αs the jet radiation probability vanishes and with it (1 − Ppass) ∼ αs → 0. This vetoed

event fraction we can compute as σj − σ(pass)
j for j ≥ 0. However, we need to keep in mind that in the presence of an

additional hard jet the NNLO rate prediction reduces to NLO accuracy of the inclusive process, so we include only
the two leading terms in the numerator and denominator,

1− P (b)
pass = αs

σ1 − σ(pass)
1 + αs(σ2 − σ(pass)

2 )

σ0 + αsσ1

P (b)
pass = 1− αs

σ1 − σ(pass)
1 + αs(σ2 − σ(pass)

2 )

σ0 + αsσ1
=
σ0 + αsσ

(pass)
1 + α2

sσ
(pass)
2 − α2

sσ2

σ0 + αsσ1
. (III.4)

This defines ‘scheme b’ in Figure 24. Obviously, in Eq.(VIII.4) we can move the term −α2
sσ2 into the denominator

and arrive at Eq.(VIII.3) within the uncertainty defined by the unknown α3
s terms.

Finally, we can consistently expand the definition of Ppass as the ratio given in Eq.(VIII.3). The two leading
derivatives of a ratio read

(
f

g

)′
=
f ′g − fg′

g2

f=g
=

f ′ − g′
g

(
f

g

)′′
=

(
f ′g
g2
− fg′

g2

)′
=

(f ′g)′g2 − f ′g2gg′

g4
− (fg′)′g2 − fg′2gg′

g4

=
(f ′g)′ − 2f ′g′

g2
− (fg′)′g − 2fg′g′

g3
=
f ′′g − f ′g′

g2
− fg′′g − fg′g′

g3

f=g
=

f ′′ − g′′
g

− g′(f ′ − g′)
g2

(III.5)

In the last steps we assume f = g at the point where we evaluate the Taylor expansion. Applied to the perturbative
QCD series for (1− Ppass) around the zero-coupling limit this gives us

1− P (c)
pass = 1− σ0 + αsσ

(pass)
1 + α2

sσ
(pass)
2 + · · ·

σ0 + αsσ1 + α2
sσ2 + · · ·

P (c)
pass = 1 + αs

σ
(pass)
1 − σ1

σ0
+ α2

s

σ
(pass)
2 − σ2

σ0
− α2

s

σ1(σ
(pass)
1 − σ1)

σ2
0

, (III.6)

defining ‘scheme c’ in Figure 24. The numerical results indicate that the three schemes are inconsistent within their
theoretical uncertainties, and that the most consistent Taylor expansion around perfect veto survival probabilities is
doing particularly poorly. Towards small pT,j veto ranges the fixed order perturbative approach clearly fails.

A first, non-perturbative ansatz for the calculation of the number of radiated jets is motivated by soft photon or gluon
emission. In the eikonal approximation we know that the number of successively radiated jets is a Poisson distribution
in the numbers of jets. If we assume such a Poisson distribution, the probability of observing exactly n jets given an
expected 〈n〉 jets is

P(n; 〈n〉) =
〈n〉ne−〈n〉

n!
⇒ Ppass ≡ P(0; 〈n〉) = e−〈n〉 . (III.7)

This probability links rates for exactly n jets, no at least n jets, i.e. it described the exclusive number of jets. A
Poisson distribution is normalized to unity, once we sum over all possible jet multiplicities n. We consistently fix the
expectation value in terms of the inclusive cross sections producing at least zero or at least one jet,

〈n〉 =
σ1(pmin

T )

σ0
. (III.8)

We include an infra-red cut-off pmin
T , defining a cross section in the presence of soft and collinear divergences. The in-

clusive jet ratio σ1/σ0 is reproduced by the ratio of the corresponding Poisson distributions. Including this expectation
value 〈n〉 into Eq.(III.7) returns a veto survival probability of exp(−σ1/σ0).

A second ansatz comes from UA1 and UA2 data, ‘phenomenologically’ assuming a constant probability of radiating
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a jet. In terms of the inclusive cross sections σn, i.e. the production rate for the radiation of at least n jets, this
implies

σn+1(pmin
T )

σn(pmin
T )

= R
(incl)
(n+1)/n(pmin

T ) . (III.9)

The expected number of jets is then given by

〈n〉 =
1

σ0

∑

j=1

j(σj − σj+1) =
1

σ0


∑

j=1

jσj −
∑

j=2

(j − 1)σj


 =

1

σ0

∑

j=1

σj

=
σ1

σ0

∑

j=0

(R
(incl)
(n+1)/n)j =

R
(incl)
(n+1)/n

1−R(incl)
(n+1)/n

, (III.10)

if R
(incl)
(n+1)/n is a constant. Radiating jets with such a constant probability has been observed at many experiments,

including most recently the LHC, and is in the context of W+jets referred to as staircase scaling. The defining
property of staircase scaling is that ratios of the (n+ 1)-jet rate to the n-jet rate for inclusive and exclusive jet rates
are identical,

R
(incl)
(n+1)/n =

σn+1

σn
=

∑∞
j=n+1 σ

(excl)
j

σ
(excl)
n +

∑∞
j=n+1 σ

(excl)
j

=
σ

(excl)
n+1

∑∞
j=0R

j
(n+1)/n

σ
(excl)
n + σ

(excl)
n+1

∑∞
j=0R

j
(n+1)/n

with R(n+1)/n =
σ

(excl)
n+1

σ
(excl)
n

=

R(n+1)/nσ
(excl)
n

1−R(n+1)/n

σ
(excl)
n +

R(n+1)/nσ
(excl)
n

1−R(n+1)/n

=
R(n+1)/n

1−R(n+1)/n +R(n+1)/n

= R(n+1)/n . (III.11)

For the Poisson distribution and the staircase distribution we can summarize the main properties of the n-jet rates
in terms of the upper incomplete gamma function Γ(n, 〈n〉):

staircase scaling Poisson scaling

σ
(excl)
n σ

(excl)
0 e−bn σ0

e−〈n〉〈n〉n
n!

R(n+1)/n =
σ

(excl)
n+1

σ
(excl)
n

e−b
〈n〉
n+ 1

R
(incl)
(n+1)/n =

σn+1

σn
e−b

(
(n+ 1) e−〈n〉 〈n〉−(n+1)

Γ(n+ 1)− nΓ(n, 〈n〉) + 1

)−1

〈n〉 1

2

1

cosh b− 1
〈n〉

Ppass 1− e−b e−〈n〉

B. Generating functional

A crucial question is if we can derive the Poisson and staircase scaling patterns from QCD. From our discussion
of parton splittings we know that the number of radiated jets is well defined after a simple resummation. So-called
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generating functionals for the jet multiplicity allow us to calculate resummed jet quantities from first principles in
QCD. We construct a generating functional in an arbitrary parameter u by demanding that repeated differentiation
at u = 0 gives exclusive multiplicity distributions Pn ≡ σn/σtot,

Φ =

∞∑

n=1

unPn−1 with Pn−1 =
σn−1

σtot
=

1

n!

dn

dun
Φ

∣∣∣∣
u=0

. (III.12)

For Φ we will suppress the argument u. In the application to gluon emission the explicit factor 1/n! corresponds to
the phase space factor for identical bosons. Because in Pn we only count radiated jets, our definition uses Pn−1 where
other conventions use Pn. A second observable we can extract from Φ is the average jet multiplicity,

dΦ

du

∣∣∣∣
u=1

=

∞∑

n=1

n un−1 σn−1

σtot

∣∣∣∣∣
u=1

= 1 +
1

σtot

∞∑

n=1

(n− 1) σn−1 . (III.13)

In analogy to the DGLAP equation we can derive an evolution equation for Φ. We start by quoting the fact that for
the parton densities and the Sudakov factors defined in Eq.(II.104) the there exists an evolution equation

fi(x, t) = ∆i(t, t0)fi(x, t0) +

∫ t

t0

dt′

t′
∆i(t, t

′)
∑

j

∫ 1−ε

0

dz

z

αs
2π

P̂i←j(z) fj
(x
z
, t′
)
. (III.14)

This form reflects our interpretaion of the Sudakov factor as a non-splitting probability. We can motivate the cor-
responding equation for the generating functional Φ by remembering our probabilistic picture of parton splittings
i → jk in the final state. The splitting particles are then described by generating functionals Φ(t) instead of parton
densities f(x, t), giving us

Φi(t) = ∆i(t, t0)Φi(t0) +

∫ t

t0

dt′

t′
∆i(t, t

′)
∑

i→j,k

∫ 1

0

dz
αs
2π

P̂i→jk(z) Φj(z
2t′)Φk((1− z)2t′) . (III.15)

The difference to the DGLAP equation is that the generating functionals just count jets. Unlike for the parton
densities the evolution equation does not include a convolution, but instead two generating functionals under the
integral. The argument of the strong coupling we assume, without any further motivation, as αs(z

2(1− z)2t′). It will
become clear during our computation that this scale choice is appropriate.

The argument in this section will go two ways: first, we write down a proper differential evolution equation for
Φq(t). Then, we solve this equation for quarks, only including the abelian splitting q → qg. To start with, we insert
the unregularized splitting kernel from Eq.(II.54) into the evolution equation,

Φq(t) = ∆q(t, t0)Φq(t0) +

∫ t

t0

dt′

t′
∆q(t, t

′)
∫ 1

0

dz
αs
2π

CF
1 + z2

1− z Φq(z
2t′)Φg((1− z)2t′)

= ∆q(t, t0)Φq(t0) +

∫ t

t0

dt′

t′
∆q(t, t

′)
∫ 1

0

dz
αsCF

2π

−(1− z)(1 + z) + 2

1− z Φq(z
2t′)Φg((1− z)2t′)

= ∆q(t, t0)Φq(t0) +

∫ t

t0

dt′

t′
∆q(t, t

′)
∫ 1

0

dz
αsCF

2π

(
2

1− z − 1− z
)

Φq(z
2t′)Φg((1− z)2t′) . (III.16)

We can simplify the divergent part of Eq.(III.16) using the new integration parameter t′′ = (1− z)2t′. This gives us
the Jacobian

dt′′

dz
=

d

dz
(1− z)2t′ = 2(1− z)(−1)t′ = −2

t′′

1− z ⇔ dz

1− z = −1

2

dt′′

t′′
. (III.17)

In addition, we approximate z → 1 wherever possible in the divergent term and cut off all t integrations at the infrared
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resolution scale t0. This will give us the leading logarithm in t space,

∫ 1

0

dz
αs(z

2(1− z)2t′)CF
2π

2

1− z Φq(z
2t′)Φg((1− z)2t′) = Φq(t

′)
∫ t′

t0

dt′′
αs(t

′′)CF
2π

1

t′′
Φg(t

′′) . (III.18)

For the finite part in Eq.(III.16) we neglect the logarithmic z dependence of all functions and integrate the leading
power dependence 1 + z to 3/2,

−
∫ 1

0

dz
αs(z

2(1− z)2t′)CF
2π

(1 + z) Φq(z
2t′)Φg((1− z)2t′) ' −αs(t

′)CF
2π

3

2
Φq(t

′)Φg(t
′) . (III.19)

Strictly speaking, the strong coupling as well as the two generating functionals could be evaluated at any typical scale
covered by the z integral, considering that the prefactor 1 + z grows towards z → 1; we assume that their change with
varying z is small compared to the leading logarithm. After these two simplifying steps Eq.(III.16) reads

Φq(t) = ∆q(t, t0)Φq(t0) +
CF
2π

∫ t

t0

dt′

t′
∆q(t, t

′)

(∫ t′

t0

dt′′
αs(t

′′)
t′′

Φq(t
′)Φg(t

′′)− 3

2
αs(t

′)Φq(t
′)Φg(t

′)

)
(III.20)

= ∆q(t, t0)Φq(t0) +
CF
2π

∆q(t, t0)

∫ t

t0

dt′

t′
1

∆q(t′, t0)
Φq(t

′)

(∫ t′

t0

dt′′
αs(t

′′)
t′′

Φg(t
′′)− 3

2
αs(t

′)Φg(t
′)

)
.

The original Sudakov factor ∆q(t, t
′) is split into a ratio of two Sudakov factors. This allows us to differentiate both

sides with respect to t,

d

dt
Φq(t) =

d∆q(t, t0)

dt
Φq(t0) +

CF
2π

d∆q(t, t0)

dt

∫ t

t0

dt′

t′
1

∆q(t′, t0)
Φq(t

′)

(∫ t′

t0

dt′′
αs(t

′′)
t′′

Φg(t
′′)− 3

2
αs(t

′)Φg(t
′)

)

+
CF
2π

∆q(t, t0)
1

t

1

∆q(t, t0)
Φq(t)

(∫ t

t0

dt′′
αs(t

′′)
t′′

Φg(t
′′)− 3

2
αs(t)Φg(t)

)

=
d∆q(t, t0)

dt

[
Φq(t0) +

CF
2π

∫ t

t0

dt′

t′
1

∆q(t′, t0)
Φq(t

′)

(∫ t′

t0

dt′′
αs(t

′′)
t′′

Φg(t
′′)− 3

2
αs(t

′)Φg(t
′)

)]

+
CF
2π

1

t
Φq(t)

(∫ t

t0

dt′′
αs(t

′′)
t′′

Φg(t
′′)− 3

2
αs(t)Φg(t)

)

=
1

∆q(t, t0)

d∆q(t, t0)

dt
Φq(t) + Φq(t)

CF
2π

1

t

(∫ t

t0

dt′′
αs(t

′′)
t′′

Φg(t
′)− 3

2
αs(t)Φg(t)

)
. (III.21)

In the last step we use the definition in Eq.(III.20). This simplified equation has a solution which we can write in a
closed form, namely

Φq(t) = Φq(t0) ∆q(t, t0) exp

[
CF
2π

∫ t

t0

dt′
αs(t

′)
t′

(
log

t

t′
− 3

2

)
Φg(t

′)

]

= Φq(t0) exp

[
−
∫ t

t0

dt′ Γq←q(t, t
′)

]
exp

[∫ t

t0

dt′ Γq←q(t, t
′)Φg(t

′)

]

= Φq(t0) exp

[∫ t

t0

dt′ Γq←q(t, t
′) (Φg(t

′)− 1)

]
. (III.22)
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We can prove this by straightforward differentiation of the first line in Eq.(III.22),

dΦq(t)

dt
= Φq(t0)

d∆q(t, t0)

dt
exp

[
CF
2π

∫ t

t0

dt′
αs(t

′)
t′

(
log

t

t′
− 3

2

)
Φg(t

′)

]

+ Φq(t)
d

dt

[
CF
2π

∫ t

t0

dt′
αs(t

′)
t′

(
log t− log t′ − 3

2

)
Φg(t

′)

]

=
1

∆q(t, t0)

d∆q(t, t0)

dt
Φq(t) + Φq(t)

CF
2π

αs(t)

t

(
− log t− 3

2

)
Φg(t)

+ Φq(t)
CF
2π

1

t

∫ t

t0

dt′
αs(t

′)
t′

Φg(t
′) + Φq(t)

CF
2π

log t
αs(t)

t
Φg(t)

=
1

∆q(t, t0)

d∆q(t, t0)

dt
Φq(t) + Φq(t)

CF
2π

1

t

(∫ t

t0

dt′
αs(t

′)
t′

Φg(t
′)− αs(t)

3

2
Φg(t)

)
. (III.23)

The expression given in Eq.(III.22) indeed solves the evolution equation in Eq.(III.21). The corresponding computation
for Φg(t) follows the same path.

By definition, the generating functional evaluated at the resolution scale t0 describes an ensemble of jets which have
had no opportunity to split. This means Φq,g(t0) = u. The quark and gluon generating functionals to next–to–leading
logarithmic accuracy are

Φq(t) = u exp

[∫ t

t0

dt′ Γq←q(t, t
′) (Φg(t

′)− 1)

]

Φg(t) = u exp

[∫ t

t0

dt′
(

Γg←g(t, t
′) (Φg(t

′)− 1) + Γq←g(t
′)

(
Φ2
q(t
′)

Φg(t′)
− 1

))]
. (III.24)

The splitting kernels are defined in Eq.(II.106); gluon splitting to quarks described by Γq←g is suppressed by a power
of the logarithm log(t/t′).

The logarithm log(t/t′) combined with the coupling constant αs included in the splitting kernels is the small
parameter which we will use for the following argument. If this logarithmically enhanced term dominates the physics,
the evolution equations for quark and gluons are structurally identical. In both cases, the Φ dependence of the
exponent spoils an effective solution of Eq.(III.24). However, the logarithmic form of Γ(t, t′) ensures that the main
contribution to the t′ integral comes from the region where t′ ∼ t0. Unless something drastic happens with the
integrands in Eq.(III.24) this means that under the integral we can approximate Φq,g(t0) = u and, if necessary,
iteratively insert the solution for Φ(t) into the differential equation. The leading terms for both, quark and gluon
evolution equations turn into the closed form

Φq,g(t) = u exp

[∫ t

t0

dt′ Γq,g(t, t
′) (u− 1)

]
= u exp

[
−(1− u)

∫ t

t0

dt′ Γq,g(t, t
′)

]
. (III.25)

Using the Sudakov factor defined in Eq.(II.104) the generating functional in the approximation of large logarithmically
enhanced parton splitting is

Φq,g(t) = u ∆q,g(t)
1−u . (III.26)

Its first derivative for general values of u is

d

du
Φq,g(t) = ∆q,g

d

du
ue−u log ∆q,g

= ∆q,g

[
e−u log ∆q,g + u (− log ∆q,g) e

−u log ∆q,g
]

= ∆q,g (1− u log ∆q,g) e
−u log ∆q,g . (III.27)
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The n-th derivative has the form

1

n!

dn

dun
Φq,g(t) =

(− log ∆q,g)
n−1

n!
∆q,g (n− u log ∆q,g) e

−u log ∆q,g . (III.28)

We can show this by induction, starting from the first derivative in Eq.(III.27),

1

n!

dn

dun
Φq,g(t) =

1

n

d

du

(
1

(n− 1)!

dn−1

dun−1
Φq,g(t)

)

=
1

n

d

du

[
(− log ∆q,g)

n−2

(n− 1)!
∆q,g (n− 1− u log ∆q,g) e

−u log ∆q,g

]
using Eq.(III.28)

=
(− log ∆q,g)

n−2

n!
∆q,g

[
(− log ∆q,g) e

−u log ∆q,g + (n− 1− u log ∆q,g) (− log ∆q,g)e
−u log ∆q,g

]

=
(− log ∆q,g)

n−1

n!
∆q,g [1 + n− 1− u log ∆q,g] e

−u log ∆q,g . (III.29)

By definition, Eq.(III.28) gives the Poisson scaling pattern in the number of jets, namely

Pn−1 = ∆q,g(t)
| log ∆q,g(t)|n−1

(n− 1)!
or R(n+1)/n =

| log ∆q,g(t)|
n+ 1

. (III.30)

In addition to the logarithmically enhanced Poisson case we can find a second, recursive solution for the generating
functionals. It holds in the limit of small emission probabilities. The emission probability is governed by Γi←j(t, t′),
as defined in Eq.(II.106). We can make it small by avoiding a logarithmic enhancement, corresponding to no large
scale ratios t/t0. In addition, we would like to get rid of Γq←g while keeping Γg←g. Purely theoretically this means
removing the gluon splitting into two quarks and limiting ourselves to pure Yang-Mills theory. In that case the scale
derivative of Eq.(III.24) reads

dΦg(t)

dt
= Φg(t0)

d

dt
exp

[∫ t

t0

dt′ Γg←g(t, t
′) (Φg(t

′)− 1)

]

= Φg(t)
CA
2π

d

dt

∫ t

t0

dt′
αs(t

′)
t′

(
log t− log t′ − 11

6

)
(Φg(t

′)− 1) inserting Eq.(II.106)

= Φg(t)
CA
2π

[
αs(t)

t

(
− log t− 11

6

)
(Φg(t)− 1) +

d

dt
log t

∫ t
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dt′
αs(t

′)
t′

(Φg(t
′)− 1)

]

= Φg(t)
CA
2π

[
αs(t)

t

(
− log t− 11

6

)
(Φg(t)− 1) +

1

t

∫ t

t0

dt′
αs(t

′)
t′

(Φg(t
′)− 1) + log t

αs(t)

t
(Φg(t)− 1)

]

= Φg(t)
CA
2πt

[
−11

6
αs(t) (Φg(t)− 1) +

∫ t

t0

dt′
αs(t

′)
t′

(Φg(t
′)− 1)

]
. (III.31)

This form is already greatly simplified, but in the combination of the integral and the running strong coupling it is
not clear what the limit of small but finite log(t/t0) would be. Integrating by parts we find a form which we can
estimate systematically,

dΦg(t)

dt
= Φg(t)

CA
2πt

[
−11

6
αs(t) (Φg(t)− 1)−

∫ t

t0

dt′ log t′
d

dt′
(αs(t

′) (Φg(t
′)− 1)) + log t′αs(t

′) (Φg(t
′)− 1)

∣∣∣
t

t0

]

= Φg(t)
CA
2πt

[
−11

6
αs(t) (Φg(t)− 1)−

∫ t

t0

dt′ log
t′

t0

d

dt′
(αs(t

′) (Φg(t
′)− 1)) + log

t′

t0
αs(t

′) (Φg(t
′)− 1)

∣∣∣
t

t0

]

= Φg(t)
CA
2πt

[
αs(t)

(
log

t

t0
− 11

6

)
(Φg(t)− 1)−

∫ t

t0

dt′ log
t′

t0

d

dt′
(αs(t

′) (Φg(t
′)− 1))

]
. (III.32)

We can evaluate this expression in the limit of t = t0 + δ or t0/t = 1− δ/t. The two leading terms, ignoring all terms
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of the order δ2, read

dΦg(t)

dt
= Φg(t)

CA
2πt

[
αs(t)

(
δ

t0
− 11

6

)
(Φg(t)− 1)− (t− t0)

δ

t

d

dt
(αs(t) (Φg(t)− 1))

]

= Φg(t)
CA
2π

αs(t)

t

(
δ

t0
− 11

6

)
(Φg(t)− 1) +O

(
δ2
)
. (III.33)

To leading order in δ/t the equation for the generating functional becomes

dΦg(t)

dt
= Φg(t) Γ̃g←g(t, t0) (Φg(t)− 1) with Γ̃g←g(t, t0) =

CA
2π

αs(t)

t

(
log

t

t0
− 11

6

)
. (III.34)

With Γ̃ we define a slightly modified splitting kernel, where the prefactor αs/t is evaluated at the first argument t
instead of the second argument t0. Including the boundary condition Φg(t0) = u we can solve this equation for the
generating functional, again using the method of the known solution,

Φg(t) =
1

1 +
1− u
u∆̃g(t)

with ∆̃g(t) = exp

(
−
∫ t

t0

dt′Γ̃g←g(t
′, t0)

)
. (III.35)

The derivative of this solution is

dΦg(t)

t
=

d

dt

(
1 +

1− u
u∆̃g(t)

)−1

= −Φg(t)
2 1− u

u

d

dt
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(
+

∫ t

t0

dt′ Γ̃g←g(t
′, t0)

)

= −Φg(t)
2 1− u
u∆̃g(t)

d

dt

∫ t

t0

dt′ Γ̃g←g(t
′, t0)

= −Φg(t)
2

(
1

Φg(t)
− 1

)
d

dt

∫ t

t0

dt′ Γ̃g←g(t
′, t0) = Φg(t) (Φg(t)− 1) Γ̃g←g(t, t0) , (III.36)

which is precisely the evolution equation in Eq.(III.34).

While we have suggestively defined a modified splitting kernel Γ̃ in Eq.(III.34) and even extended this analogy to a
Sudakov-like factor in Eq.(III.35) it is not entirely clear what this object represents. In the limit of large log(t/t0)� 1
or t� t0, which is not the limit we rely on for the pure Yang–Mills case, we find

∫ t

t0

dt′ Γ̃g←g(t
′, t0)−

∫ t

t0

dt′ Γg←g(t
′, t0) =

CA
2π

∫ t

t0

dt′
(
αs(t

′)
t′
− αs(t0)

t0

)
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t′

t0

' −CA
2π

αs(t0)
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dt′

t0
log

t′

t0

= −CA
2π

αs(t0)

[
t′

t0
log

t′

t0
− t′

t0

]t/t0

1

= −CA
2π

αs(t0)
t

t0
log

t

t0
. (III.37)

In the staircase limit t ∼ t0 and consistently neglecting log(t/t0) the two kernels Γg←g and Γ̃g←g become identical. In

the same limit we find ∆g ∼ ∆̃g ∼ 1. Again using t′ = t0 + δ and only keeping the leading terms in δ we can compute



49

the leading difference

Γ̃g←g(t
′, t0)− Γg←g(t

′, t0) =
CA
2π
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∣∣∣∣∣
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using Eq.(II.22)

=
CAαs(t0)

2π
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t20
(1 + b0αs(t0))
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t0

dt′ Γ̃g←g(t
′, t0)−
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dt′ Γg←g(t
′, t0) =

CAαs(t0)

2π
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t20
(1 + b0αs(t0)) . (III.38)

In the pure Yang–Mills theory the running of the strong coupling is described by b0 = 1/(4π)11Nc/3. In both limits
the true and the modified splitting kernels differ by the respective small parameter.

The closed form for the generating functional in Eq.(III.35) allows us to compute the number of jets in purely
gluonic events. The first derivative is

d

du
Φg(t) =

d

du
u

(
u+

1− u
∆̃g(t)

)−1

=

(
u+

1− u
∆̃g

)−1

+ u(−1)

(
u+

1− u
∆̃g

)−2(
1− 1

∆̃g

)
. (III.39)

The form of the n-th derivative we can again prove by induction. Clearly, for n = 1 the above result is identical with
the general solution

dn

dun
Φg(t) = n!

(
1

∆̃g

− 1

)n−1(
u+

1− u
∆̃g

)−n 
1 + u

(
u+
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1

∆̃g

− 1

)
 . (III.40)

The induction step from n− 1 to n is
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Evaluating Eq.(III.40) for u = 0 gives us the jet rates

Pn−1 =
1

n!

dn

dun
Φg(t)

∣∣∣∣∣
u=0

=

(
1

∆̃g

− 1

)n−1

∆̃n
g = ∆̃g

(
1− ∆̃g

)n−1

, (III.42)

which predicts constant ratios

R(n+1)/n = 1− ∆̃g(t) . (III.43)

Such constant ratios define a staircase pattern. It has for a long time been considered an accidental sweet spot where
many QCD effects cancel each other to produce constant ratios of successive exclusive n-jet rates. Our derivation
from the generating functionals suggest that staircase scaling is one of two pure jet scaling patterns:

1. in the presence of large scale differences abelian splittings generate a Poisson pattern with R(n+1)/n ∝ 1/(n+1),
as seen in Eq.(III.30).

2. for democratic scales non–abelian splittings generate a staircase pattern with constant R(n+1)/n shown in
Eq.(III.43).
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IV. STRONG CHIRAL SYMMETRY BREAKING

In the previous sections we discussed the ultraviolet renomalisation of QCD and its relation to the scale dependence
of physics. This scale dependence is apparent in the momentum dependence of the strong running coupling αs(p

2) =
g2(p2)/(4π) defined in (II.22). Here p is the relevant momentum/energy scale of a given process. Let us briefly rehash
the main properties of the running coupling: Its momentum dependence is captured by the β-function as leads to a
running coupling which decreases with the momentum scale, i.e. ,

βg =
1

2
p∂pαs = −b0α2 +O(α3

s) with b0 =
α2
s

12π
(11Nc + 2Nf ) . (IV.1)

Integrating the β-function (IV.1) at one loop leads to the running coup

αs(p) =
αs(µ)

1 + β0αs(µ) log p2

µ2

+O(α2
s) , (IV.2)

with some reference (momentum) scale µ2. The running coupling in (IV.2) tends to zero logarithmically for p→∞.
This property is called asymptotic freedom (Nobel prize 2004) and guarantees the existence of the the perturbative
expansion of QCD. Its validity for large energies and momenta is by now impressively proven in various scattering
experiments, see e.g. [4]. These experiments can also be used to define a running coupling (which is not unique beyond
two loop, see e.g. [5]) and the related plot of αs(p

2) in Fig. 5 has been taken from [4].
In turn, in the infrared regime of QCD at low momentum scales, perturbation theory is not applicable any more.

The coupling grows and the failure of perturbation theory is finally signaled by the so-called Landau pole with
αs(ΛQCD) = ∞. We emphasise that a large or diverging coupling does not imply confinement, the theory could still
be QED-like showing a Coulomb-potential with a large coupling. The latter would not lead to the absence of coloured
asymptotic states but rather to so-called color charge superselection sectors as in QED. There, we have asymptotic
charged states and no physics process can change the charge. For more details on this see e.g. [6].

A. Spontaneous symmetry breaking and the Goldstone theorem

In the Standard Model we have two phenomena involving spontaneous symmetry breaking. The first is the sponta-
neous symmetry breaking in the Higgs sector (Englert-Brout-Higgs-Guralnik-Hagen-Kibble) which provides (current)
masses for the quarks and leptons as well as for the W,Z vector bosons, the gauge bosons of the weak interactions. The
corresponding Goldstone boson manifest itself as the third polarisation of the massive vector bosons (Higgs-Kibble
dinner).

FIG. 5: Experimental tests of the running coupling, figure taken from [4].
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The second phenomena is strong chiral symmetry breaking in the quark sector with a mass scale of ≈ 300 MeV. This
mechanism, loosely speaking, lifts the current quark masses to constituent quark masses. For the up and down quarks
the current quark mass is negligible, see Table I. The corresponding Goldstone bosons, the pions ~π, are composite
(quark–anti-quark) states and do not appear in the QCD action.

In the following we discuss similarities of and differences between these two phenomena. Before we come to the
Standard Model, let us recall some basic facts about spontaneous symmetry breaking. Further details can be found
in the literature. As a basic, but important, example we consider a simple scalar field theory with N real scalars and
action

S[φ] =
1

2

∫

x

(∂µφ
a)2 +

∫

x

V (ρ) , with a = 1, ..., N , and ρ =
1

2
φaφa , (IV.3)

and the φ4-potential

V (ρ) = −µ2(φaφa) + λ(φaφa)2 . (IV.4)

In the following considerations we shall not need the specific form (IV.4) but only its symmetries. Still, the simple
potential (IV.4) serves as a good showcase. The action (IV.3) with the potential (IV.4) has O(N)-symmetry. Moreover,
the potential (IV.4) has a manifold of non-trivial minima, each of which breaks O(N)-symmetry. This leads us to the
vacuum manifold

V ′(ρ0) = 0 , with ρ0 =
µ2

4λ
, (IV.5)

where the prime stands for the derivative w.r.t. ρ. In Fig. 6 the potential is depicted for the O(2)-case with N = 2.

Without loss of generality we pick a specific point on the vacuum manifold (IV.5), to wit

φ0 =




0
...
0√
2ρ0


 . (IV.6)

The vacuum vector φ0 in (IV.6) is invariant under the subgroup (little group) O(N − 1) with the generators ta,
a = N,N + 1, ...N(N − 1)/2 of O(N) that acts trivially on the Nth component field φN . This subgroup rotates the
first N − 1 component fields into each other. It leaves us with N − 1 generators ta, a = 1, ..., N − 1 (of the quotient
O(N)/O(N − 1)) of the N(N − 1)/2 generators of the group O(N). In turn, a rotation of the vacuum vector within

V (⇢)

�2

�1

FIG. 6: Illustration of the Mexican hat potential for N = 2. The radial massive mode ρ is indicated by the arrow.
The angular mode is the Goldstone mode.
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this quotient generates the full vacuum manifold. Applied to a vector φa = δNa
√

2ρ with length it generates all fields,

φ = e
θa√
2ρ0

ta




0
...
0
σ


 , (IV.7)

where the denominator 1/
√

2ρ0 is chosen for convenience. Commonly, the Nth component field φN is expanded about
the minimum σ0 =

√
2ρ0.

In the present lecture we choose a slightly different approach and stick to the Cartesian fields φ which we split into
the radial mode σ and the rest, ~π, i.e.

φ =

(
~π
σ

)
, with φ0 =

(
0
σ

)
. (IV.8)

Note that in an expansion about the minimum φ0 in the fields ~θ and ~π agree in leading order. Using the representation
(IV.8) in the kinetic term in the action (IV.3) we are led to

Skinetic[φ] =
1

2

∫

x

[
(∂µσ)2 + (∂µ~π)2

]
. (IV.9)

The mass term of the model is given by the quadratic term of the potential in an expansion about the minimum. It
reads generally

1

2

∫

x

m2 ab(φ0)φa φb , with m2 ab(φ0) = ∂φa∂φbV (ρ0) = δab V ′(ρ0) + φa0φ
b
0 V
′′(ρ0) . (IV.10)

Using the expansion point (IV.6) leads to the mass matrix

m2 ab(φ0) = δab V ′(ρ0) + 2 δNaδNbρ0V
′′(ρ0) = 8 δNaδNbρ0 λ . (IV.11)

Eq.(IV.11) entails that in the symmetry-broken phase of the model we have N − 1 massless fields, the Goldstone
fields. Note that we have not used the specific form (IV.4) of the potential for this derivation.

The occurrence of the massless modes in (IV.11) is a specific case/manifestation of the Goldstone theorem. It
entails in general that in the case of a spontaneous symmetry breaking of a continuous symmetry massless modes,
the Goldstone modes, occur. Their number is related to the number of generators in the Quotient G/H, where G is
the symmetry group and H is the subgroup (little group) which leaves the vacuum invariant.

B. Spontaneous symmetry breaking, quantum fluctuations and masses∗

The classical analysis done in chapter IV A suffices to uncover the occurrence of massless modes in spontaneous
symmetry breaking. However, it does not unravel the mechanism. The stability of the chosen vacuum, e.g. (IV.6),
necessitates, that an infinitesimal rotation on the vacuum manifold costs an infinite amount of energy. This does only
happen (for continuous symmetries) in dimensions d > 2. In d ≤ 2 no spontaneous symmetry breaking of a continuous
symmetry occurs, which is covered by the Mermin-Wagner theorem (Mermin-Wagner-Hohenberg-Coleman). In d = 2
dimensions theories with discrete symmetry can exhibit spontaneous symmetry breaking, e.g. the Ising model.

Hence, the full analysis has to be done on the quantum level. A convenient way to address these questions is
the quantum analogue of the classical action, the (quantum) effective action. Formally it is defined as the Legendre
transform of the Schwinger functional, W [J ] = logZ[J ]. In the present case this is

Γ[φ] = sup
J

{∫

x

J(x)φ(x)− logZ[J ]

}
, where Z[J ] =

∫
Dϕe−S[ϕ]+

∫
x
Jϕ . (IV.12)

In the following we simply assume that (IV.12) has a maximum and is differentiable w.r.t. J . Then the definition in
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(IV.12) leads to

φ =
1

Z[J ]

δZ[J ]

δJ
= 〈ϕ〉 , and J =

δΓ

δφ
. (IV.13)

The effective action also has a closed path integral representation in terms of a functional integro-differential equation,
which we also quote for later use. For the derivation we substitute the current in (IV.12) with (IV.13) and use that
Z = exp{−Γ +

∫
x
Jφ}. This leads us to

e−Γ[φ] =

∫
Dϕ′ e−S[φ+ϕ′]+

∫
x
δΓ
δφϕ

′
, with 〈ϕ′〉c = 0 , (IV.14)

where we also shifted the integration variable ϕ = ϕ′+ϕ. Eq.(IV.14) leads us immediately to the quantum equations
of motion in general backgrounds φ, the Dyson-Schwinger equations. We simply take the φ-derivatives on both sides
and arrive at

δΓ

δφ
=

〈
δS

δϕ

〉
, (IV.15)

the quantum eqautions of motion (EoM) in a given background φ = 〈ϕ〉 triggered by the current J . Evaluated on the
EoM with J = 0,

δΓ

δφ

∣∣∣∣
φ=φEoM

= 0 , (IV.16)

The effective action Γ[φEoM] = − logZ[0] it is the free energy of the theory and implies J [φEoM] = 0. It is also a
generating functional and generates the one-particle-irreducible (1PI) diagrams of the theory. As all diagrams can be
constructed from 1PI diagrams, it contains the full information about the correlation functions of the theory. In the
present context, the interesting feature is its relation to the free energy. It allows us to define the effective potential

Veff[φc] = Γ[φc]/vol4 , (IV.17)

with constant fields φc and the four-volume vol4 =
∫
d4x. If the effective potential shows the vacuum structure

discussed above in the classical case, the theory exhibits spontaneous symmetry breaking. The Mermin-Wagner
theorem simply entails that in lower dimensions the longe range nature of the quantum fluctuations washes out the
non-trivial vacua.

The rôle of the effective action as the quantum analogue of the classical action is also very apparent in its relation
to the propagator of the theory,

〈φ(p)φ(−p)〉c =
δ2 logZ[J ]

δJ(p)δJ(−P )

∣∣∣∣
J=0

=
1

Z[0]

δ2Z

δJ(p)δJ(−P )

∣∣∣∣
J=0

− 〈φ(p)〉〈φ(−p)〉 , with 〈φ〉 =
1

Z[0]

δZ

δJ
,

(IV.18)

where the subscript c stands for connected. Now we use the relation of logZ to the effective action defined in (IV.12).
We have

δ(p− q) =
δJ(q)

δJ(p)
=

∫

l

δφ(l)

δJ(p)
· δJ(q)

δφ(l)
=

∫

l

δ2 logZ

δJ(l)δJ(p)
· δ2Γ[φ]

δφ(l)δ(q)
⇒ 〈φ(p)φ(q)〉c =

1

Γ(2)
(p, q) , (IV.19)

with the vertices

δnΓ

δφ(p1) · · ·φ(pn)
= Γ(n)(p1, ..., pn) , with 〈ϕ(p1) · · ·ϕ(pn)〉1PI = Γ(n)(p1, ..., pn) . (IV.20)

The proof of the latter identity of the nth ϕ-derivatives with the 1PI n-point correlation functions we leave to the
reader. Instead let us now come back to our simple example for spontaneous symmetry breaking. Let us assume for
the moment that the full effective action resembles the classical action in (IV.3). Then the φ4-potential in (IV.4)
is the full quantum effective potential of the theory for ρ ≥ ρ0 (why is this not possible for smaller ρ?). The full
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propagator of the theory is now given by

〈ϕ(p)ϕ(−p)〉c =
1

Γ(2)[φEoM]
(p,−p) =

1

p2

(
δab − δaNδbN

)
+

1

p2 + 8ρ0λ
δab , (IV.21)

which describes the massless propagation of the N − 1 Goldstone modes, and that of one massive one, the radial field
σ, with mass m2

σ = 8ρ0λ. This links the curvature of the effective potential to the masses of the propagating modes
in the theory. Note however, that this is a Euclidean concept and finally we are interested in the pole masses of
the physical excitations. They are defined via the respective (inverse) screening lengths in the spatial and temporal
directions. The latter are defined by

lim
‖~x−~y‖→∞

〈φ(x)φ(y)〉 ∼ e−‖~x−~y‖/ξspat , and lim
|x0−y0|→∞

〈φ(x)φ(y)〉 ∼ e−|x0−y0|/ξtemp . (IV.22)

The screening lengths ξspat/temp are inversely related to the pole massmpol = 1/ξtemp and screening massmscreen = 1/ξspat

respectively. In the present example with the classical dispersion p2 these masses are identical and also agree with the
curvature masses mcurv derived from the effective potential. This is easily seen from (IV.21). The screening lengths
and masses are derived from the Fourier transform of the propagator in momentum space and we have e.g. for the
radial mode ϕN at ~p = 0

lim
|x0−y0|→∞

∫
dp0

(2π)
〈ϕN (p0, 0)ϕN (−p0, 0)〉ceip0 (x0−y0) ∼ e−|x0−y0|8ρ0λ , (IV.23)

and hence mpol = 1/ξtemp = mcurv. Here ~p = 0 has only be chosen for convenience. A similar computation can be made
for the spatial screening length which agrees with the temporal one. In summary this leaves us with the definition of
the pole mass as the smallest value for

Γ(2)(p0 = mpol, ~p = 0) = 0 , (IV.24)

related to the pole (or cut) that is closest to the Euclidean frequency axis. A similar definition holds for the screening
mass.

In principle this allows for the extraction of the pole and screening masses from the Euclidean propagators. In
practice this quickly runs in an accuracy problem if the propagator is only known numerically. Moreover, this problem
is tightly related to reconstruction problems of analyticity properties from numerical data which is an ill-posed problem
without any further knowledge.

As a last remark we add that the above identity between screening lengths, and pole, screening and curvature
masses fails in the full quantum theory:

• the coincidence of curvature and screening/pole masses hinges on the classical dispersion proportional to p2,
any non-trivial momentum dependence of the propagator leads to a violation.

• The coincidence of screening and pole mass hinges on the dispersion only being a function of p2. While this is
true in the vacuum (at vanishing temperature T = 0 and density/chemical potential n/µ = 0), finite temperature
and density singles out a rest frame and the dispersion depends on ~p2 and p2

0 separately.

Having said this, in the following we shall first use simple approximations to the full low energy effective action of
QCD for extracting the physics of chiral symmetry breaking and confinement, as well as the mechanisms behind these
phenomena.

C. Little reminder on the Higgs mechanism

Now we are in the position to discuss the Higgs mechanism in the Standard Model. Again we refer to the literature
for the details. The Higgs mechanisms serves as an example, at which we can discuss similarities and differences for
strong chiral symmetry breaking. Moreover, it is the combination of both mechanisms of mass generation that leads
to the observed world. The action of the Standard Model is given by

SSM[Φ] =
1

4

∫

x

F aµνF
a
µν +

1

4

∫

x

W a
µνW

a
µν +

1

4

∫

x

BµνBµν + (Dφ)†Dφ+ VH(φ) +

∫

x

ψ̄ · (iD/ + imψ(φ) + iµγ0) · ψ ,
(IV.25)
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where we have introduced the electroweak gauge bosons W,B and the Higgs, a complex scalar SU(2)-doublet φ,

φ =

(
φ1

φ2

)
, (IV.26)

with complex components φ1, φ2. The Higgs potential VH is a φ4-potential as (IV.4) with

VH(φ) = −µ2φ†φ+ λ(φ†φ)2 . (IV.27)

with non-trivial vacuum manifold

ρ0 =
µ2

4λ
with ρ =

1

2
φ†φ . (IV.28)

In the spirit of the discussion at the end of chapter IV A we should interpret VH as an approximation of the full
effective potential of the theory. The Higgs field couples to the electroweak gauge group with the covariant derivative

Dµφ = (∂µ − igWWµ − igHBµ)φ , (IV.29)

The mass term in (IV.25) is linear in the Higgs field and vanishes for φ = 0. The left-handed fermions ψL in the
Standard Model, leptons and quarks, couple to the weak isospin (fundamental representation) with weak isospin
± − 1/2, while the right-handed fermions ψR do not couple (trivial representation) with weak isospin 0, that is for
example

WµψR = 0 . (IV.30)

The related covariant derivative of the fermions reads

Dµψ = (∂µ − igAµ − igWWµ − igHBµ)ψ . (IV.31)

The mass term m(φ) is linear in the Higgs field φ and hence constitues a Yukawa interaction. It relates to the
Cabibbo-Kobayashi-Maskawa-Matrix (CKM) , and is not discussed in further details here. What is important in the

present context, is, that a non-vanishing expectation value of the Higgs field, 〈φ〉 = (0, ρ0/
√

2) provides mass terms
for the weak gauge fields, the W,Z as well as for the (left-handed) quarks an leptons:

As in our O(N)-example in the previous section we expect spontaneous symmetry breaking in the scalar Higgs
sector. The current masses of the leptons and quarks are then generated by the disappearance of the mass term for
φ0 6= 0. Since the structure of the full term is quite convoluted, we illustrate this at a simple example with one Dirac
fermion ψ and a real scalar field σ. Then the Yukawa term reads in a mean field approximation

hψ̄σψ
mean field−−−−−−→ hσ0 ψ̄ψ , (IV.32)

with mass m = hσ0 which is proportional to the vacuum expectation value of the scalar field (vacuum expectation
value of the Higgs) and the Yukawa coupling h.

For the masses of the gauge field we cut a long story short and simply note that in a mean field analysis as that
done above for the fermion

(Wµφ)†(Wµφ)
mean field−−−−−−→ (Wµφ0)†(Wµφ0) , (IV.33)

leads to mass terms for the gauge fields. Since the vacuum field φ0 has vanishing upper component φ1 it is a
combination of the generator t3 = σ3/2 of the weak SU(2) and the generator 1l of the hypercharge U(1) which remains
massless: the photon. This also determines the subgroup which leaves the vacuum invariant. The superficial analysis
here also reveals that the quotient involves three generators and hence we have three Goldstone bosons. In summary
we hence start with three gauge bosons with two physical polarisations each together with three Goldstone bosons,
which adds up to nine field degrees of freedom (dof). A convenient reparameterisation (including an appropriate gauge
fixing, e.g. the unitary gauge) of the Standard Model leads us to three massive vector bosons with three polarisations
each, that is again nine dofs.
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D. Low energy effective theories of QCD

The Higgs mechanism in the electroweak sector of the Standard Model leads to (current) quark masses for the up
and down quark of a couple of MeVs, (mu/d)cur ≈ 2-5 MeV, see Table I. However, the masses of the nucleons, the
protons and neutrons, is about 1 GeV (proton (uud) ≈ 938 MeV , neutron (udd) ≈ 940 MeV ), that is two orders of
magnitude bigger. In other words, the three constituent quarks in the nucleons must have an effective mass of about
(mu/d)con ≈ 300-4 00 MeV, the constituent quark masses. We already infer from this that there should be a further
mechanism to generate this mass scale.

In low energy QCD with its mass scale ΛQCD ≈ 200 − 300 MeV the electroweak sector of the Standard Model
decouples as do the heavier quarks. We are left with two light (up and down) and one heavy quark (charm), Table I.
Within fully quantitative computations of the QCD dynamics at low energies the strange quark with its current mass
of about 1.2 GeV is also added. Still, its dynamics is very much suppressed at momentum scales of ΛQCD. For the
present structural analysis we first resort to two flavour QCD (Nf = 2) with the Euclidean action

SQCD[Φ] =
1

4

∫

x

F aµνF
a
µν +

∫

x

ψ̄ · (D/ + mψ + iµγ0) · ψ , (IV.34)

where ψ is a Dirac spinor with two flavours and Φ is the two-flavour super field, see (I.35). The physics of the matter
sector at low energies and temperatures, and not too large densities is well-described by quark-hadron models, the
most prominent of which is the Nambu-Jona-Lasino model. From the perturbative point of view these models are
seeded in the four-fermi coupling already being generated from the propagators and couplings depicted in Fig. 1 at
tree level. The related tree level diagram is depicted in Fig. 7. Its s-channel has the structure

g2
(
ψ̄γµt

aψ
)

(p) Πµν(p)
1

p2

(
ψ̄γµt

aψ
)

(p) , (IV.35)

describing the scattering of quarks. In (IV.35) the ta are generators of the color gauge group and the fermions are
summed over the two flavours. Accordingly, (IV.35) generates a four-fermi interaction with a non-trivial momentum
structure in the effective action of QCD.

The full momentum- and tensor structure is complicated even for the present simplified Nf = 2 case. As in the
four-fermi theory (Fermi theory) for weak interactions we resort to an approximation with point-like interactions
(no momentum dependence). Then (IV.35) can be rewritten in terms of an effective local (point-like) four-fermi
interaction. Such a rewriting in terms of local four-fermi interactions holds for energies that are sufficiently low and
do not resolve the large momentum structure of the scattering in (IV.35). Moreover, the coupling is dimensionful
and has the canonical momentum dimension −2 (related to the 1/p2 term in (IV.35). In the Fermi theory of weak
interactions this is the electroweak scale. In the present case it has to be related to the QCD mass gap proportional
to ΛQCD.

We postpone the detailed analysis of this scale, and first concentrate on the tensor structure of (IV.35). This is
constrained by the symmetries of the theory, for a full discussion of the symmetry pattern we refer to the literature,
e.g. [7, 8] and literature therein. Since the current masses of the light quarks are nearly vanishing we first work in the
chiral limit. Then, any interaction that is generated by the dynamics of QCD carries chiral symmetry: the related
four-fermi interaction is chirally invariant, that is the invariance under the chiral transformations

ψ → ei
1±γ5

2 αψ → ψ̄ → ψ̄ei
1∓γ5

2 α with γ5 = γ0γ1γ2γ3 , and {γ5 , γµ} = 0 , (IV.36)

which holds separately for each vector current ψγµt
aψ. Furthermore, in the chiral limit QCD is invariant under

flavour rotations SU(Nf ). For example, for Nf = 2 with up (u) and down (d) quarks and the flavour isospin group
with SU(2), the transformation reads

ψ =

(
u
d

)
→ V

(
u
d

)
, with V = eiθ

aτa ∈ SU(2) , (IV.37)

with a = 1, 2, 3. For the 2+1 flavour case also considered here the respective symmetry is SU(3)F . Chiral symmetry
entails that the flavour rotations are a symmetry for the left- and right-handed quarks separately and the combined

symmetry is SU(2)L × SU(2)R with symmetry transformations VL/R = ei
1±γ5

2 θata . Including also the chiral U(1)
rotations leads us to the full symmetry group

Gsym = SU(Nc)× SU(Nf )V × SU(Nf )A × U(1)V × U(1)A , (IV.38)
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where we have also taken into account the gauge group SU(Nc). If we approximate (IV.35) by a point-like four-fermi
interaction, one has to expand the tensor γµ ⊗ γν multiplied by gauge group and flavour tensors. Then, the most
general symmetric Ansatz is a combination of the tensor structures

(V −A) = (ψ̄γµψ)2 + (ψ̄γµγ5ψ)2

(V +A) = (ψ̄γµψ)2 − (ψ̄γµγ5ψ)2

(S − P ) = (ψ̄fψg)2 − (ψ̄fγ5ψg)2

(V −A)adj = (ψ̄γµtaψ)2 + (ψ̄γµγ5taψ)2 , (IV.39)

where f, g are flavour indices and (ψ̄fψg)2 ≡ ψ̄fψgψ̄gψf . While each separate term in the tensors in (IV.39) is invariant
under gauge transformation, and under the flavour vector transformations, axial rotations in SU(Nf )A×U(1)A rotate
the terms on the right hand side in (IV.39) into each other. For a related full analysis we refer to the literature.
However, below we shall exemplify these computations at the relevant example of the scalar–pseudo-scalar channel

The chiral invariants (IV.39) can be rewritten using the Fierz transformations which relates different four-fermi
terms on the basis of the Grassmann natures of the fermions. These transformations are explained and detailed in
the literature, see e.g. [7, 8]. Here we just concentrate on the scalar–pseudo-scalar channels in physical two-flavour
QCD with Nc = 3 and Nf = 2. These channels are related to the scalar σ-meson and the pseudo-scalar pions ~π. The
(S − P )-channel is given by

(S − P ) =
1

2

[
(ψ̄ψ)2 + (ψ̄~τψ)2 − (ψ̄γ5ψ)2 − (ψ̄γ5~τψ)2

]
, (IV.40)

where ~τ = (σ1, σ2, σ3) with Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (IV.41)

The representation (IV.40) simplifies the identification of the scalar mode ψ̄ψ related to the scalar σ-meson, and the
pseudo-scalar modes iψ̄γ5~τψ related to the pseudo-scalar (axial-scalar) pions ~π.

We shall use the representation (IV.40) in the following investigations of the chiral properties of low energy QCD.
Hence we discuss its symmetry properties in more detail, and show explicitly its invariance under Gsym. To begin
with, the invariance of (S − P ) under gauge and flavour UV (1) transformation is apparent. The flavour SU(2)V
transformations ψ → eiθ

aτaψ trivially leaves ψ̄ψ and ψ̄γ5ψ invariant. For the vector and pseudo-vector bilinears we
concentrate on infinitesimal transformations eiθ

aτa = 1 + iθaτa +O(θ2). Then the second term in (IV.40) transforms
as

(ψ̄~τψ)2 −→ (ψ̄~τψ)2 + 2i θa(ψ̄~τψ)(ψ̄[~τ , τa]ψ) = (ψ̄~τψ)2 − 2 θaεbac(ψ̄τ bψ)(ψ̄τ cψ) = (ψ̄~τψ)2 . (IV.42)

The invariance of the last term in (IV.40) under SU(2)V transformations follows analogously. Finally, axial transfor-
mations related the first two terms to the last two terms. We exemplify this property with the axial UA(1) rotations
ψ → eiγ5αψ, where we consider infinitesimal transformations with eiγ5α = 1l + iγ5α + O(α2). Concentrating on the
scalar and pseudo-scalar terms we have

(ψ̄ψ)2 − (ψ̄γ5ψ)2 −→ (ψ̄ψ)2 − (ψ̄γ5ψ)2 + 4i α
[
(ψ̄ψ)(ψ̄γ5ψ)− (ψ̄γ5ψ)(ψ̄ψ)

]
= (ψ̄ψ)2 − (ψ̄γ5ψ)2 , (IV.43)

The invariance for the full expression in (IV.40) follows analogously. It is left to study SU(2)A transformations. Now
we show that (IV.40) also carries the SU(2)A-invariance. To that end we consider infinitesimal SU(2)A transformations
eiγ5θ

aτa = 1 + iγ5θ
aτa +O(θ2) of the combination (ψ̄ψ)2 − (ψ̄γ5~τψ)2, and use the Lie algebra identity

τaτ b = δab + iεabcτ c , → {τa , τ b} = 2δab . (IV.44)

Then we are led to

(ψ̄ψ)2 − (ψ̄γ5~τψ)2 −→ (ψ̄ψ)2 − (ψ̄γ5~τψ)2 + 2i θa
[
(ψ̄ψ)(ψ̄γ5τ

aψ)− (ψ̄γ5τ bψ)
(
ψ̄{τa , τ b}ψ

)]
= (ψ̄ψ)2 − (ψ̄γ5ψ)2 .

(IV.45)

The invariance of the combination (ψ̄γ5ψ)2− (ψ̄~τψ)2 is shown along the same lines. Consequently (IV.40) is invariant
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FIG. 7: One loop diagrams for the four-fermi coupling λψ in QCD.

FIG. 8: One loop diagrams for the four-fermi coupling λψ from the action (IV.51).

under SU(2)A transformation and hence under the full symmetry group Gsym.

In QCD, we have experimental evidence for the breaking of the axial UA(1)-symmetry, i.e. the pseudo-scalar
η′-meson (in Nf = 2 the η) is anomalously heavy. This mass-difference can be nicely explained by the anomalous
breaking of axial UA(1) symmetry. Consequently, giving up axial UA(1)-symmetry we have to consider more four-fermi
interactions as in (IV.39) (altogether 10 invariants for Nf = 2), in particular

1

2

[
(ψ̄ψ)2 − (ψ̄~τψ)2 + (ψ̄γ5ψ)2 − (ψ̄γ5~τψ)2

]
. (IV.46)

It is the relative minus signs in the scalar and pseudo-scalar terms in comparison to (IV.40) that leads to the breaking
of UA(1)-symmetry. This is easily seen by re-doing the infinitesimal analysis (IV.43) in (IV.46). If also follows easily
that the other symmetries still hold, in particular the SU(2)V × SUA(2)A invariance follows as (IV.46) contains
the same SU(2)V × SUA(2)A-invariant combinations of four-quark terms as (IV.40). Hence we conclude that the
combination (IV.46) only breaks UA(1)-symmetry, and adding up the two channels (IV.40) and (IV.46) leads to the
UA(1)-breaking combination

1

2

[
(ψ̄ψ)2 − (ψ̄γ5~τψ)2

]
. (IV.47)

Eq.(IV.47) is invariant under the remaining symmetries SU(Nc) × SU(Nf )V × SU(Nf )A × U(1)V . This concludes
our brief discussion of the global symmetries of QCD in the chiral limit.

In summary the following picture emerges: assume we perform a chain of scattering experiments of QCD/Standard
Model starting at the electroweak scale ≈ 90 Gev towards the strong QCD scale ΛQCD. At each scale we can describe
the quantum equations of motion and scattering experiments by a suitably chosen effective action Γ[φ]. On the level
of the path integral for QCD, (I.33), this is described by the Wilsonian idea of integrating out momentum modes
above some momentum scale µ,

Zµ[J ] =

∫
[dΦ]p2≥µ2 e−SQCD[Φ]+

∫
x
J·Φ ⇒ Effective Action Γµ[Φ] , (IV.48)

where the path integral measure only contains an integration over fields Φµ that are non-vanishing for p2 ≥ µ2:
Φµ(p2 < µ2) ≡ 0. After Legendre transformation this leads us to an effective action Γµ[Φ] that only contains the
quantum effects of scales larger than the running (RG) scale µ and serves as a classical action for the quantum effects
with momentum scales p2 < µ2. This effective action also carries the symmetries of the fundamental QCD action, as
long as these symmetries are not (anomalously broken by quantum effects.

We know already from the perturbative renormalisation programme that this amounts to adjusting the (running)
coupling in the (classical) action with the sliding (experimental) momentum scale. In such a Wilsonian setting this is
very apparent. The running of the coupling comes from the loop diagrams that are evaluated at the momentum scale
µ. On top of this momentum adjustment of the fundamental parameters of the theory one also creates additional
terms in the -effective- action. The one of importance for us is the four-fermi terms argued for above. It is created
at one-loop with the box diagrams depicted in depicted in Fig. 7. This leads us finally to the following four-fermi
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FIG. 9: Gluon propagator for Nf = 2 from the lattice and from non-perturbative diagrammatic methods, taken from
[9].

interaction in the effective action,

Γ4−fermi[φ]|1−loop = −λψ
4

∫ [
(ψ̄ψ)2 − (ψ̄γ5~τψ)2

]
+ · · · with λψ ∝ α2

s , (IV.49)

where it is understood that the coupling λψ carries the running momentum or RG scale µ introduced above. Together
with the kinetic term of the quarks this is the classical action of the Nambu–Jona-Lasinio type model. Eq.(IV.49)
holds for massless quarks and two flavours, Nf = 2. The two terms in (IV.49) carry the same quantum number
as the scalar and axial-scalar excitations in low energy QCD, the sigma-meson σ and pion ~π respectively. The one
loop diagrams generating the four-fermi coupling λψ are depicted in Fig. 7. In line with the picture outlined above
the four-fermi coupling λψ at a given momentum scale p = µ should be computed with the loop momenta q in the
box diagrams in Fig. 7 being bigger than µ. Than the related diagram is peaked at this scale and we conclude by
dimensional analysis that

λψ(µ) ' α2
s(µ)

1

µ2
. (IV.50)

Note that this coupling feeds back into the loop expansion of other correlations functions such as the quark propagator
and quark-gluon vertices. However, in comparison to other (one-loop) diagrams it is suppressed by additional orders
of the strong coupling αs. In turn, in the low momentum regime where αs grows strong it gives potentially relevant
contributions. Indeed, taking as a starting point for a loop analysis the sum of the QCD action (IV.34) and the
four-fermi term (IV.49)

Γ[φ] ' SQCD[φ] + Γ4−fermi[φ] , (IV.51)

we get also self-interaction terms of the four-fermi coupling proportional to λ2
ψ as well as terms proportional to αsλψ.

This is depicted in Fig. 8.

The glue sector of QCD is expected to have a mass gap already present in the purely gluonic theory, related to the
confinement property of Yang-Mills theory. Then this has to manifest itself in a decoupling of the gluonic contribution
to the four-fermi coupling in Fig. 8. In the Landau gauge this mechanism is easily visible due to the mass gap in the
gluon propagators, see Fig. 9 for lattice results and results from non-perturbative diagrammatic methods.

Note that the gluon propagator is gauge dependent, and the careful statement is that the Landau gauge facilitates
the access to the related physics. One should not confuse this with a massive gluon, as the gluon is no physical particle
and shows positivity violation. Moreover, the gluonic sector is certainly relevant for the confining physics and hence
the decoupling discussed above only takes place in the matter sector for the specific question under investigation, the
mechanism of strong chiral symmetry breaking.
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FIG. 10: Fixed point structure of λψ for the four-fermi coupling in the NJL model.

E. Strong chiral symmetry breaking and quark-hadron effective theories

Assuming for the moment the gluonic decoupling we are left with a purely fermionic theory. The four-fermi term
(IV.49) is the interaction part of the Nambu–Jona-Lasino model, one of the best-studied model for low energy QCD,
see e.g. [7, 8, 10]. It is non-renormalisable as can be seen from the momentum dimension of the four-fermi coupling
which is −2. As shown above, in QCD it is generated by fluctuations with λψ(p) ∝ αs(p) and tends to zero in the
UV, that is for large momenta p→∞. Its momentum dependence is best extracted from the dimensionless coupling

λ̂ψ = λψ(µ)µ2 , (IV.52)

where we have introduced the renormalisation group scale µ, here being identical with the momentum scale of the
scattering process described, µ2 = p2. The β-function of the dimensionless four-fermi coupling in (IV.52) is given by

βλ̂ψ = µ∂µλ̂ψ = 2λ̂ψ − c λ̂2 with c > 0 , (IV.53)

and is depicted in Fig. 10. The first term on the right hand side of (IV.53) encodes the trivial dimensional running of

λ̂ = µ2λ. The second term on the right hand side originates in the last diagram in Fig. 8, the pure four-fermi term.
In the absense of other mass scales this loop has to be proportional to µ2 leading to a factor two in the β-function in
comparison to the loop itself. The key feature relevant for the description of chiral symmetry breaking is the sign of

the diagram. It is negative, −cλ̂2, with a positive constant c leading to (IV.53).

From the perspective of a one-loop investigation based on the classical fermionic action in (IV.51) the coupling in
the loop term on the right hand side of (IV.53) is the classical one in this action. As we have done for the β-function
of the strong coupling, e.g. (II.17), we can elevate this coupling to the full running coupling in terms of a one-loop
RG-improvement. This accounts for a one-loop resummation of diagrams. In the present context the physics behind
such an improvement is very apparent: As already indicated, the NJL-type action was derived within a successive
integrating out of momentum modes, and constitutes an effective action for the UV physics with p2 ≥ µ2. Accordingly,
its couplings depend on this RG-scale. In summary we end up with (IV.53) with µ-dependen couplings on the right
hand side. Note that this is only a one-loop RG improvement as we have discarded the µ-dependence of the couplings

in the diagram when taking the µ-derivative. The related terms are proportional to −c/2 λ̂ µ∂µλ̂ψ and can be shuffled

to the left hand side. This accounts for a further resummation leading to (IV.53) with a global factor 1/(1 + c/2 λ̂)
on the right hand side. In the following qualitative analysis it is dropped and we strictly resort to the one-loop
improvement.

The β-function of (IV.53) is depicted in Fig. 10. It divides the positive λ̂ψ-axis into two physically distinct regimes,

I1 = [0, λ̂UV) and I2 = (λ̂UV,∞) with βλ̂ψ (λ̂UV) = 0 with λ̂UV =
2

c
. (IV.54)

The zeroes of the β-function are fixed points of the renormalisation group flows, and λ̂UV 6= 0 is a non-trivial fixed

point FP of the β-function while λ̂Gauß = 0 is the trivial Gauian fixed point (related to the free Gaußian theory). Now
we initiate the RG-flow at an initial ultraviolet scale µin with some value of the dimensionless four-fermi coupling

λ̂(µ in) = λ̂ in . (IV.55)
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FIG. 11: Fixed point structure of λψ of the full β-function

If λ̂in < λ̂UV and we lower the running momentum scale, the RG-flow lowers the four-fermi coupling towards 0.

Accordingly λ̂ψ(µ→ 0) = 0. Since the regime of small couplings is governed by the linear term 2λ̂ψ in the β-function

in (IV.53) this entails λψ(µ→ 0) = λ0. Here λ0 is some finite value which is adjusted by the input λ̂in at the initial
scale µin.

In turn, if λ̂in > λ̂UV, the RG-flow toward smaller µ drives λ̂ψ towards ∞. Then the linear term can be neglected
as it is sub-leading and the RG-flow reads

µ∂µλ̂ = −c λ̂2
ψ , −→ λ̂(µ) =

λ̂(µ0)

1 + λ̂(µ0)c logµ/µ0

, (IV.56)

where µ0 is some reference scale at which the approximation in the RG-flow in (IV.56) is already valid. We conclude
from (IV.56) diverges at

µ = µ0 exp

{
− 1

c λ(µ0)

}
, (IV.57)

which signals a resonance in the four-fermi scalar-pseudo–scalar channel.
At this scale chiral symmetry breaking occurs. To make this more apparent we resort to a further rewriting of our

low energy effective theory in terms of the scalar, σ, and pseudo-scalar, ~π, degrees of freedom. This is suggestive
already for the reason that the divergence in (IV.56) entails that these resonance are relevant degrees of freedom for
lower momentum scales. For the rewriting of the theory we use the Hubbard-Stratonovich transformation, see e.g.
[7, 8, 10]. With this transformation we a four-fermi interaction using a scalar auxiliary field. Concentrating on the
scalar part of the four-fermi interaction in (IV.49) we write at some momentum scale µ,

−λψ
4

(ψ̄ψ)2 =

[
h

2
(ψ̄ψ)σ +

m2
ϕ

2
σ2

]

EoM(σ)

, with λψ =
h2

m2
ϕ

. (IV.58)

Accordingly we can extend the effective action Γ[φ] given in (IV.51) by the right hand side of (IV.58) while dropping
the four-fermi term. For the sake of simplicity we concentrate on the σ-meson first and reduce the four-fermi term to
its scalar part. Then

Γ[φ]→ Γ[φ, σ] = Γ[φ]|λψ→0 +

[
h

2
(ψ̄ψ)σ +

m2

2
σ2

]

h2/m2=λψ

, (IV.59)

This new effective action agrees with the original one on the equation of motion of σ and hence carries the same physics.
As a side remark, note that the 1PI correlation functions of quarks and gluon derived from Γ[φ, σ] at fixed σ do not
agree with the quark and gluon correlation functions derived from Γ[φ] = Γ[φ, σEoM(φ)], the implicit dependences also
contribute.

A similar derivation can be done for the pion part of the four-fermi interaction, and hence the whole four-fermi
interaction can be bosonised. The mesonic equations of motion can be summarised in

σEoM =
h

2m2
ϕ

ψ̄ψ , ~πEoM =
h

2m2
ϕ

ψ̄ iγ5~τψ . (IV.60)
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On the level of the generating functional of QCD, (IV.58) and its extension to pions can be implemented by a Gaußian
path integral with

exp

{
λψ
4

∫ [
(ψ̄ψ)2 − (ψ̄γ5~τψ)2

]}
=

∫
dσd~π exp

{
−
∫

x

(
1

2
m2(σ2 + ~π2) +

h

2
ψ̄ [σ + iγ5~τ~π]ψ

)}

h2/m2=λψ

. (IV.61)

We also remark that as shift in the σ-field,

σ → − 2

h
mψ + σ , (IV.62)

eliminates the quark mass term at the expense of the linear term in σ that can be interpreted as a source term.
Inserting this identity in the path integral for the low energy dofs including the currents for the fundamental fields,
the quarks and gluons (and ghosts) as well as current for the mesonic dofs we have the full generating functional in
this setting. Performing the Legendre transformation we are immediately led to (IV.59). Kinetic terms as well as a
potential for σ are generated by further quantum effects. In summary this leads us finally to a low energy effective
theory with a classical action Seff = ΓUV, where ΓUV is the full quantum effective action including quantum fluctuations
above a given cutoff scale Λ. This also entails that Seff carries a Λ-dependence. Seff is given by

Seff[ψ, ψ̄, φ] ∝
∫

x

ψ̄ · (D/ + mψ) · ψ +

∫

x

[
(∂µσ)2 + (∂µ~π)2

]
+

∫

x

h

2
ψ̄ [σ + iγ5~τ~π]ψ +

∫

x

VUV(ρ) (IV.63)

with φ = (σ, ~π) and

VUV(ρ) = m2
ϕρ+

λ

2
ρ2 , with ρ =

1

2

(
σ2 + ~π2

)
. (IV.64)

As indicated above, the quark mass term can be eliminated at the expense of a linear term in σ by the shift of σ in
(IV.62). On the level of the quadratic quark-meson interaction (IV.61) this triggers a linear term cσσ and the full
potential reads

VUV(ρ) = m2
ϕρ+

λϕ
2
ρ2 − cσ σ , with cσ =

2

h
m2
ϕmψ . (IV.65)

This concludes the derivation of the low energy effective theory with the action (IV.63) from QCD by integrating-out
QCD quantum fluctuations above the validity scale of the low energy effective theory. From the gluonic decoupling
scale Λdec . 1 GeV one concludes that (IV.63) should be seen as a classical action for quantum fluctuations with
momenta p2 . 1 GeV, see Fig. 9. A more detailed analysis reveals that the initial scale for low energy effective
theories has to be taken far lower for quantitative computations. Nonetheless, for qualitative considerations it is
sufficient, and, as a matter of fact, low energy effective theories even work well quantitatively at surprisingly large
moment scale about 1 GeV.

In (IV.63) we have introduced a self-interaction of the mesonic fields proportional to ρ2 as well as an explicit
breaking term linear in σ related to the quark mass term. The question arises, is this the most general φ4-term
one can generate from QCD? As mentioned before, the symmetries of this low energy effective field theory (EFT)
are determined by those of the action of QCD. In the chiral limit the full symmetry group is (IV.38). The axial
UA(1) symmetry is anomalously broken, hence our restriction to the UA(1)-breaking combination (IV.47). In its
bosonised quark-meson mode version the symmetry transformations with Gsym also involve transformations of the
mesonic fields. Their transformation properties can be most easily accessed in the matrix notation for the field. To
that end we introduce

φ̂ = 1lσ + iγ5~τ~π with φ̂EoM =
h

2m2
ϕ

(
1l ψ̄ψ − γ5~τ ψ̄γ5~τψ

)
, (IV.66)

where we have used (IV.60) in the second equation. Now we can read-off the symmetry transformations under
V ∈ SU(Nc)× SU(Nf )V × SU(Nf )A ×U(1)V from (IV.66) by evoking the symmetry transformations of the quarks.
One easily sees that axial U(1)A-rotations do not close on σ and ~π. For example, σEoM transforms into ψ̄γ5ψ.
Furthermore, φ is invariant under vector UV (1) transformations. Similarly, σ is invariant under transformations with
eiθ

aτa ∈ SU(2)V , while π is rotated, ~π → V ~π with V = eθ
ata ∈ O(3) with (ta)bc = εabc. This follows from

ψ̄γ5~τψ −→ ψ̄γ5~τψ + iθaψ̄γ5[~τ , τa]ψ = ψ̄γ5~τψ − θaεbacψ̄γ5τ
cψ . (IV.67)
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Finally, transformations with eiγ5θ
aτa ∈ SU(2)A rotate (σ, ~π) into each other. This is read-off from the infinitesimal

transformations of φ̂EoM leading to

σ → σ + 2θaπa , πb → πb − θbσ . (IV.68)

Combining all the manifestations of the symmetry group we are led to an O(4) invariance of our low energy effective
field theory, sloppily written as

ψ → V ψ with V ∈ Gsym/UA(1) , φ→ eθ
ataφ , with φ =

(
~π
σ

)
and eθ

ata ∈ O(4) . (IV.69)

In conclusion chiral symmetry breaking is in one-to-one correspondence to the breaking of the O(4)-symmetry. More-
over, the formulation with effective mesonic σ and pion degrees of freedom now allows us to discuss strong chiral
symmetry breaking in complete analogy to the Higgs mechanism that served as an introductory example. Let us first
consider the fully symmetric case with cσ = 0. The mesonic sector of (IV.63) simply is an O(4)-model, and the QCD
four-fermi coupling are related to the Yukawa coupling and the mesonic mass parameters via the relation (IV.58) in
the Hubbard-Stratonovich transformation. Accordingly, a diverging λψ implies a vanishing mϕ if the Yukawa coupling
is fixed. Hence, at the singularity of λψ the mesonic mass parameter m2

ϕ changes sign. For m2
ϕ < 0 we are in the

phase of -spontaneously- broken O(4)-symmetry. We choose the σ direction as our radial mode, and its expectation
value is given by

σ0 =

√
−m2

ϕ

λϕ
, (IV.70)

in the chiral limit. This leads to an effective quark mass term with

mψ =
h

2
σ0 =

h

2

√
−m2

ϕ

λϕ
, (IV.71)

which in QCD is of the order of 300 MeV.

In summary we have derivated low energy EFTs in QCD by successively integrating out momentum shells of
quantum fluctuations in QCD. The first class of low energy EFTS we encountered are the Nambu-Jona–Lasigno
type four-quark models (in short in a slight abuse of notation NJL-model), baptised after a seminal work of Nambu
and Jona-Lasigno from 1961 introducing a four-fermi model for Nucleons. The NJL-model is not renormlisable and
requires a ultraviolet cutoff scale ΛUV that cannot be removed.

In a second step we have bosonised the resonant scalar–pseudo-scalar channels of the four-quark interaction leading
us to a Yukawa-type model, the Quark-Meson Model (QM-model). This model is renormalisable and its UV cutoff ΛUV

seemingly can be removed to infinity. However, we emphasise that the two models are equivalent on the level of the
respective path integrals via the Hubbard-Stratonovich transformation. In other words, if one considers all quantum
fluctuations in both models the physics results are the same, as must be the necessity of a ultraviolet cutoff scale ΛUV.
In the QM model this necessity is encoded in a UV-instability of the model. In other words, its renormalisability is
of no help if it comes to the existence of the model at large scales.

Finally, despite being low energy EFTs, these models have a complicated dynamics reflecting the strongly-correlated
nature of low energy QCD. Hence, typically one resorts to approximations within these models. In the reminder of
this chapter we shall discuss different approximations to the Quark-Meson model ranging from a mean-field treatment
to a full non-perturbative renormalisation group study.

F. Low energy quantum fluctuations

In the last chapter we have derived the action of the QM-model by integrating out quantum fluctuations above
a momentum scale Λ ≈ 1 GeV. We have argued that below this scale the gluonic degrees of freedom become less
important and decouple from the theory below the mass gap of QCD. Practically, this can be seen from the results
for gluonic correlation functions such as the gluon propagator displayed in Fig. 9. This entails that the action (IV.63)
serves as a classical action for the quantum fluctuations with momenta p2 ≤ Λ2. More explicitly we use the definition
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(IV.48) with µ = Λ and arrive at the path integral

Z ≈
∫

[dφ dψdψ̄]p2≤Λ2e−Seff,Λ[ψ<,ψ̄<,φ<] with ZΛ ' e−Seff,Λ , (IV.72)

where we have dropped the source terms. The fields ψ<, ψ̄<, φ< only carry low momentum modes with momenta
p2 < Λ2. Then the full quark field ψ = ψ< + ψ> is a sum of ψ< = ψp2≥µ2 and ψ> = ψp2≥µ2 . Note also that the path
integral of the large momentum modes in (IV.48) is performed in the presence of fields that also carry low momentum
contributions,

ZΛ[ψ<, ψ̄<, φ<] =

∫
[dΦ]p2≥µ2 e−S[φ,Φ] . (IV.73)

where S is the QCD action with a bosonised scalar–pseudo-scalar channel. Eq.(IV.72) is approximate as we do not
integrate out the low momentum gluons. Therefore low energy quantum effects with momentum scales p2 ≤ Λ are
encoded in loop diagrams with the classical action Seff,Λ ' ΓΛ defined in (IV.63). Here, ΓΛ is the effective action that
originates in the integrating-out of QCD fluctuations with momenta p2 ≥ Λ2. Henceforth we drop the supscripts <,>
for the sake of readability.

As we have seen at the end of the last chapter, the coupling parameters in the mesonic potential play a crucial rôle
for chiral symmetry breaking. Here we compute the one-loop correction to the ’classical’ potential V in (IV.65) as
well as studying its the renormalisation group or flow equation.

1. Quark quantum fluctuations

First we note that the quark path integral in (IV.72) with the action Seff,Λ in (IV.63) is Gaußian, and hence the
one-loop computation is exact. This leads to the following representation of (IV.72),

Z ≈
∫ ∫

[dφ]p2≤Λ2e−Sφ,eff,Λ[φ] , (IV.74)

with

Sφ,eff,Λ[φ] =

∫

x

[
(∂µσ)2 + (∂µ~π)2

]
+

∫

x

VUV(ρ)− ln

[
1

N

∫
[dψdψ̄]p2≤Λ2e

−
∫
x
ψ̄·
(
D/ +mψ

)
·ψ+

∫
x
h
2 ψ̄[σ+iγ5~τ~π]ψ

]
, (IV.75)

where 1/N is an appropriate, field-independent normalisation specified later. The quark path integral can be rewritten
as follows,

1

N

∫
[dψdψ̄]p2≤Λ2 e

−
∫
x
ψ̄·
(
D/ +h

2 [σ+iγ5~τ~π]
)
·ψ

=
1

N det Λ

(
D/ +

h

2
[σ + iγ5~τ~π]

)
, (IV.76)

where det Λ is the determinant from momentum modes with p2 ≤ Λ2. Expanded in powers of the field, the logarithm
of (IV.76) adds to the kinetic term in (IV.75) as well as to the potential V . It also leads to terms with higher order
derivatives or derivative couplings such as Z(ρ)(∂µφ)2, (φ∆φ)2. As we work at low energies we drop these terms in
the spirit of an expansion in p2/m2

gap where m2
gap is the lowest mass scale in QCD. Evidently the pion plays a special

role as is has a very small mass in comparison to the QCD mass scale ΛQCD The mass scales mhad of all other hadronic
low energy degrees of freedom in QCD satisfy mhad & ΛQCD. Accordingly the pion carries the quantum fluctuations in
QCD for scales below ΛQCD. These scale considerations are also behind the impressively successful framework of chiral
perturbation theory. In summary at leading order the low energy effective action Sφ,eff only changes to VUV → Vφ,eff,

Vφ,eff(ρ) = VUV(ρ) + ∆Vq(ρ) , (IV.77)

with

∆Vq(ρ) = −TrΛ ln

(
D/ +

h

2
[σ + iγ5~τ~π]

)
+ lnN , VUV(ρ) = m2

ϕρ+
λϕ
2
ρ2 . (IV.78)

In (IV.78) we have used that for a given operator O we have ln detΛO = TrΛ lnO, where the trace sums over momenta
with p2 ≤ Λ2, as well as Dirac and internal indices, and the ’classical’ potential V defined in (IV.64). For the present
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considerations and scales the gluonic fluctuations and background are irrelevant. Thus we have dropped the gluonic
fluctuations and we also put the gauge field to zero, Aµ = 0. At finite temperature and density we also will consider
constant temporal backgrounds A0 6= 0 which is related to so-called statistical confinement. Finally we introduce a
convenient choice for the normalisation lnN : the quark determinant at vanishing background,

lnN = TrΛ ln ∂/ . (IV.79)

Due to the symmetry analysis performed above the fermionic determinant can only depend on the O(4)-invariant
combination ρ = 1/2(σ2 + ~π2), and we can simplify the computation by using ~π ≡ 0. In momentum space we have

Vφ,eff(σ
2/2) =VUV(σ2/2)−NfNc

∫
dΩ4

(2π)4

∫ Λ

0

dp p3 trDirac ln
ip/ + h

2σ

ip/

=VUV(σ2/2)− 6

π2

∫ Λ

0

dp p3 ln
p2 + h2

4 σ
2

p2
, (IV.80)

where
∫
dΩ4 = 2π2 is the four-dimensional angular integration. The prefactor NfNc = 6 in the middle part in

(IV.80) comes from the trace over flavour and colour space. The Dirac trace gives a factor 4, while the momentum
symmetrisation with p → −p provides a factor 1/2. The denominators in (IV.80) come from the normalisation
(IV.79). Note also that up to these prefactors (IV.80) is nothing but the Coleman-Weinberg potential of a ϕ4-theory
with interaction λ/4!ϕ2 where we substitute λϕ2 → h2 ρ. We have an important relative minus sign due to the
fermion loop and a symmetry factor 4NfNc = 24 due to the number of degrees of freedom. We simply could take
over this well-known result, for a detailed discussion see e.g. chapter 1.4 in the QFTII lecture.

For its importance we recall the computation here, and also discuss some particularities due to the embedding in
QCD in the present low energy EFT context. The momentum integral in (IV.80) is easily performed. We also restore
the full mesonic field content, σ2/2→ ρ, and arrive at

Vφ,eff(ρ) = VUV(ρ)− 3

8π2

[
2Λ2h2ρ+ h4ρ2

[
ln
h2ρ

2Λ2
− ln

(
1 +

h2ρ

2Λ2

)]
+ 4Λ4 ln

(
1 +

h2ρ

2Λ2

)]
. (IV.81)

Up to the symmetry factor −24 this is precisely the result of the Coleman-Weinberg computation performed originally
in the context of the Higgs mechanism. We note that (IV.81) seemingly depends on the momentum cutoff scale Λ.
However, the potential VUV(ρ) is the result of integrating-out quantum fluctuations up to the momentum scale Λ and
hence also is Λ-dependent. Indeed, the full generating functional Z of QCD in (IV.72) cannot be Λ-dependent, to wit

Λ
∂Z

∂Λ
= 0 . (IV.82)

Eq.(IV.82) is the (cutoff) RG-equation for the generating functional of QCD. In the present context it is only ap-
proximately valid as we did not include the quantum fluctuations of gluons below the cutoff scale Λ. Accordingly,
(IV.82) only holds in our present EFT setting if the cutoff scale Λ is small enough. This will be aparent in the final,
renormalised result, and we shall resume the discussion of the sufficient smallness of the cutoff scale there.

For the time being let us also drop the integration of the mesonic fluctuations. In this approximation Vφ,eff(ρ) is
the full effective potential of our low energy EFT. Using (IV.82) for the full effective potential (IV.80) or (IV.81),
Λ∂ΛVeff = 0, leads us to scaling relations for the couplings in the potential V . As Λ only appears in the integration
limit in (IV.80), the integrand simply is the Λ-derivative and we obtain

Λ∂ΛVUV =
6

π2
Λ4 ln

(
1 +

h2ρ

2Λ2

)

=
3

π2

(
Λ2h2ρ− h4

4
ρ2

)
+O(ρ3/Λ2) , (IV.83)

and

Λ∂ΛVUV = Λ
∂m2

ϕ

∂Λ
ρ+

1

2
Λ
∂λϕ
∂Λ

ρ2 . (IV.84)

The RG equation (IV.84) signifies that the present quark-meson model is indeed renormalisable: the divergences can
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be absorbed in the couplings of the classical action. For the sake of completeness we also remark that In a full analysis
two further logarithmic singularities occur, the wave function renormalisations of quarks and mesons which also can
be absorbed by wave functions in the classical action with e.g. ∂µφ

2 → Zφ,Λ∂µφ
2. The scale derivatives of m2

ϕ and
λϕ define the β-functions of meson mass and self-coupling respectively,

βm2
ϕ

= Λ
∂(m2

ϕ/Λ
2)

∂Λ
, βλϕ = Λ

∂λϕ
∂Λ

, (IV.85)

in analogy to the β-function of the strong coupling in (IV.1) and the four-fermi coupling in (IV.53) discussed before.
Now we use Λ∂ΛΛ2 = 2Λ2 and Λ∂Λ ln Λ2/Λ2

QCD = 2 for integrating the RG-equation (IV.83). For the logarithmic

term we have to introduce a reference scale which we choose to be the dynamical scale of QCD, Λ2
QCD. Practically

this scale is identified with the UV cutoff scale of the low energy EFT which is proportional to Λ2
QCD, and is typically

of the order of 1 GeV. In summary this leads us to

m2
ϕ = m2

ϕ,r +
3

2π2
Λ2h2 , λϕ = λϕ,r −

3

4π2
h4 ln

Λ2

Λ2
QCD

, (IV.86)

with the renormalised couplings m2
ϕ,r, λϕ,r. In the present approximation without the mesonic quantum fluctuations

they directly carry the physics. The Λ-independent constant part in the subtraction is chosen such that the ρ2-term
in the effective potential has the coupling λϕ,r. It is evident from (IV.86) that a variation of the reference scale in the
logarithmic term can be absorbed in an according variation of λϕ,r,

ΛQCD

∂λϕ
∂ΛQCD

= 0 −→ ΛQCD

∂λϕ,r
∂ΛQCD

= βλϕ , (IV.87)

where we have assumed the absense of other scales. This relation is again governed by the β-function βλϕ , and reflects
the invariance observables do not depend on this choice. Inserting these results back into (IV.81) leads us to the final,
Λ-independent effective potential

Vφ,eff(ρ) = m2
ϕ,rρ+

λϕ,r
2
ρ2 − 3

8π2
h4ρ2

[
ln

h2ρ

2Λ2
QCD

− 1

2

]
. (IV.88)

As already discussed in the beginning of the derivation, (IV.88) is the Coleman-Weinberg result in disguise. Multi-
plying with the symmetry factor −4NfNc = −24 gives precisely the same logarithmic term in the ρ2 contribution.
The missing constant term simply originates in the different renormalisation procedure: with the present one all
corrections to the relevant couplings including the constant parts are absorbed, that is m2

ϕ → m2
ϕ,r and λϕ → λϕ,r.

As these couplings have to be fixed by appropriate infrared observables this is a convenient choice. In summary we
have the following practical and consistent RG procedure:

(0) Regularisation: Sharp momentum cutoff with p2 ≤ Λ2 in all loops.

(1) Renormalisation: Remove all divergent terms in the loop contributions. For the logarithmic term substitute
ln Λ2 → ln Λ2

QCD.

(2) Renormalisation scheme: we demand ∂ρVφ,eff = ∂ρVφ,UV + O(ρ2) + ln ρ–terms. This is arranged by the −1/2
in the bracket in (IV.88). It enforces that the ρ-dependent pion mass function mπ(ρ) = ∂ρVφ,eff(ρ) simply is
m2
φ,r in the symmetric regime, that is for vanishing ρ. Moreover, the linear term in ρ of m2

π is given by the UV
coupling λφ,r. This cannot be expressed within a Taylor expansion at ρ = 0 due to the logarithmic term.

(3) Physics: The relevant parameters h,mϕ,r, λϕ,r and the explicit symmetry breaking scale c are fixed by the pion
decay constant fπ, the physical pion and σ pole masses, mπ,pol,mσ,pol and the constituent quark mass mq,const.

Depending on the values of m2
ϕ,r, λϕ,r the effective potential in (IV.88) has non-trivial minima or describes the sym-

metric phase. The effect of the fermionic quantum fluctuations is most easily accessed via the scale-running of the
parameters in the ’classical’ potential V (ρ). Concentrating on the scale-dependence of the mass parameter m2

ϕ in

(IV.86) we conclude that lowering the cutoff scale Λ lowers the effective mass m2
ϕ. This entails that the fermionic quan-

tum fluctuation¡s indeed lower the mass parameter. Put differently, the quark fluctuations trigger chiral symmetry
breaking.

Moreover, deep in the symmetric phase, that is for large Λ, the mesonic quantum fluctuations are suppressed in
comparison to the quark fluctuations. In the vicinity of the symmetry breaking scale Λχ the mesonic fluctuations are
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getting massless, mϕ → 0 and the mesonic fluctuations kick in. In turn, the effective quark mass grows in the chirally
broken regime with mψ = h/2σ0, and eventually the quark fluctuations are switched off for Λ below the constituent
quark mass. ...

2. Mesonic quantum fluctuations

The remaining mesonic fluctuations can be treated at one loop similarly to the fermionic computation done above.
The result is a Coleman-Weinberg type potential without the relative minus sign. Accordingly, the mesonic fluctuations
work against chiral symmetry breaking. Due to the different scales and coupling sizes this is a marginal effect even
in the chiral limit. In the physical scale with explicit chiral symmetry breaking and a pion mass of about 140 MeV
the mesonic quantum fluctuations also decouple for scales Λ below the pion mass.

It is left to integrate-out the quantum fluctuations of the mesonic degrees of freedom in (IV.74). Again concentrating
on the low energy effective potential in the spirit of the lowest order of a derivative expansion we have

Veff(ρ) = Vφ,eff(ρ) + ∆Vφ(ρ) + cσ σ with ∆Vφ(ρ) =
1

2
TrΛ ln

[
−∂2

µ +m2
φ(ρ)

]
, (IV.89)

where ∆Vφ is the one loop approximation to the mesonic path integral (IV.74) with the ’classical’ potential Vφ,eff(ρ),
and TrΛ sums over all momenta p2 ≤ Λ2. In (IV.89) we have re-introduced the linear term in σ that triggers the
explicit symmetry breaking. In the present case ∆Vφ boils down to

∆Vφ(ρ) =
1

4π2

∫ Λ

0

dp p3
[
3 ln

(
p2 +m2

π(ρ)
)

+ ln
(
p2 +m2

σ(ρ)
)]
. (IV.90)

For (IV.90) we have used that we can evaluate the expressions for vanishing ~π = 0 as done in the quark case. Then
the mass matrix is diagonal, see (IV.11), and reads for a given potential V

m2
π(ρ) = ∂ρV (ρ) , m2

σ(ρ) =
(
∂ρ + 2ρ∂2

ρ

)
V (ρ) . (IV.91)

Accordingly, the factor three in front of the first term on the right hand side in (IV.90) accounts for the N2
f − 1 = 3

pions. In the present case we have Vφ,eff(ρ) and the mass functions read

m2
π(ρ) =m2

ϕ,r +

(
λϕ,r −

3

4π2
h4 ln

h2ρ

2Λ2
QCD

)
ρ ,

m2
σ(ρ) =m2

ϕ,r + 3

(
λϕ,r −

1

2π2
− 3

4π2
h4 ln

h2ρ

2Λ2
QCD

)
ρ (IV.92)

The integration in (IV.91) is the same as in the quark case and we arrive at

∆Vφ(ρ) =
3

16π2

[
Λ2m2

π +m4
π

[
ln
m2
π

Λ2
− ln

(
1 +

m2
π

Λ2

)]
+ Λ4 ln

(
1 +

m2
π

Λ2

)]

+
1

16π2

[
Λ2m2

σ +m4
σ

[
ln
m2
σ

Λ2
− ln

(
1 +

m2
σ

Λ2

)]
+ Λ4 ln

(
1 +

m2
σ

Λ2

)]
, (IV.93)

where m2
π,m

2
σ are the ρ-dependent masses defined in (IV.91). Seemingly (IV.93) introduces divergent terms that are

neither proportional to ρ0, ρ, ρ2 due to ∆Vq in (IV.91). However, (IV.93) goes beyond one-loop (∆Vq is already one-
loop) and these terms are to be expected and can be removed within a consistent renormalisation procedure. Here,
our simple renormalisation procedure discussed below (IV.88) pays off. Then after renormalisation (IV.93) turns into

∆Vφ(ρ) =
3

16π2
m4
π

[
ln

m2
π

Λ2
QCD

− 1

2

]
+

1

16π2
m4
σ

[
ln

m2
σ

Λ2
QCD

− 1

2

]
, (IV.94)

where mπ(ρ),mσ(ρ) are derived from (IV.91). As described in the discussion of the renormalisation scheme described
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below (IV.88), the factor −1/2 in the brackets arrange for

m2
eff,π(ρ) = ∂ρVeff(ρ) = m2

ϕ,r + λϕ,rρ−
3

8π2
ρ ln

h2ρ

2Λ2
QCD

+
3

8π2
m2
π(∂ρm

2
π) ln

m2
π

Λ2
QCD

. (IV.95)

From (IV.94) we can proceed in several ways:

(0) We drop ∆Vφ completely. As in (2) the missing quantum fluctuations are partially absorbed in the couplings
mϕ, λϕ. This approximation is also called ’extended mean field’ in the literature. It is very close to the mean
field approximation with V eff(ρ) = V (ρ), where we also drop ∆Vq.

(1) As ∆Vq already is a one loop expression we drop it in the computation of (IV.94). This leads us to a consistent
one-loop computation. This amounts to dropping some quantum contributions in comparison to (1). However,
as in (1) we have to fix the parameters h,mϕ, λϕ in the effective potential with the low energy observables. This
implicitly absorbes (part of the) dropped contributions in these couplings. Differences between (1) and (2) only
occur due to missing contributions in (2) in the couplings λϕ,n of the ρn-terms in Veff with n ≥ 3.

(2) For the evaluation of (IV.89) with V + ∆Vq in (IV.88) and ∆Vφ in (IV.94) we have to take into account that
already the effective potential V + ∆Vq may not be convex. In non-convex regimes its second derivatives are
not positive definite: mπ < 0 for ρ < ρπ, where ρπ is the solution of the reduced EoM: V ′cl(ρπ) + ∆V ′q (ρπ) = 0.
The σ mass also gets negative for even smaller ρ.

A simple resolution of this artefact of the approximation is to continue the result from larger ρ ≥ ρπ. The more
consistent way is to resolve the related renormalisation group (RG) equation for the effective potential. The RG
approach is able to deal consistently with the regimes with negative curvature which are indeed flattened out
by quantum fluctuations. This effect cannot be seen in perturbation theory.

In any case the result of this computation is an effective potential V eff(ρ) which depends on the couplings
h,mϕ, λϕ. We either compute these couplings from QCD or we fix them with low energy observables such as
the meson mass, the pion decay constant and the constituent quark mass. Here we use the latter way which is
described in details below.

(3) We solve the full renormalisation group equation, (IV.82), for the effective potential, that governs its scale-
dependence, see (IV.96) below. Integrating the RG equation provides an iterative and fully consistent inclusion
of the fluctuation effects. The RG is described in the chapter IV F 3 below, where it is also detailed how it boils
down to the procedures (0)-(2) described above.

In the following we will consider all of these approximations, in particular at finite temperature and density. This
allows us to evaluate the importance of the quantum (and later thermal) fluctuations as well as the stability of the
results.

3. RG equation for the effective potential ∗

The present considerations are but one step away from a consistent treatment of the low energy effective theory
with functional renormalisation group methods. For that purpose let us reconsider the RG equation for the ultraviolet
potential VUV derived from (IV.82). Below (IV.82) we have discussed the renormalisation group scaling that originates
in the quark quantum fluctuations. In the general case the RG-scaling of the potential comes from both quark and
meson fluctuations. This leads us to

Λ∂ΛVUV = −Λ∂Λ (∆Vq + ∆Vφ) . (IV.96)

(IV.96) entails how the UV effective potential VUV at a large cutoff scale Λ changes with lowering or increasing the
cutoff scale. In the discussion so far we have concentrated on the UV relevant terms that scale with positive powers
of the cutoff Λ. Then we ensured the cutoff independence of the full effective potential Veff = VUV + ∆Vq + ∆Vφ by
an appropriate renormalisation procedure. The low energy quark and meson fluctuation are encoded in the terms
∆Vq + ∆Vφ. Such a treatment assumes an asymptotically large cutoff scale.

Here we take a different point of view: iteratively lowering to cutoff scale Λ from large values (w.r.t. the non-
perturbative infrared pyhsics) leads to shifting more and more infrared fluctuations from ∆Vq + ∆Vφ to VUV. Indeed,
at Λ = 0 we have

Veff = VΛ=0 , with VΛ = VUV,Λ , (IV.97)
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the former ’UV’ effective potential is the full quantum effective potential. Evidently, if the cutoff scale is not asymp-
totically large, also the UV-irrelevant terms cannot be neglected in (IV.96). Note also that its right hand side has to
be seen as a function of VΛ, the one-loop computations done before indeed used VΛ a a classical potential. Hence, it
is only left to bring (IV.96) in a form that only depends on VΛ on both sides.

To that end we consider an infinitesimal RG step with Λ2 → Λ2(1− ε). This is governed by the path intgeral

Z ≈
∫ Λ2

Λ2(1−ε)
[dφ dψdψ̄]e−Seff,Λ[ψ,ψ̄,φ] with e−Seff,Λ ' ZΛ . (IV.98)

Now we exploit that each loop in a loop expansion of (IV.98) is proportional to ε as it only takes into account momenta
with Λ2(1−ε) ≤ p2 ≤ Λ2. Hence, for ε→ 0 the one-loop contribution is leading, and the ε-derivative can be converted
in the Λ-derivative of the momentum integration boundary of the one-loop expressions for ∆Vq and ∆Vφ, (IV.78) and
(IV.89) respectively. This leads us to

Λ∂ΛVΛ = − 1

4π2
Λ4

[
3 ln

(
1 +

m2
π(ρ)

Λ2

)
+ ln

(
1 +

m2
σ(ρ)

Λ2

)]
+

6

π2
Λ4 ln

(
1 +

h2

2

ρ

Λ2

)
, (IV.99)

where

m2
π/σ(ρ) = Γ

(2)
Λ,ππ/σσ(ρ, p = 0) = V

(2)
Λ,ππ/σσ(ρ) ,

h2

2
ρ = Γ

(2)

Λ,ψψ̄
(ρ, p = 0) , with Γ

(2)
Λ = ΓUV,Λ , (IV.100)

are the second derivatives of the scale-dependent ’UV’ effective action ΓΛ. We emphasise that the implicit Λ-
dependence in Γ(2) is not hit by the ε-derivative.

The approximations (0)-(2) now follow from respective approximations of (IV.99): For (0) we drop the meson
fluctuations, for (1) we do not feed back the RG-running of VUV on the right hand side of (IV.99), for (2) we integrate
out the quarks first. This is done with introducing separate cutoffs for quarks, Λq and mesons, Λφ and take the limit
Λq/Λφ → 0.

Eq.(IV.99) is the Wegner-Houghton equation [11] for the effective potential of the current Quark-Meson Model. For
the sake of completeness we also quote the full Wegner-Houghton equation for the effective action: as the derivation
of (IV.99) simply follows from the RG-invariance of the generating functional Z, it also applies to the full effective
action. Hence we conclude

Λ∂ΛΓΛ[ψ, ψ̄, φ] = −1

2
Trp2=Λ2 ln

Γ
(2)
φφ

Λ2
+ Trp2=Λ2 ln

Γ
(2)

ψψ̄

Λ2
, (IV.101)

where the trace Trp2=Λ2 = Tr δ(
√
p2−Λ) only sums over the momentum shell with p2 = Λ2. Eq.(V.34) is, together with

the Callan-Symanzik equation [12, 13], the first of many functional renormalisation group equations for the effective
action. These continuum RG equations are based on continuum version [14, 15] of the Kadanoff block spinning
procedure on the lattice, [16], for the first seminal work on the RG see [17, 18]. In particular the pioneering work [17]
already emphasises and details the full power of the renormalisation group, and is still very much under-appreciated
by the community.

4. EFT couplings

It is left to fix the couplings parameters in our low energy effective theory with the classical action Seff defined
(IV.63). After integrating out the quarks and mesons we are led to the full low energy effective action ΓlowE with

ΓlowE[ψ, ψ̄, φ] =

∫

x

ψ̄ · (D/ + mψ) · ψ +

∫

x

[
(∂µσ)2 + ∂µ~π)2

]
+

∫

x

h

2
ψ̄ [σ + iγ5~τ~π]ψ +

∫

x

Veff(ρ) , (IV.102)

with the effective potential Veff = Vφ,eff+∆Vφ+cσ defined in (IV.89) with Vφ,eff = VUV+∆Vq. In the best approximation
discussed here, Vφ,eff is given by (IV.88) and ∆Vφ by (IV.94). We have the fermion mass mψ or mesonic shift parameter
c, the Yukawa coupling h, the mesonic mass parameter m2

φ and the mesonic self-coupling λφ. The fermion mass can
be traded for the shift parameter c as argued before. The value of the latter determines the expectation value of the
σ-field which is, in the present approximation, simply is the pion decay constant,

σ0 = 〈σ〉 = fπ , fπ ≈ 93 MeV . (IV.103)
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Observables Value [MeV] EFT couplings Value
fπ 93 σ0 = fπ 93 MeV

mcon 300 h =
2mcon

fπ
6.45

mπ 138 mφ mφ(mπ,mσ)
mσ 450 λφ λφ(mπ,mσ)

fπ,χ 88 cσ = fπm
2
π 1.77 ∗ 106MeV3

TABLE III: Low energy observables and related EFT couplings as used for the Nf = 2 computations. While the
σ-expectation value σ0 and the Yukawa coupling are directly related to pion decay constant and constituent quark
masses in the present appoximations, the other EFT couplings depend on the approximations (0)–(3) described below

(IV.95).

The latter value related to the physical fπ’s (f±π , f
0
π) measured in the experiment. Consequently c could be dropped,

we simply evaluate the theory on this expectation value. Accordingly, h is determined by the constituent quark mass,

mψ,con =
1

2
h〈σ〉 =

1

2
h fπ −→ h ≈ 6.45 with mψ,con ≈ 300 MeV . (IV.104)

Note that the constituent quark masses of the quarks depend on the model and approximation used, typical values
for up and down quark masses are mψ,con ≈ 340 MeV in full QCD. A reduced value in (IV.104) for two flavour QCD
is common place in the Nf = 2 quark-meson model. The related observable is the chiral condensate,

〈ψ̄(x)ψ(x)〉 = −
∫

d4p

(2π)4
tr 〈ψ(p)ψ̄(−p)〉 , (IV.105)

where the trace sums over Dirac and flavour indices.

Finally we have to fix λφ and mφ with the Yukawa coupling and σ-expectation value σ0 deduced above, see also
Table III. Note also, that a potential further input is the value of the pion decay constant in the chiral limit,

fπ,χ = fπ(mπ = 0) ≈ 88 MeV , (IV.106)

which can be determined with chiral perturbation theory, functional continuum methods or from chiral extrapolations
of lattice results at different finite pion masses. This leaves us with a triple of ’observables’ (mπ,mσ, fπ,χ), see
Table III, and a triple of EFT couplings (mφ, λφ, cσ). Note that the inclusion of fπ,χ as an ’observable’ relates to
the correct chiral dynamics reflected in the curvature and four-meson interaction in the chiral limit. The pion and
sigma masses are related to those found in the Particle Data Booklet (2016), [19] of the Particle Data Group (PDG).
Here, the pion mass is taken between that of the charged pions π± with mπ± ≈ 139.57 MeV and the neutral pion
π0 with mπ0 ≈ 134.98 MeV, and the mass of the sigma meson is taken to be that of the f0(500), see [20], that is
mσ ≈ 450 MeV, despite the f0 certainly not being a simple qq̄ state. The unclear nature of the value of mσ is one of
the biggest uncertainties for low energy EFTs. Typically, its values range from 400–550 MeV, see PDG, [19].

Seemingly, this leaves us with as many unknowns as physics input. However, c can be determined from the pion
mass and the pion decay constant with m2

π = ∂ρVeff(ρ0) and ρ0 = σ2
0/2 = f2

π/2. This follows from the EoM for σ,

∂σVeff(ρ0) = σ0m
2
π = cσ −→ cσ = fπm

2
π ≈ 1.77 ∗ 106 MeV3 . (IV.107)

We conclude that in the current approximation to the UV effective action, the pion decay constant in the chiral limit,
fπ,χ, is a prediction.

Here we present a crude (mean-field) estimate of its value based on the assumption of being close to the chiral limit.
It is based on the expansion of the full effective potential about the unperturbed minimum in the broken phase,

Veff =

∞∑

n=2

λn
n!

(ρ− κ)
n

+ cσσ , with κ =
f2
π,χ

2
, λ2 = λφ,eff . (IV.108)

Close to the chiral limit the difference (fπ − fπ,χ)/fπ � 1 is small. In the vicinity of the unperturbed minimum κ the
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full effective potential can be written as

Veff =
λφ,eff

2
(ρ− κ)

2
+ cσσ +O

(
(ρ− κ)

2
)
. (IV.109)

Dropping the higher terms leads us to

m2
π = λφ,eff

f2
π − f2

π,χ

2
, m2

σ = λφ,eff

3f2
π − f2

π,χ

2
. (IV.110)

In this leading order, the mesonic self-coupling drops out of the relation for fπ,χ and we arrive at the estimate

fπ,χ = fπ

√√√√√
1− 3

m2
π

m2
σ

1− m2
π

m2
σ

≈ 83 MeV , and λφ,eff =
m2
σ −m2

π

f2
π

≈ 21.2 . (IV.111)

This is a very good agreement with the theoretical prediction of fπ,χ ≈ 88 MeV, in particular given the crude nature of
the present estimate. Beyond the current mean field level it improves further Still, the current EFT makes a prediction
for either fπ,χ or mσ, and the question arises which of them should be taken as a physics input: we first note that
fπ,χ ≈ 88 MeV is under far better theoretical control than the mass of the σ-meson. Apart from the difficulties of
identifying directly the σ-mesons in the EFT’s at hand with a resonance in the particle spectrum, it has a large
width. Hence it cannot be assumed that the curvature mass mσ,curv we use here is in good agreement with the pole
mass mσ,pol, see the discussion at the end of chapter IV B. This is in stark contradistinction to the pion masses where
the (non-trivial) identification mπ,curv ≈ mπ,pol holds true on the percent level. This suggestes to adjust mσ such
that fπ,χ ≈ 88 MeV. In the mean field discussion done here this leads to m2

σ ≈ 600 − 650 MeV. Note that with a
future better determination of the curvature mass mσ,curv a semi-quantitative EFT might require higher oder mesonic
UV-couplings such as λ3,UV 6= 0 in (IV.109). This is related to the fact that the physical UV cutoff ΛUV ≈ 1 GeV, at
which the low energy EFT is initiated, is less than one order of magnitude larger than the physical scales.

This discussion completes our EFT picture of chiral symmetry breaking in QCD. In essence it also extends to the
Nf = 2 + 1 flavour case and beyond, then, however, a consistent determination of the low energy couplings including
the correct chiral dynamics, e.g. fπ,χ is far more intricate.

FIG. 12: Scale dependence of the effective four-fermi coupling. The shaded area is the regime where the effective field
theory is triggered.
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V. CHIRAL PHASE TRANSITION

In the last chapter we have learned that chiral symmetry breaking is triggered by the quark fluctuations, while the
mesonic low energy fluctuations work against symmetry breaking. The symmetry breaking scale Λχ is of the order of
300-400 MeV.

The vacuum physics is used to fix the parameters of the low energy effective theory such as the mesonic mass
function, the Yukawa coupling, and the expectation value of the radial mode, 〈σ〉. The related observables are the
pion and sigma pole masses, the constituent quark mass as well as the pion decay constant.

In heavy ion collisions or the early universe the temperature is/has been high of the order of hundreds of MeV.
In Kelvin this translates into 100 MeV≈ 1.16 ∗ 1012 Kelvin. It is expected that a high temperatures the system
undergoes a phase transition to the chirally symmetric phase. As a rough estimate the phase transition temperature
Tc is expected to be of the order of the chiral symmetry breaking scale Λχ which itself has been argued to be of the
order of ΛQCD, the only intrinsic scale in QCD.

A. Mesons at finite temperature

For a more quantitative investigation we need a thermal formulation of QCD or at least of the low energy effective
theory we have derived in the previous chapter. Here we give a brief introduction to the -Euclidean- path integral
at finite temperature, where we follow the introduction of the path integral in chapter 1, QFT II. We start with the
partition function of a scalar theory at finite temperature

ZT = Tr e−βĤ =
∑

n

e−βEn with β =
1

T
and Ĥ|n〉 = En|n〉 , (V.1)

with the Hamiltonian operator of a scalar theory

Ĥ[φ̂, π̂] =

∫
d3x

[
1

2
π̂2 +

1

2
(~∇φ)2 + V (φ̂)

]
. (V.2)

with field operator φ̂ and field momentum operator π̂. In (V.1) we dropped the source term for the sake of brevity.
Eq.(V.1) is the standard statistical partition function at finite temperature well known from quantum mechanics.
Now we rewrite this partition function in terms of a basis in field and canonical momentum space. First we note that
the trace in (V.1) can be rewritten in terms of field eigenstates with

Tr e−βĤ =

∫
dφ 〈φ| e−βĤ |φ〉 with φ̂(~x)|φ〉 = φ(~x)|φ〉 , (V.3)

with the eigenvalues φ(~x). Moreover, the statistical operator e−βĤ can be interpreted as the evolution operator
U(0, iβ) in an imaginary time from the initial state |φ(ti)〉 at ti = 0 to the final state |φ(tf)〉 at tf = iβ with

U(0, iβ) = eiĤ(tf−ti) and |φ(tf)〉 = |φ(ti)〉 . (V.4)

The identification of initial and final state is the trace condition in (V.3). Now we simply repeat all the steps for the
derivation of the path integral of a scalar theory. Also adding a source term we arrive at

ZT [J ] =

∫

φ(β,~x)=φ(0,~x)

dφ e−ST [φ]+
∫ β
0
d4x J(t,~x)φ(~x) , (V.5)

with the periodic fields φ(t+ β, ~x) = φ(t, ~x) and the finite temperature action ST [φ] with

ST [φ] =

∫ β

0

d4x

[
1

2
(∂µφ)2 + V (φ)

]
, where

∫ β

0

d4x =

∫ β

0

dt

∫
d3x . (V.6)

Accordingly, the path integral of a finite temperature field theory is related to a Euclidean path integral with a finite
time extent in imaginary time t ∈ [0 , β]. Note that this time does not describe the time evolution of the system but
simply the statistical nature of the thermal partition function. The real time correlation function are obtained by a
Wick rotation, for more details see finite temperature quantum field theory books such as Le Bellac or Kapusta. The
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correlation functions are periodic in imaginary time,

〈φ(x1) · · ·φ(ti + β, ~x) · · ·φ(xn)〉 = 〈φ(x1) · · ·φ(ti, ~x) · · ·φ(xn)〉 . (V.7)

Finally we want to repeat the computation of the effective potential in the last chapter section IV F at finite temper-
ature. This is done in momentum frequency space and we would like to illustrate the differences at finite temperature
at the important example of the propagator

Gφ(x− y) = 〈φ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉 . (V.8)

The propagator in spatial momentum and frequency space is given by

Gφ(ωn, ~p) =

∫ β

0

d4x ei (ωnt+~p~x)Gφ(t, ~x) , where ωn = 2πTn , with n ∈ Z . (V.9)

The discrete frequencies ωn are called Matsubara frequencies and originate in the finite imaginary time extent. The
frequency Fourier transformation back gives

Gφ(t, ~p) =
∑

n∈Z
e−iωntGφ(ωn, ~p) , (V.10)

which has the necessary periodicity in imaginary time, G(t + β, ~p) = G(t, ~p), of a correlation function, see (V.7). In
frequency and spatial momentum space the classical propagator looks the same as in the vacuum. We have

Gφ(ωn, ~p) =
1

ω2
n + ~p2 +m2

with m2(φ) = ∂2
φV (φ) . (V.11)

While the Fourier transformation w.r.t. spatial momentum is also the same as at T = 0, that w.r.t. frequency changes.
Here we discuss the Fourier transformation for t = 0 for the mixed representation Gφ(t, ~p),

Gφ(t = 0, ~p) = T
∑

n∈Z

1

ω2
n + ~p2 +m2

=
1

2εφp
cothβ εφp =

1

2εφp

[
1 + 2nB(εφp )

]
, (V.12)

with the dispersion εφp and the thermal distribution function nB(ω) given by

εφp (m) =
√
~p2 +m2 , nB(ω) =

1

eβ|ω| − 1
(V.13)

The latter is the standard Bose-Einstein distribution and clearly shows the thermal nature of the Matsubara path
integral.

As a warm-up of the computation for the effective potential in the quark-meson theory at finite temperature we
compute that of the scalar theory used here as an example. Its thermal part is related to the thermal pressure of the
theory with potential. To that end we remind ourselves that the scalar free energy density Ωφ and the pressure of the
theory are given by

ZT [0] = e−βV Ωφ , pφ = −∂VΩφ
∂V with V =

∫
d3x . (V.14)

The one-loop contribution to the free energy density and pressure are hence given by

Ωφ '
1

2V T Tr ln
(
−∂2

µ +m2
)

=
1

2
T
∑

n∈Z

∫
d3p

(2π)3
ln
(
ω2
n + ~p2 +m2

)
, pφ ' −

1

2
T
∑

n∈Z

∫
d3p

(2π)3
ln
(
ω2
n + ~p2 +m2

)
,

(V.15)

where we dropped the normalisations in Ωφ and pφ. We also remind the reader that m2 = m2(φ) as introduced in
(V.11). Note also that the pressure is nothing but (minus) the effective potential at finite temperature. At vanishing
temperature we encountered singularities in the computation of the effective potential proportional to Λ4, λ2 and
ln Λ that had to be absorbed in the bare couplings. The highest singularity proportional to Λ4 we disregarded as
the absolute value of the potential energy which cannot be measured. The expressions in (V.15) are also infinite,
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showing the standard divergence of zero point functions at vanishing temperature. Similarly, we could introduce a
spatial momentum cutoff Λ with p2 ≤ Λ2 and proceed as in the last chapter. In the following we shall not make
this cutoff explicit for the following reason: it is one of the cornerstones, and can be proven in thermal field theory
all singularities are temperature-independent. This statement can be understood heuristically as the ultraviolet
singularities are short-distance singularities. At short-distance singularities the finite extent in time-direction cannot
be accessed. For detailed discussions we refer to the literature, here this fact will simply come out.

For the computation we take the mass (squared) derivative of the pressure, ∂m2
φ
p. This removes the logarithm from

the expression and leaves us with integrals and sums that can be computed by complex analysis. The mass-derivative
of the pressure is related to the momentum integral of the propagator in the mixed representation G(0, ~p) computed
in (V.12),

∂m2pφ ' −
1

2

∫
d3p

(2π)3
Gφ(0, ~p) = −1

4

∫
d3p

(2π)3

1

εφp

[
1 + 2nB(εφp )

]
. (V.16)

Eq.(V.16) entails that the mass-derivative of the pressure, and hence the pressure, only carries a temperature-
independent singularity proportional to 1/εφp . The term proportional to nB vanishes in the zero temperature limit.

Upon integration over m2 the pressure is given by

pφ ' −
∫

d3p

(2π)3

[
1

2
εφp + T ln

(
1− e−βεφp

)]
. (V.17)

The singular, temperature-independent piece pressure in (V.17) proportional to εφp is nothing but the effective potential
at vanishing temperature which we have computed for a fermionic theory in the last chapter. Its renormalisation can
be performed analogously. Here we are only interested in the thermal pressure, and we subtract the pressure at
vanishing temperature,

pφ,thermal = pφ(T )− pφ(T = 0)

=− T
∫

d3p

(2π)3
ln
(

1− e−βεφp
)

= − T

2π2

∫ ∞

0

dp p2 ln
(

1− e−βεφp
)
. (V.18)

Eq.(V.18) is manifestly finite as for large momenta p2 � m2
φ, T

2 the exponential in the logarithm decays with

exp(−p/T , the typical thermal decay. It is also positive as the argument in the logarithm is always smaller than one
and hence the logarithm is strictly negative. With the minus sign in front of the integral this leads to a positive
expression, as expected for a thermal pressure. For a given temperature (V.18) takes its maximal value for m2

φ = 0

and decays monotonously with increasing m2
φ as the thermal part of the mass-derivative is negative, see (V.16). For

m2
φ →∞ the thermal pressure vanishes. Accordingly the pressure is positive for all m2

φ. For large masses mφ � T the

pressure decays exponentially with exp(−mφ/T ) (up to polynomial prefactors). For vanishing masses the momentum
integration can be performed easily and we arrive at

pφ,thermal|m2=0 =
π2T 4

90
. (V.19)

The explicit result for vanishing mass is the Stefan-Boltzmann pressure of a free gas. It is the tree-level thermal
pressure. Note also that (V.18) is the result for the thermal part of the (one-loop) effective potential of a bosonic
theory, see (V.18).

Now we have collected all results for discussing the mesonic fluctuations in our Nf = 2 low energy effective theory.
The mesonic contribution to the pressure and hence to minus the free energy density/effective potential are simply
given by summing up (V.18) for the sigma and the three pions leading to

[
Ωφ,T (φ)− Ωφ,T=0(φ)

]
mes.flucs.

' T

2π2

∫ ∞

0

dp p2 ln
(

1− e−βεφp (mσ)
)

+ 3
T

2π2

∫ ∞

0

dp p2 ln
(

1− e−βεφp (mπ)
)
, (V.20)

The concentration on the thermal part of the fluctuations allows us to simply add (V.20) to the low energy effective
action at valishing temperature regardless of how we have treated the mesonic fluctuations there. Note also in this
contect that (V.20) is finite as it should be: in thermal field theory all UV divergences can be treated already in the
T = 0 case and the subtractions can be chosen to be temperature-independent.

In (V.20) this comes about as it only summarises the thermal fluctuations and momentum fluctuations with p� T
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are suppressed. Accordingly in the context of our low energy EFT setup (V.20) is only valid for T/Λ � 1. For
larger temperatures already the Matsubara sum that takes account of high frequencies is at odds with the fact that
p2

0 + ~p2 ≤ Λ2.

B. Quarks at finite temperature

In summary we are but one step away from our goal of accessing the thermal chiral phase transition in QCD in
the quark-meson EFT. For that task we need to translate the results above to the -free- quark path integral. The
computation of the last chapter in the vacuum carries over here, we only have to discuss the fermionic Matsubara
frequencies. For that end we redo the derivation of the thermal path integral for fermions again by starting from
partition function ZT as defined in the scalar case in (V.1). Everything goes as in the scalar case except one subtlety
concerning the trace. Again more details can be found in the QFT II lecture notes, chapter 2. As in the case of the

bosonic field we need coherent states that allow us to define ψ̂|ψ〉 = ψ|ψ〉. For the sake of the argument we restrict
ourselves to one creation and annihilation operator a, a† and Grassmann variable c. A coherent state is given by

|c〉 = (1− c a†)|0〉 = e−c a
† |0〉 with a|c〉 = c a a†)|0〉 = c|0〉 = c(1− c a†)|0〉 = c|c〉 , (V.21)

where the latter property proves the coherence property of the state. The dual state 〈c| = |c〉† has the property

〈c|a† = −〈c|c∗ . (V.22)

In consequence, instead of periodicity of the fields in time in the scalar case coming from the trace in (V.1) we have
anti-periodicity,

ψ(t+ β, ~x) = −ψ(t, ~x) , (V.23)

that reflects the Grassmannian nature of the fermionic field. The fermionic path integral Zq with the Dirac action at
finite temperature then reads

Zq,T [J ] =

∫

ψ(β,~x)=−ψ(0,~x)

dψ̄ dψ e−SD,T [φ]+
∫ β
0
d4x J̄ψ(t,~x)ψ(~x)−ψ̄Jψ , SD,T [ψ] =

∫ β

0

d4x ψ̄ · (D/ +mψ + i γ0µ) · ψ .

(V.24)

As in the scalar case we can reveal the thermal nature of correlation functions derived from the generating functional
(V.24) by looking at the Dirac propagator of the quarks in the mixed representation at vanishing time, Gq(t, ~p). To
that end we first notice that the Fourier transformation of the anti-periodic fermionic fields is reflected in a shift of
the Matsubara modes by πT . We have

ψ(x) = T
∑

n∈Z

∫
d3p

(2π)3
e−i(ωn,f t+~p~x)ψ(p0, ~p) , ωn,f = 2π

(
n+

1

2

)
, (V.25)

where the additional factor eiπT t leads to the minus sign in the periodicity relation (V.23) with eiπT (t+β) = eiπeiπT t =
−eiπT t. Now we perform the computation for the frequency sum of the quark propagator Gq with Nf flavours and
Nc colors,

1

mψ

1

4NfNc
trGq(t = 0, ~p) = T

∑

n∈Z

1

ω2
n,f + ~p2 +m2

ψ

=
1

2εψp
tanhβεψp =

1

2εψp

[
1 + 2n(εψp )

]
, (V.26)

where the trace tr in (V.26) sums over flavour, color and Dirac space. The dispersion εp and the thermal distribution
function n(ω) are given by

εψp (mψ) =
√
~p2 +m2

ψ , nF (ω) =
1

eβω + 1
. (V.27)

The latter is the expected Fermi-Dirac distribution. The difference to the Bose-Einstein statistics in the scalar case
originates in the anti-periodicity of the fermions related to their Grassmannian nature. The free energy and pressure
can be derived analogously to the scalar case. The one-loop contribution to the quark free energy density Ωq and the
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pressure are hence given by

Ωq ' −
T

2V Tr ln
(
−∂2

µ +m2
)

= −2NcNf T
∑

n∈Z

∫
d3p

(2π)3
ln
(
ω2
n,f + ~p2 +m2

)
,

pq ' 2NcNf T
∑

n∈Z

∫
d3p

(2π)3
ln
(
ω2
n,f + ~p2 +m2

)
= 12T

∑

n∈Z

∫
d3p

(2π)3
ln
(
ω2
n,f + ~p2 +m2

)
, (V.28)

where as in the scalar case we dropped the normalisations in Ωq and pq. For the pressure we have also inserted the
Nf = 2, Nc = 3 case discussed here.

For a first simple computation we also use µ = 0, a vanishing quark chemical potential. The prefactor −2 in
comparison to the prefactor 1/2 in the scalar case comes from the relative minus sign and factor 2 of the fermionic
loop, the symmetrisation of the frequency and spatial momentum trace and the Dirac trace: −1 ∗ 1/2 ∗ 4 = −2
instead of 1/2 in the scalar case. The factor NcNf counts the degrees of freedom. For the computation of the thermal
pressure we proceed similar to the scalar case with a m2

ψ-derivative which maps the pressure to (V.26). We also

remove the divergent vacuum contribution which is the effective potential at vanishing temperature, see (IV.88). The
grand potential and thermal quark pressure in the Nf = 2 case is then given by

Ωq,T (ψ, ψ̄, φ)− Ωq,T=0(ψ, ψ̄, φ) = −12

π2
T

∫ ∞

0

dp p2 ln
(

1 + e−βε
ψ
p

)
= −pq,thermal , (V.29)

where

m2
ψ(φ) =

1

2
h2ρ . (V.30)

This has to be compared with (V.20) for the mesons. Both expressions for the pressure are strictly positive which is
due to

∓ ln
(

1∓ e−βεφ/ψp

)
≥ 0 , (V.31)

with the minus signs in the bosonic case and the plus sign in the fermionic one. The global ∓ in (V.31) reflects the
relative sign of fermionic and bosonic loops while the ∓ reflects the Bose-Einstein vs Fermi-Dirac quantum statistics.

The sum of (V.20) and (V.38),

ΩT (ψ, ψ̄, φ)− ΩT=0(ψ, ψ̄, φ) = Ωφ,T + Ωq,T − Ωφ,T=0 + Ωq,T=0 (V.32)

encodes all thermal fluctuations on one loop. As in the vaccum case for T = 0 we have several possibilities of
how to integrate out the thermal fluctuations, e.g. either in parallel or successively. Even though being relevant
for the quantitative results, it is irrelevant for the access of the mechnism of chiral symmetry restauration at large
temperatures: At large temperatures the quark exhibits a Matsubara gapping as the lowest lying Matsubara mode is
πT in comparison to the vanishing one in the mesonic case. For higher temperatures more and more of the infrared
quark fluctuations are gapped. However, the quark fluctuations triggers strong chiral symmetry breaking in the first
place. Consequently at large enough temperatures chiral symmmtry breaking is melted away.

C. RG for the effective potential at finite temperature∗

For quantitative statements the RG equation as in chapter IV F 3 or similar non-perturbative techniques such as
Dyson-Schwinger equations or 2PI/nPI techniches (2-particle irreducible/n-particle irreducible) should be used. Here
we just extend the Wegner-Houghton equation we have derived for the T = 0 case in chapter IV F 3. There we have
the frequency and spatial momentum integration with an O(4)-dimensional momentum cutoff with p2 ≥ Λ2 in the
integrals.

At finite temperature the four-momentum is given by (2πT )2n2 + ~p2 and the related θ-function is θ(2πT )2n2 + ~p2−
Λ2). A four dimensional cutoff leads to discontinuous flows as it jumps if we sweep over one of the Matsubara modes.
In (V.34) we would have to substitute

Trδ(
√
p2 − Λ)→ Trδ(

√
(2πT )2n2 + ~p2 − Λ) , (V.33)
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which makes the non-analyticity apparent. Even though the spatial momentum integration smoothens the non-
analyticity, it is present and hampers in particular the simple computation of the thermodynamical properties such
as the pressure, see [21]. This is not a conceptual problem as these jumps have to be absorbed in the Λ-dependence
of the initial condition, it hampers explicit computations.

For that reason we choose a spatial momentum cutoff ~p2 > Λ2, leading us to the functional Wegner-Houghton
equation

Λ∂ΛΓΛ[ψ, ψ̄, φ] = −1

2
Tr~p2=Λ2 ln

Γ
(2)
φφ

Λ2
+ Tr~p2=Λ2 ln

Γ
(2)

ψψ̄

Λ2
, (V.34)

where the trace

Tr~p2=Λ2 = T
∑

n

∫
d3p

(2π)3
δ(
√
p2 − Λ) , (V.35)

now only sums over the spatial momentum shell with p2 = Λ2, but over all Matsubara modes. In the line of the
arguments in chapter IV F 3 this cutoff is now applied to all fluctuations and not only to the thermal ones.

Practically our computations so far allow us to read off the flow equation for the effective potential. For the meson
part we start with (V.17) for a scalar mode, leading to

Ωφ,Λ '
1

2π2

∫ ΛUV

Λ

dp p2

[
1

2
εφp + T ln

(
1− e−βεφp

)]
+ Ωφ,ΛUV , (V.36)

including the vacuum part. Hence, we simply read-off (minus) the integrand as the Λ-derivative of Ωφ. Applying this
immediately to the mesonic part of our EFT we arrive at

Λ∂ΛΩφ,Λ(φ) = − Λ3

2π2

{
1

2

[
εφΛ(mσ) +

3

2
εφΛ(mπ)

]
+ T

[
ln
(

1− e−βεφΛ(mσ)
)

+ ln
(

1− e−βεφΛ(mπ)
)]}

, (V.37)

where the spatial momentum arguments in the dispersions εφp are now taken at the cutoff scale, p = λ. The first two
terms on the right hand side is the T = 0 flow as the second term vanishes for T = 0. It is different from its counter
part in (IV.99) as (V.37) only involves a spatial momentum cutoff, reflected in the cubic power of Λ.

The derivation of the quark part of the flow proceeds similarly. We start with the expression for Ωq or −pq after
integration of the Matsubara frequency, (V.38) and restore the T = 0 part,

Ωq,Λ(ψ, ψ̄, φ) = −12

π2

∫ ΛUV

Λ

dp p2
[
εψp + T ln

(
1 + e−βε

ψ
p

)]
+ Ωq,ΛUV

(ψ, ψ̄, φ) , (V.38)

leading us to the flow

Λ∂ΛΩq,Λ(ψ, ψ̄, φ) =
12Λ3

π2

[
εψΛ + T ln

(
1 + e−βε

ψ
Λ

)]
. (V.39)

As in the mesonic part, the first term on the right hand side is the T = 0 part of the flow. It also does not match its
counterpart in (IV.99) due to the different cutoffs.

In summary we are led to the full flow

Λ∂ΛΩΛ(ψ, ψ̄, φ) = − Λ3

2π2

{
1

2

[
εφΛ(mσ) +

3

2
εφΛ(mπ)

]
− 12 εψΛ

+ T
[
ln
(

1− e−βεφΛ(mσ)
)

+ ln
(

1− e−βεφΛ(mπ)
)
− 24T ln

(
1 + e−βε

ψ
Λ

)]}
, (V.40)

where the first line is the T = 0 part of the flow, while the second line is the thermal part. Note that both parts are
dependent on derivatives of Ω via the mass-functions and hence feed into each other. One cannot simply solve the
T =-part first. For example, the thermal pressure is given by (minus) the Λ-integral of the second line on the solution
of the full flow equation. If we take Λ-independent mass functions, the Λ-integral gives the one-loop expressions we
have started with.
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VI. CONFINEMENT

In chapter IV we have discussed the emergence of strong chiral symmetry breaking in QCD which is ultimately
related to the growth of the strong coupling αs(p

2) towards the infrared, p2 → 0. This growth triggers a grows in the
four-quark interaction that develops a resonance at the chiral symmetry breaking (momentum) scale. It is also the
simplicity of this mechanism or better its representation in terms of correlation functions that allowed us to derive a
relatively simple low energy effective theory that encorporates strong chiral symmetry breaking in QCD.

In chapter V this set-up was used to explored strong chiral symmetry breaking at finite temperature. Thermal
fluctuations decrease the strong coupling αs(p

2) and finally melt-down chiral symmetry breaking. This is monitored
in a simple way by the temperature-dependence of the chiral order parameter, the expectation value of the scalar
sigma field, σ0 ∝ 〈ψ̄ψ〉.

We hope for a similarly simple picture for the phenomenon of confinement in the formulation of QCD in terms of
correlation functions. Indeed we shall see that while the mechanism and dynamics of confinement is rather intricate
in comparison, we have simple signatures of confinement in terms of its order parameter, the potential of which can
be derived from low order correlation functions of quarks and gluons. It also allows us to extend the low energy
EFTs introduced and used in the last chapters to also encorporate confinement. This set-up then enables us to study
the confinement-deconfinement phase transition at finite temperature as well as the full phase structure at finite
temperature and density. Before we start, a word of caution is required: this fascinating area has been the subject
of intense studies over the past decades and has many facets ranging from mathematical physics -and in particular
topological considerations- to phenomenological applications and the relation of the confinement dynamics to hadronic
properties of QCD. Here we only can scratch the surface and shall take a practical approach: the lecture aims at being
self-contained for the computations discussed, other equally interesting subjects are mentioned but not detailed. A
fully comprehensive study is way beyond the scope of the current lecture course.

To begin with we discuss the question of the symmetry behind confinement and the related order parameter. For
having a clean setting we restrict ourselves to pure Yang-Mills theory with static quark sources. Then confinement
is the phenomenon that a quark–anti-quark pair experiences a linear potential when pulled apart. The expectation
value of such a state 〈Oqq̄(~x, ~y)〉 with a static quark q at the position ~x and a static anti-quark q̄ at the position ~y is
related to its free energy Fqq̄,

〈Oqq̄(~x, ~y)〉 ∝ e−Fqq̄(r) , r = ‖~x− ~y‖ . (VI.1)

In (VI.1) we have used translation invariance present in an infinite volume, and hence the free energy only depends on
the distance r between the quark and the anti-quark. For small distances the strong coupling αs(p ∝ 1/r →∞)→ 0
gets small and perturbation theory is applicable. Therefore we expect a Coulomb-type potential with a 1/r dependence
for r → ∞. At large distances r → ∞ the strong coupling grows large and perturbation theory is not applicable
anymore. In this regime confinement predicts a linear dependence of the free energy/potential on r. This leads us to

lim
rΛQCD→0

Fqq̄(r) ∝
1

r
and lim

rΛQCD→∞
Fqq̄(r) ∝ σ r , (VI.2)

where σ ∝ (420) MeV)2 in pure Yang-Mills theory is the string tension. As remarked before there are no scales in pure
Yang-Mills theory except the dynamical scale ΛQCD, so the explicit value above is up to our disposal, and we should
rather determine a ratio of scales such as

√
σ/ΛQCD. Typically the string tension is used to gauge other observables

such as the critical temperature of the confinement-deconfinement phase transition at finite temperature. We will
come back to this point later.

A. Order parameters for confinement

The computation of the expectation value in (VI.1) enables us at vanishing temperature to monitor the r-dependence
of the free energy of a qq̄-pair. It also provides us with an order parameter for confinement: to that end we consider
the limit r → ∞. If confinement is present the free energy tends towards infinity in this limit and the expectation
value 〈Oqq̄〉 vanishes. In turn, if we still had a Coulomb-type potential for large distances we get a finite value for
〈Oqq̄〉. This is what we expect for large temperature. As we have seen in the discussion of chiral symmetry breaking
at finite temperature, increasing temperatures effectively increases the energy scale of the system. This heuristic
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FIG. 13: e+e− pair.

argument is discussed in more details later. In summary we expect

lim
r→∞
〈Oqq̄〉 =

{
0 , T < Tconf

> 0 , T > Tconf

. (VI.3)

Accordingly, we have a clear signature for the confining phase as well as the deconfining phase. The above disucssion
also makes clear why we restricted ourselves first to pure Yang-Mills theory with static quarks: in the presence of
dynamical quarks quark–anti-quark pairs can be created if the potential Vqq̄ between quark and anti-quark is large
enough. These additional q, q̄ can bind with the original pair into new qq̄ pairs. This leads to a shielding of color
force between the original pair and the effecitive potential levels at a finite value for r →∞.

It is left to determine the operator Oqq̄ as well as the underlying symmetry behind the confinement-deconfinement
phase transition in pure Yang-Mills, as well as its breaking by dynamical quarks. To that end let us first consider
an electron-positron pair, which is created at some initial time, pulled apart, kept at some distance L and then is
annihilated, this describes a path C in space-time, see Fig. 13. The related free energy is described by a path integral,
where the current Jµ of the worldlines of the e+e− pair is coupled to the photon field Aµ with

∫

x

JµAµ = −i e
(∫ t1

t0

dτ [A0(t, ~x)−A0(t, ~y)] +

∫ ~y

~x

d~z
[
~A(t1, ~x)− ~A(t0, ~y)

])
, (VI.4)

with the worldline current

Jµ(x) = −i e
∫

C
dzµδ(z − x) . (VI.5)

The global sign in the current is pure convention and is related to that in the covariant derivative, in our case we
have Dµ = ∂µ − i gAµ, see (I.1).

In conclusion the source term (or operator of such a static electron-positron pair) is given by

WC [A] = e
∫
x
JµAµ =e−i e

∫
C dzµ Aµ(z)

︸ ︷︷ ︸
Wegner−Wilson Loop

. (VI.6)

The Wegner-Wilson loop in QED has a very simple interpretation which we shall discuss briefly. Consider a closed
path C that is the boundary of an area A. Then the integral in the exponent can be rewritten with Stokes’ theorem
as

e

∫

C=∂A
dzµAµ(z) = e

1

2

∫

A
dxµdyν Fµν . (VI.7)

Accordingly, the phase in the Wegner-Wilson loop simply is the flux through the area A with the boundary C. This
is an observable quantity and is gauge invariance is evident from the flux representation (VI.7). In the gauge field
representation the gauge invariance of (VI.6) follows with the U(1) gauge transformations U = exp iω ∈ U(1) of
Aµ → Aµ + 1/e ∂µω with,

WC [AU ] = e−i e
∫
C dzµ A

U
µ (z) = e−i e

∫
C dzµ (Aµ(z)+ 1

e∂µω) = e−i e
∫
C dzµ Aµ(z) , (VI.8)

where we have used that
∫
C dzµ ∂µω = 0. Note also that an open Wilson line related to a path from the position x to
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the position y is a parallel transporter that transports gauge transformations from the position x to y,

WCx,y [A] = e
−i e

∫
Cx,y

dzµ Aµ(z)
, with WCx,y [AU ] = U(x)WCx,y [A]U†(y) , (VI.9)

This allows to define gauge-invariant correlation functions of e.g. fermionic fields ψ such as

〈ψ̄(x)WCx,y [A]ψ(y)〉 . (VI.10)

In the case with dynamical electrons (VI.10) describes a e+e− pair.

The above definitions and relations extend straightforwardly to non-Abelian gauge groups. The only change comes
from the fact that now the gauge field is matrix valued and the simple exponential of i g

∫
dzµAµ does not have the

necessary transformation properties (VI.9) and the closed loop would fail to be gauge invariant. This situation is
similar to that of defining the time-evolution operator in quantum mechanics and quantum field theory (S-matrix)

on the basis of a Hamiltonian operator Ĥ. There the resolution is to resort to time-ordering. In the present case we
resort to path ordering which then transports the gauge transformation along the path. We define

UCx,y = Pe−ig
∫
Cx,y

dzµ Aµ(z)
, with UCx,y [AU ] = U(x)UCx,yU

†(y) , U(x) ∈ SU(Nc) . (VI.11)

The loop UC ∈ SU(Nc) is a group element and the transformation property under gauge transformation of Aµ, (I.6),
originates in the path ordering defined with

PAµ1(x(s1)) · · ·Aµn(x(sn)) = Aµσ(1)(x(sσ(1)) · · ·Aµσ(n)(x(sσ(n))) , with sσ(1) ≤ sσ(2) ≤ · · · ≤ sσ(n) . (VI.12)

In (VI.12) s ∈ [0, 1] is an isomorphic (invertible) parameterisation x(s) of the given path Cx,y with x(0) = x and
x(1) = y. For integrals this leads to the relations well-known from the time ordering, the simplest one being that for
a product of two integrals,

1

2
P
[∫ y

x

dzµAµ(z)

∫ y

x

dz′νAν(z′)

]
=

∫ y

x

dzµAµ(z)

∫ y

z

dz′νAν(z′) . (VI.13)

Higher products follow similarly. Due to the path ordering derivatives of UCx,y w.r.t. x or y pull down a gauge field
to the left or to the right respectively.

∂xµ UCx,y = i gAµ(x)UCx,y , ∂yµ UCx,y = UCx,y (−i) gAµ(y) . (VI.14)

With these properties the covariant derivative can be simply expressed as a parallel transport of the partial derivative,
to wit

UCx,y∂
x
µ U
†
Cx,y = ∂xµ − igAµ(x) . (VI.15)

The property (VI.15) can be used to get a solution of the Dirac equation in terms of a phase factor WC and the
solution of the free dirac equation ψ0. This is discussed in detail later for the static finite temperature case. In
summary we conclude that the expectation value of a static quark–anti-quark pair qq̄ is given by

W [L, T ] =
1

Z

∫
dAWC(A) e−SYM[A] , with WC [A] = trf UC . (VI.16)

In the limit, where the time T tends towards infinity, the correlation function (??) is proportional to the exponential
of the interaction energy E(L) of this state (times T ). All other contributions vanish exponentially fast with (Ei −
E(L))T > 0, where Ei is the energy of the related state. We have

lim
T→∞

W [L, T ] = F (L)E−E(L)T , (VI.17)

which relates to the exponential of the free energy of a static quarkanti-quark state. The prefactor F (L) relates to
the overlap of the Wilson loop with the ground state. In the confining phase the Wegner-Wilson loop is given by
W[T, L] ' e−Fq̄q[T,L] with Fq̄q[T, L] having a linear dependence on both L and T . The linear dependence in L we
have discussed before. The linear dependence in T simply follows from the fact that in our Euclidean formulation the
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FIG. 14: Perturbative expansion of the Wilson loop expectation value for e+e−.

time direction is not different from the spatial ones. Hence we conclude

lim
LT→∞

W [T, L] ' e−σLT , (VI.18)

with the string tension σ. Eq.(VI.18) is the area law that signals confinement as does the linear potential. it is left to
discuss the symmetry behind the confinement-deconfinement phase transition. This will be discuss in chapter VI B.

For its computation let us first discuss the far simpler case of an electron-positron pair e+e−. Then the static
potential is the standard Coulomb potential. Indeed in the static limit there is no self-interaction of the photon and
the expectation value of the Wilson loop is simply given by the sum of boxes with n photon exchanges from positions
xi to yi where one integrates over xi and yi on the contour C[L, T ]. This is depicted in Fig. 14.

In other words we have

W [L, T ] = e−
e2

2

∫
C[L,T ]

dxµ
∫
C[L,T ]

dyν〈Aµ(x)Aν(y)〉sub , (VI.19)

where we have used that 〈Aµ1 · · ·Aµn+1〉 = 0. The subscript 〈· · · 〉sub refers to the necessary subtraction of infinite
selfenergies related to close loops with endpoints x = y. Moreover, all correlation functions decay in products of
two-point functions (Wick-theorem), schematically we have 〈A1 · · ·A2n〉 = 〈A1A2〉 · · · 〈A2n−1A2n〉+ · · · , and there are
(2n− 1)(2n− 3) · · · combinations. Upon contour integration all combinations give the same contribution and overall
we have the nth order term in the propagator

(2n− 1)(2n− 3) · · ·
(2n)!

2n
(
−e

2

2

)n(∫

C
dxµ

∫

C
dyν〈Aµ(x)Aν(y)〉

)n
=

1

n!

(
−e

2

2

∫

C
dxµ

∫

C
dyν〈Aµ(x)Aν(y)〉

)n
,

(VI.20)

for a general contour C, leading to the Gaußian expression (VI.19). This leaves us with the task of computing

∫

C
dxµ

∫

C
dyν〈Aµ(x)Aν(y)〉 =

∫

C
dxµ

∫

C
dyν

∫
d4p

(2π)4

1

p2

(
δµν − (1− ξ)pµpν

p2

)
eip(x−y)

=

∫

C
dxµ

∫

C
dyµ

∫
d4p

(2π)4

1

p2
eip(x−y)

=

∫

C
dxµ

∫

C
dyµ

1

4π2

1

(x− y)2
. (VI.21)

To be explicit, we picked a covariant gauge in (VI.21). However, we have already proven that the closed Wilson line
is gauge invariant which now is explicit as the ξ-dependent term drops out with the help of

∫

C
dxµpµe

ipx = −i
∫

C
dxµ∂

x
µe
ipx = 0 , (VI.22)

which eliminates all longitudinal contributions for closed loops. Note that this is not valid for open Wilson lines.
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Finally we are interested in the large T -limit in (VI.17) where we have

Ve+e−(L) = − lim
T→∞

1

T
logW [L, T ] = lim

T→∞
1

T

e2

2
lim
T→∞

∫

C[L,T ]

dxµ

∫

C[L,T ]

dyµ

(
1

4π2

1

(x− y)2

)

sub

=− lim
T→∞

1

T
e2 lim

T→∞

∫ t1

t0

dx0

∫ t1

t0

dy0

(
1

4π2

1

(x0 − y0)2 + L2

)

=− lim
T→∞

1

T

e2

4π
lim
T→∞

∫ t1

t0

dx0

∫ t1−x0

t0−x0

dy0

(
1

π

1

y2
0 + L2

)

=− lim
T→∞

1

T
2
e2

4π

∫ T

0

dx0 arctan
(x0

L

)

=− e2

4π

1

L
. (VI.23)

Eq.(VI.23) is the Coulomb potential as expected. The L-dependence we could have determined without any compu-
tation from dimensional arguments.

Adapting, within a bold step, the above analysis in QCD within a Gaußian approximation (no self-interaction of
the gluons), we are led to the same result, up to a colour factor trft

ata) = NcCF = (N2
c − 1)/2, see (??). This is to

be expected in perturbation theory, which is what the Gaußian approximation relies on.
In turn, relying on this approximation also in the non-perturbative confining secotr of QCD or Yang-Mills theory,

the static potential has the behaviour Vqq̄ ∼ L, it is linear in the distance between quark and anti-quark. This requires
a gluon propagator

lim
p→0
〈Aµ(p)Aν(−p)〉 ∝ 1

(p2)2
, (VI.24)

which is the limit of what is allowed in a covariant local quantum field theory. Eq.(VI.24) suggests gluon dominance
(over the ghost) in the infrared. Indeed, such propagators have been computed in the Landau gauge in the Mandelstam
approximation (no ghosts). However, it turns out that in the Landau gauge the gluon propagators are not infrared
enhanced as (VI.24) but infrared suppressed. Moreover, any n-loop contribution (even in full propagators and vertices)
to the Wilson loop expectation value does not show the required linear behaviour, it only comes about by a full
resummation of all diagrams. Nonetheless these considerations show that gauge fixing should be rather seen as
offering the possibility to device an appropriate parameterisation of the theory rather than a liability. For example,
it can be shown that in Coulomb gauge the Gaußian approximation is working at least qualitatively.

B. Confinement-deconfinement phase transition at finite temperature

The dynamics of confinement and the confinement-deconfinement phase transition is the second cornerstone of the
low energy QCD phenomenology we have to unravel. Here we aim at a treatment of this phenomenon within the
continuum formulation of QCD similar to that of the chiral phase structure in chapter V. We mainly concentrate on
the effective potential of the order parameter, the Polyakov loop. This observable is derived directly from the Wilson
loop discussed before.

1. Polyakov loop

We consider a rectangular Wilson loop,Fig. 13, within the static situation also used in the previous chapters VI A,
??. At finite temperature T the time is limited to t ∈ [0, β] with β = 1/T , see chapter V A. Moreover, the gauge fields
are periodic in time up to gauge transformations, i.e.

Aµ(t+ β, ~x) =
i

g
T (t, ~x)

(
DµT

†(t, ~x)
)
, c(t+ β, ~x) = T (t, ~x) c(t, ~x)T †(t, ~x) , c̄(t+ β, ~x) = T (t, ~x) c̄(t, ~x)T †(t, ~x)

(VI.25)
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with T (t, ~x) ∈ SU(N) are the transition functions. It follows from (VI.25) that under gauge transformations they
transform as

TU (t, ~x) = U(t+ β, ~x)T (t, ~x)U†(t, ~x) , (VI.26)

they parallel transport gauge transformations from t to t + β. The transformation property (VI.25) ensures the
periodicity of gauge invariant quantitites. It is indeed possible to restrict ourselves to strictly periodic fields, t ≡ 1l,
even though this limits the possible gauge choice. For the time being we restrict ourselves to the periodic case and
discuss the general case at the end. The state we want to construct is the one, where we desribe a static quark–anti-
quark pair for all times. To that end we take a path that extends in time direction from t = 0 to β. Then the spatial
paths at fixed time t = 0 and t = β have to be identified (up to the orientation) due to the periodicity on the lattice,
as well as the fact that we have restricted ourselves to periodic gauge fields. We conclude that the path C[L, β] splits
into two loops winding around the time direction at the points ~x and ~y with L = |~x−~y|. The Wilson loop expectation
value is then given by

1

N2
C

W [L, β] = 〈WC[L,β][A]〉 = 〈L[A0](~x)L†[A0](~y)〉 , (VI.27)

where L[A0] is the Polyakov loop variable with

L =
1

Nc
trf P (β, ~x) , with P (t, ~x) = Pe−i g

∫ t
0
A0(τ,~x)dτ . (VI.28)

The normalisation of the Polyakov loop is such that it is unity for a vanishing gauge field, L[0] = 1. It lives in the
fundamental representation as it is related to a creation operator of a quark. It is gauge invariant under periodic
gauge transformations that keep the strict periodicity of the gauge field we have required. In general we have

L[AU ] =
1

Nc
trf

[
U†(β, ~x)U(0, ~x)

]
P (β, ~x) , (VI.29)

where we have used the cyclicity of the trace. The combination
[
U†(β, ~x)U(0, ~x)

]
is unity for periodic gauge trans-

formations, which is the case we have restricted ourselves to when deriving (VI.27) from the gauge invariant Wilson
loop. In the general case the two spatial parts of the path at t = 0, β only cancel up to the transition functions.
Working through the derivation we get

L =
1

Nc
trf T (0, ~x)P (β, ~x) , (VI.30)

which is also gauge invariant under non-periodic gauge transformations. Here we only consider T ≡ 1l but (VI.30) has
to be used for example in the temporal axial gauge A0 ≡ 0. Evidently, in this gauge (VI.28) simply is one. However,
in order to achieve this gauge non-periodic gauge transformations (in time) have to be used. Then, the whole physics
information of the Polyakov loop is stored in the transition function T instead of the gauge field. While this is not
a convenient choice in continuum formulations it is a common choice on the lattice. There is is obtained by taking
trivial temporal link variables U0 = 1l for all but the last link from t = β − a to β.

We now come back to our main line of arguments, and restrict ourselves to the fully periodic case. The Wilson
loop in (VI.27) is an order parameter for confinement. More precisely in the confining phase it tends towards zero for
large distances, L→∞, due to the area law,

lim
L→∞

W [L, β] ' lim
L→∞

e−σβL = 0 . (VI.31)

In turn, in the deconfined regime of the theory the quark–anti-quark potential Vqq̄ is Coulomb-like, Vqq̄ ∝ 1/|~x − ~y|
and the Wilson loop follows a perimeter law, leading to

lim
L→∞

W [L, β] > 0 . (VI.32)

In conclusion the Wilson loop expectation value or Polyakov loop two-point correlation function for L → ∞ serves
as an order parameter for confinement at finite temperature. Moreover, in this limit we can use the clustering
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decomposition property of a local quantum field theory,

lim
|~x−~y|→∞

〈A(~x)B(~y)〉 − 〈A(~x)〉 〈B(~y)〉 = 0 . (VI.33)

for local operators A and B. Hence we conclude that

lim
L→∞

W [L, β] = 〈L[A0](~x)〉 〈L†[A0](~y)〉 , (VI.34)

it only depends on the temporal component of the gauge field. The Polyakov loop expectation value 〈L[A0]〉 does
not depend on the spacial variable due to translation invariance. Thus also the Polyakov loop expectation value itself
serves as an order parameter for confinement,

〈L[A0]〉 =

{
0 confining regime

6= 0 deconfining regime
(VI.35)

So far we have argued on a heuristic level which led us to (VI.35) as an order parameter, without even discussing the
symmetry behind the pattern in (VI.35): we are searching for a symmetry that is preserved by the Yang-Mills action
but does not keep 〈L[A0]〉 invariant. This is the center symmetry of the gauge group. The center elements are those
elements that commute with all other elements in the gauge group. In SU(N) these are the Nth roots of unity in the
groups. For the cases used here, the example group SU(2) and the physical group SU(3), the centers Z are

ZSU(2) = {1l,−1l} ' Z2 , ZSU(3) = {1l, 1l e 2
3πi, 1l e

4
3πi} ' Z3 . (VI.36)

where the identities 1l in SU(2) and SU(3) are 1l2×2 and 1l3×3 respectively. The non-trivial center elements in
(VI.36) are related to combinations of generators in the algebra. This relation is not unique as the eigenvalues of the
combination of algebra elements is only determined up to 2πn with n ∈ Z. For example, one representation is

SU(2) : −1l = eπiσ3 , SU(3) : 1l e
2
3πi = e

2πi 1√
3
λ8 , 1l e

4
3πi = e

2πi 2√
3
λ8 . (VI.37)

with the Pauli matrices in (IV.41) and the Gell-Mann matrices

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 , λ4 =




0 0 1
0 0 0
1 0 0


 ,

λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 , λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 , (VI.38)

in the fundamental representation of SU(3). The generators of the SU(3) algebra are tafund = λa/2. In the adjoint
repesentation the generators of the algebra are given by the structure constants, see (I.4). The SU(3) structure
constants are given by

SU(2) : fabc = εabc ,

SU(3) : f123 = 1 , f147 = f246 = f257 = f345 =
1

2
, f156 = f367 =

1

2
, f458 = f678 =

1

2
. (VI.39)

Hence, in the adjoint representation these elements are all represented by 1l,

Zad = 1lad , for Z ∈ Z . (VI.40)

In the adjoint representation every center element is mapped to the identity, z = 1lad,∀z ∈ Z. Hence we have

Zad = {1lad} . (VI.41)

As the gauge fields and the ghosts live in the adjoint representation, the gauge-fixed Yang-Mills action is trivially
invariant under center transformations. In turn, the Polyakov loop L[A0] is the trace of the Polyakov line P (β, ~x) in
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the fundamental representation, see (VI.28). It transforms with

P (β, ~x)→ z P (β, ~x) , with z ∈ Z . (VI.42)

We conclude that in the center-symmetric phase of the theory the Polyakov loop expectation value (VI.35) has to
vanish while in the center-broken phase it is finite. Having identified the symmetry we can envoke universality to
predict the scaling of the order parameter in the vicinity of the phase transition:

For SU(2) we are in the Ising universality class, the symmetry group being Z2. If SU(2)-Yang-Mills exhibits a
second order phase transition (and it does), it should have Ising scaling. This is indeed seen. For SU(3) the symmetry
group is Z3 and we epxect a first order phase transition which is also seen. Our explicit computations later will not
encorporate the full fluctuation analysis so detecting Ising scaling is out of reach here. However, we are able to see
the seoncd and first order nature of the respective phase transitions. This closes our very rough symmetry discussion.

We also would like to get an intuitive understanding for the Polyakov loop expectation value. We have argued for
the Wilson loop expectation value, that it is related to the expectation value of a static quark–anti-quark pair,

W [L, β] ' 〈q̄(~x)Pe−i g
∫
C~x,~y

Aµdzµ
q(~y)〉 , (VI.43)

where the path-ordered phase ensures gauge invariance. Using -naively- the clustering decomposition property (or
short declustering) for |~x − ~y| → ∞, we can decompose the expectation value in (VI.43) in the product of the
expectation value of a quark state and and anti-quark state. Naturally the latter have to vanish as the creation of a
single quark or anti-quark requires an infinite energy. However, be aware of the fact that the quark and anti-quark
states do not belong to the Hilbert space of QCD and hence we cannot apply declustering that easily.

Still, the Polyakov loop expectation value is related to the heuristic situation described above. To see this more
clearly let us consider a static quark. This situation can be achieved by taking the infinite quark mass limit, mq →∞.
The Dirac equation

(D/ +mψ)ψ = 0 , (VI.44)

then reduces to a space-independent equation as the quark cannot move, ~∂xψ = 0. Hence, the Dirac equation (VI.44)
reads in the static limit

(γ0D0 +mψ)ψ = 0 . (VI.45)

A solution to this equation is given by

ψ(x) = P (t, ~x)ψ0(x) , with (γ0∂0 +mψ)ψ0 = 0 . (VI.46)

where ψ0 solves the free Dirac equation, and P (t, ~x) is the untraced Polyakov loop (VI.28). For proving (VI.46) we use
that (D0P (t, ~x)) = 0 following from (VI.14). Hence, in a -vague- sense we can identify the Polyakov loop expectation
value with the interaction part of a static quark.

2. Polyakov loop potential

As in the case of chiral symmetry breaking we would like to compute the effective potential of the order parameter,
VPol[L]. This turns out to be a formidable task both on the lattice and in the continuum. Note however, that the
computation of the expectation value itself is simple on the lattice.

In the continuum we compute the effective potential of QCD, that is the effective action Γ[Φ] for constant fields.
Before we embark on the explicit computation we first have to deal with the issue of gauge invariance in the gauge-
fixed approach we are working in. To that end we upgrade our covariant gauge fixing to the background gauge: To
that end we split our gauge field in a background Ā and a fluctuation a, to wit

Aµ = Āµ + aµ . (VI.47)

While the background Ā is kept fixed, a carries all the quantum fluctuations. In the path integral the integration over
A then turns into one over a. So far nothing has been changed. Now we modify our gauge fixing,

∂µAµ = 0→ D̄µa = 0 , with D̄µ = Dµ(Ā) . (VI.48)
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For Ā = 0 we regain the orginial covariant gauge fixing. For the background gauge fixing the gauge fixed classical
action with ghost term reads

SA[Ā, a, c, c̄] = SA[A] +
1

2ξ

∫

x

(D̄ab
µ a

b
µ)2 + c̄aD̄ad

µ D
db
µ c

b . (VI.49)

In the presence of the background field and with the gauge fixing (VI.48) we have an additional -auxiliary- gauge
symmetry: the gauge-fixed action is invariant under background gauge transformations

ĀUµ =
i

g
U (D̄µU

†) , au = U aµ U
† −→ AU =

i

g
U (DµU

†) . (VI.50)

Evidently this is true for the Yang-Mills action, it is left to show this for the gauge fixing and ghost term. The gauge
fixing condition (VI.48) transforms as a tensor under (VI.50): D̄µa → U D̄µaU

† and hence tr(D̄µa)2 is invariant
under (VI.50). The Faddeev-Popov operator M in the background gauge is given by

M = −D̄µDµ → U D̄µDµ U
† . (VI.51)

It also transforms as a tensor and hence the ghost term is gauge invariant under (VI.50). However, the background
gauge transformations are an auxiliary symmetry. The physical gauge transformations are those of the fluctuation
field at fixed background Ā, the quantum gauge transformations

ĀUµ = Āµ , au = U (DµU
†) −→ AU =

i

g
U (DµU

†) . (VI.52)

Again this can be understood by choosing the standard covariant gauge with a vanishing background. Then, (VI.52)
is the only gauge transformation left, while (VI.50) leads to a non-vanishing background and hence changes the gauge
fixing. The neat feature of the background field formalism is that it can be shown that both transformations are indeed
related via background independence of the quantum equations of motion. Therefore background gauge invariance
under the transformations (VI.50) carries physical gauge invariance, more details can be found in Appendix C

Still, the introduction of the background seems to complicate matters but it indeed facilitates computations and
gives a more direct access to physics. Here we explore both properties. First we note that the introduction of Ā leads
to an effective action that depends on two fields,

Γ[A]→ Γ[Ā, a] . (VI.53)

Switching of the mean value of the fluctuation field, a = 0 leads to a (background) gauge invariant action

Γ[A] = Γ[A, a = 0] (VI.54)

As mentioned before, this is the physical gauge invariance. Moreover, one can show that the background correlation
functions are directly related to S-matrix elements. In summary the effective action Γ[A] defined in (VI.54) carries
the information about the Polyakov loop potential.

Now we proceed with the explicit computation of the effective potential at one loop. For the Polyakov loop potential
the only mean field of interest is the temporal component of the gauge field, and the other fields are put to zero. We
will perform this computation first on the one-loop level with the classical ghost and gluon propagators. Finally we will
introduce the fully non-perturbative propagators to this one-loop computation. This re-sums infinitely many diagrams
and carries the essential non-perturbative computation. The explicit results are in semi-quantitative agreement with
the full results obtained with functional renormalisation group methods and also show a good agreement with the
lattice results.

In summary the Polyakov loop potential for constant temporal gauge fields is given by

VPol(A0) =
1

2
Tr lnG−1

A (A0)− TrG−1
c (A0)−N , (VI.55)

where the color traces in (VI.55) are in the adjoint representation and CN is the normalisation of the potential which

we leave open for now. For the one-loop computation we have G−1 = S
(2)
A with SA in (VI.49) and hence

G−1
A (A0) = −D2

ρ δ
µν +

(
1− 1

ξ

)
DµDν , G−1

c (A0) = −D2
ρ . (VI.56)
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In (VI.56) we have used that the spin one terms proportional to Fµν drop out for a constant A0-background. In the
re-summed non-perturbative approximation we use numerical results, e.g. the Yang-Mills analog of Figure 9 at finite
temperature. For constant fields we can assume the fields to lay in the Cartan subalgebra, as we can always rotate
the field into the Cartan subalgebra with constant gauge transformations. We expand the Cartan-valued field A0 in
the fundamental representation in the the color eigenfunctions and eigenvalues of A0. In the present context it always
occurs in combination with temperature and coupling in Matsubara sums with 2πTn+ gA0 = 2πT (n+ βg/(2π)A0),
and we define the dimensionless algebra-valued field

ϕ̂ =
βg

2π
A0 , L(ϕ̂) = L[A0] = tr e−2πi ϕ̂ . (VI.57)

The eigenvalue equation of the field ϕ̂ in the fundamental representation is given by

ϕ̂f|ϕf

n〉 = νf

n|ϕf

n〉 , n ∈ 1, ..., Nc , (VI.58)

where the superscript f indicates the fundamental representation. The eigenvalues for SU(2) and SU(3) are given by

SU(2) : νf

n ∈
(
±ϕ

2

)
, SU(3) : νf

n ∈
(
±
ϕ3 + 1√

3
ϕ8

2
, − 1√

3
ϕ8

)
. (VI.59)

Using (VI.58) and (VI.59) in the Polyakov loop in SU(2) we arrive at

ϕ̂ = ϕ3
σ3

2

ϕ=ϕ3−→ L(ϕ) = cosπϕ , (VI.60)

For SU(3) we have

ϕ̂ =
2π

βg

(
ϕ3

λ3

2
+ ϕ8

λ8

2

)
−→ L(ϕ3, ϕ8) =

1

3

(
e

2πi ϕ8√
3 + 2 cos(πϕ3) e

− 2πi ϕ8√
3

)
, (VI.61)

with λ3,8 given in (VI.38). As the Polyakov loop potential (for vanishing chemical potential) has minima at ϕ3 = 0
we can work with the Polyakov loop variable at ϕ8 = 0,

L(ϕ) =
1

3
(1 + 2 cosπϕ) , (VI.62)

with L(ϕ) = L(ϕ3 = ϕ, 0). Then, confinement is signaled by the (mean) gauge field configurations

ϕ =
1

2
for SU(2) , and ϕ =

2

3
for SU(3) . (VI.63)

As a preparation for the full computation we go through the perturbative computation. This already reveals the main
mechanism we need for the access of the confinement-deconfinement phase transition. This computation has been
done independently in [22] and [23] in 1980 (published 81). The potential is often called the Weiss potential.

For the explicit computation we restrict ourselves to SU(2). The result does not depend on the gauge fixing
parameter ξ and we choose ξ = 1, Feynman gauge, in order to facilitate the computation. Then the Lorentz part of
the trace in the gauge field loop can be performed immediately, leading to a factor four for the four polarisations of
a vector field. We have

VPol(A0) ' 4 ∗ 1

2
Tr ln(−D2

ρ)− 2 ∗ 1

2
Tr ln(−D2

ρ) = 2
1

2
Tr ln(−D2

ρ) , (VI.64)

where we have made explicit the multiplicities of gluon and ghost, and we dropped the normalisation. The gluon
dominates and the final result is twice that of one polarisation, which accounts for the two physical polarisations of
the gluon. This is an expected property as we compute a gauge invariant potential that should reflect the fact that
we only have two physical polarisations, and the gauge fixing is only a means to finally compute gauge invariant
quantities. Now we use that we can diagonalise the operator D2

ρ in the adjoint representation in the algebra. The
color eigenfunctions and eigenvalues in the adjoint representation are given by

gβ

2π
Aad

0 |ϕad

n 〉 = νad

n |ϕad

n 〉 , n ∈ 1, ..., N2
c − 1 , (VI.65)
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and

SU(2) : νad

n ∈ (0 , ±ϕ) , SU(3) : νad

n ∈
(

0 , 0 , ±ϕ3 , ±
ϕ3 ±

√
3ϕ8

2

)
. (VI.66)

Note that the eigenvalues of T 3
ad are ±1, while they are ±1/2 in the fundamental representation. The relative factor

1/2 reflects the sensitivity to center transformations in the fundamental representation and the insensitivity in the
adjoint representation. Performing the trace in (VI.64) in terms of the eigenfunctions |ϕn〉 and momentum modes,
we arrive at

VPol(A0) ' 2
[
Vmode(ϕ) + Vmode(−ϕ)

]
, (VI.67)

with VPol being 1/2Tr ln(−D2), where the gauge field is substitute by one eigenmode,

Vmode(ϕ) =
T

2

∑

n∈Z

∫
d3p

(2π)3

{
ln

(2πT )2(n+ ϕ)2 + ~p2

(2πT )2n2 + ~p2

}

=
T

4π2

∑

n∈Z

∫ ∞

0

dp p2

{
ln

(2πT )2(n+ ϕ)2 + p2

(2πT )2n2 + p2

}
, (VI.68)

where the denominator in the logarithm in (VI.68) is a normalisation of the mode potential at vanishing ϕ: Vmode(0) =
0. The sum in (VI.68) can be performed analytically by taking first a derivative w.r.t. p2 and then using contour
integrals. It results in

Vmode(ϕ) =
T

4π2

∫ ∞

0

dp p2

{[∑

±
ln sinh

βp± 2πi ϕ

2

]
− 2 ln sinh

βp

2

}
. (VI.69)

Now we use that

∑

±
ln sinh

βp± 2πi ϕ

2
− 2 ln sinh

βp

2
=
∑

±
ln(1− e−βp±2πi ϕ)− 2 ln(1− e−βp)

=
∑

±

∞∑

n=1

1

n
e−βpn

(
e±2πi nϕ − 1

)
. (VI.70)

In (VI.70) we have pulled out a factor ln exp(βp ± 2πiϕ)/2 = (βp ± 2πiϕ)/2 from the ln sinh-terms with ϕ, and
2 ln expβp/2 = βp from the ln sinh-term in the normalisation. These terms cancel each other and we are led to the
right hand sid e of (VI.70). Then we have expanded the logarithms in a Taylor expansion in the exponentials. In
summary this leads us to

Vmode(ϕ) =
T

4π2

∫ ∞

0

dp p2
∑

±

∞∑

n=1

1

n
e−βpn

(
e±2πi nϕ − 1

)

=
T 4

π2

∞∑

n=1

1

n4
(cos 2πnϕ− 1) . (VI.71)

The sum in (VI.71) is gain easily performed with methods of complex analysis and we arrive at

β4 Vmode(ϕ) =
π2

48

[
4

(
ϕ̃− 1

2

)2

− 1

]2

, ϕ̃ = ϕmod 1 , (VI.72)

where we have devided out the trivial dimensional thermal factor T 4. Inserting (VI.72) in (VI.67) for the Polyakov
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FIG. 15: One loop Polyakov loop potential for SU(2).

loop potential we are led to

β4 Vpol(A0) =
π2

12

[
4

(
ϕ̃− 1

2

)2

− 1

]2

, (VI.73)

for SU(2), while for SU(3) the potential is given by

Vpol(A0) =

8∑

n=1

Vmode(νn) , (VI.74)

with the eigenvalues νn in (VI.66). We have plotted the SU(2) potential in Figure 15 as it has a very simple form
which carries already the relevant information. The potential has minima at ϕ = 0, 1 and a maximum at ϕ = 1/2.
For the minima the Polyakov loop variable L[A0] takes the value ±1, the maximum is the center-symmetric value
L[A0] = 0. This structure is also present for all SU(N)-theories and originates in the -necessary- center symmetry of
the potential. The center transformation in SU(2) is given by

ϕ→ 1− ϕ , (VI.75)

which maps L[ϕ = 0] = 1→ L[ϕ = 1] = −1 and vice versa, this comes via the multiplication of the Polyakov line P (~x)
with the center element −1l. We conclude that in perturbation theory the potential has its minimum at the maximally
center-breaking values, the theory is in the center-broken phase. At large temperatures perturbation theory is valid
and quantum fluctuations are small: the fluctuating gauge field is close to A0 = 0. This leads to

lim
T→∞

L[〈A0〉] = 1 . (VI.76)

In turn, for small temperatures the potential should exhibit a minimum at ϕ = 1/2. Interestingly, this is achieved
within the one loop computation if the gluon contributions are switched off, and the ghost contribution is left.

Finally we come back to the normalisation of Vpol(A0) in (VI.55). We have normalised it such that Vpol(A0) = 0.
However, if we choose the normalisation as

N =

[
1

2
Tr lnG−1

A (0)− TrG−1
c (0)

]

T=0

, (VI.77)

the value of the effective potential simply is the thermal pressure of the theory. The difference between (VI.77) and
that chosen in (VI.68) for the mode potential is given by

∆N = 2(N2
c − 1)

[
T

2

∑

n∈Z

∫
d3p

(2π)3
ln
[
(2πT )2n2 + ~p2

]
−
∫

d4p

(2π)4
ln p2

]
= −pA,SB with pA,SB =

π4T 4

45
(N2

c − 1) .

(VI.78)

Eq.(VI.78) is nothing but (minus) the Stefan-Boltzmann pressure of a SU(Nc) gauge theory, see (V.19) for the scalar
case. It is the scalar pressure times the number of physical modes: two physical transversal polarisations times the
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number of color modes, (N2
c − 1), leading to 2(N2

c − 1)pφ,SB. This leads us to our final result

β4 Vpol(A0) =
π2

12

[
4

(
ϕ̃− 1

2

)2

− 1

]2

− π4

45
(N2

c − 1) . (VI.79)

We proceed with a non-perturbative computation of the Polyakov loop potential which still keeps the analogy to
the one loop computation above. Even though this is an approximation, both the numerical result as well as the
conceptual structure are also present in the full computation. We again start with (VI.55). Now, instead of using
the classical inverse propagators we utilise the fully non-perturbative ones. These propagators can only be computed
with numerical non-perturbative approaches, either gauge fixed lattice simulations or with functional methods such
as the functional renormalisation group (FRG) already used in the low energy EFT for chiral symmetry breaking or
Dyson-Schwinger equations (DSEs). Instead of using the available numerical data we add another approximation in
order to keep our approach semi-analytic.

From Fig. 9 we know that the gluon propagator exhibits a mass gap for low momenta. In turn, for large momenta is
runs logarithmically. This behaviour is also present at finite temperature, see Fig. 17. There we plot the momentum
dependence of the dressing of the chromo-magnetic gluon propagator for different temperatures. Both, results from
functional methods and from gauge-fixed lattice simulations are shown. The dressing is defined as

1

ZM
A (~p2)

=
1

2
~p2 〈Ai(0, ~p)Ai(0,−~p)〉 , (VI.80)

it is the dressing of the gluon propagator perpendicular ro the heat bath. In Fig. 16 we plot the temperature-dependent
mass (screening mass) of chromo-electric gluon propagator, the gluon propagator parallel to the heat bath,

1

ZE
A(~p2)

= ~p2 〈A0(0, ~p)A0(0,−~p)〉 . (VI.81)

Note that the simple relations (VI.80), (VI.81) are only valid for p0 = 0. For p0 6= 0 one has to use the thermal
projection operators, see e.g. [24]. At large temperatures we expect them to tend towards their perturbative values.
This is indeed happening, however, we need higher order thermal perturbation theory. The one-loop Debye mass is
given by

m0
D =

√
N

3
gTT +O(g2

TT ) , (VI.82)

and is also displayed in Fig. 16. For the comparison, the temperature-dependent coupling is fully non-perturbative
and has been also taken from [24] for internal consistency, for more details see there. In [25] higher order effects have
been taken into account, leading to

mD = m0
D +

(
cD +

N

4π
ln

(
m0
D

g2
TT

))
g2
TT +O(g3

TT ) . (VI.83)

Eq.(VI.83) already leads to a very good agreement with the full result above 600 MeV. At low temperatures, the mass
settles at its T = 0 value, indicated by the 1/T behaviour of md/T in Fig. 16b, and the perturbative prescriptions
fail even with the full non-perturbative coupling. The Debye mass itself for low temperatures is depicted in Fig. 16a,
from which it is evident that a temperature-independent (or decaying) additional part ∆mD(T = 0) ≈ 380 MeV to
m0
D would lead to agreement up to ≈ 150 MeV.

In conclusion a good semi-quantitative approximation to the thermal propagator (in particular the chromo-magnetic
on) is the perturbative propagator with a temperature-dependent mass term. It goes beyond the scope of the present
lecture notes to present a full computation, here we simply investigate the qualitative effect of such a mass gap, first
done in [29], for a full, comprehensive analysis see [30]. We revisit (VI.71) for simple massive propagators

GA ∝
1

(2πT )2(n+ ϕ)2 + ~p2 +m2
T

, (VI.84)

even dropping the perturbative running. While the latter is important for the correct scaling ( fixing ΛQCD and hence
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FIG. 16: Debye screening mass ms, plot taken from [24], for more details see there.
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(b) Magnetic gluon dressing in SU(2) from [24] in comparison
with SU(3) lattice results from [28]. .

FIG. 17: Magnetic gluon propagator dressing (VI.80).

for the correct Tc it is not important for the confining property. With the propagator (VI.84) we are led to

Vmode(ϕ,m) =
T

4π2

∑

±

∞∑

n=1

1

n

(
e±2πi nϕ − 1

) ∫ ∞

0

dp p2 e
−
(
β
√
p2+m2

)
)n

=
T 4

4π2

∑

±

∞∑

n=1

1

n

(
e±2πi nϕ − 1

) ∫ ∞

0

dp̄ p̄2 e
−
(√

p̄2+β2m2
)
n
. (VI.85)

The momentum integration in (VI.86) cannot be performed analytically. However, in the zero temperature limit the
terms in the sum decays with e(−βm)n up to polynomials. This is seen easily for the absolute value of the mode
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(a) SU(2) Polyakov loop potential. (b) SU(3) Polyakov loop potential

FIG. 18: SU(2) and SU(3) Polyakov loop potential taken from [30] for different temperatures across the phase
transition. The potentials exhibits the second and first order of the SU(2) and SU(3) transitions respectively.

potential,

|Vmode(ϕ,m)| ≤ T 4

4π2

∞∑

n=1

1

n

∫ ∞

0

dp̄ p̄2 e
−
(√

p̄2+β2m2
)
n

≤ T 4

4π2

∞∑

n=1

1

n

[∫ βm

0

dp̄ p̄2 e−(βm)n +

∫ βm

0

dp̄ p̄2 e−p̄n
]

βm→∞−→ T 4 Pol(βm) e−βm , (VI.86)

with a polynomial Pol(βm). In summary the mode potential decays exponentially for gapped propagators. This
entails that for sufficiently small temperatures the contributions of the chromo-electro and the two chromo-magnetic
modes decay exponentially. The longitudinal gauge mode stays trivial and gives the contribution 2Vmode(ϕ). Now we
use that the ghost propagator keeps it 1/(−D2) behaviour it already has perturbatively. In a covariant gauge this is
already suggested from the ghost-gluon vertex which is linear in the anti-ghost momentum. Hence, all loop corrections
to the inverse ghost propagator are proportional to p2 from the onset. If no additional singularity is created from the
propagators in the loops it stays this way. Since the gluon propagator is gapped this is only possible with a global
non-trivial scaling.

Let us now study the case of a trivial ghost propagator and a gapped gluon propagator. In this case we conclude
that

lim
T=0

VPol(A0) ' 1

2
lim
T→0

Tr lnG−1
A (A0)− lim

T→0
TrG−1

c (A0)

' 1

2
Tr ln (−D2

ρ)(A0)− Tr ln (−D2
ρ)(A0) (VI.87)

= − Tr ln (−D2
ρ)(A0) =

∑

i

Vmode(ϕi) . (VI.88)

With the mode potential (VI.68), see Fig. 15 this gives confinement. The present qualitative study can be extended to
a fully non-perturbative one with the help of functional methods, leading to the SU(2) and SU(3) potentials depicted
in Fig. 18 taken from [30]. The respective Polyakov loop expectation values L[〈A0〉] are shown in Fig. 19.

The above considerations also hold in full Yang-Mills theory without approximations. This allows us to formulate
a confinement criterion in Yang-Mills theory with (VI.55), (VI.73) and (VI.86):



94

FIG. 19: Polyakov loop expectation values L[〈A0〉] for SU(2) and SU(3) taken from [29].

Confinement criterion: ’In covariant gauges the gluon propagator has to be gapped relative to the ghost at low
temperatures’

put forward in [29]. Note that we have been led to this criterion in the one-loop resummed approximation with (VI.55).
However, it can be proven in Yang-Mills theory without approximations on the basis of the functional renormalisation
group, [29, 30], as well as Dyson-Schwinger equations and the two-particle irreducible (2PI) formalism [30]. It also
extend beyond the covariant gauges, e.g. to the Coulomb gauge. In QCD with dynamical QCD -as expected- the
quark contributions spoil the applicability of the confinement criterion as they introduce center-breaking terms to the
potential, for a detailed discussion see [30].

We close this chapter with some remarks on the order parameter we introduced. We started with the Polyakov loop
variable 〈L[A0]〉, but computed the Polyakov loop potential Vpol[A0] with the order parameter 〈A0〉 or L[〈A0〉]. As
both are order parameters for the same symmetry, this is not relevant for us. Still, one can investigate their relation:
evidently they are not the same but only agree in a Gaußian approximation,

〈L[A0]〉 6= L[〈A0〉] , (VI.89)

Dropping for the moment the necessary renormalisation of 〈A0〉, they satisfy the Jensen inequality,

〈L[A0]〉 ≤ L[〈A0〉] , (VI.90)

see [29]. We conclude that if L[〈A0〉] = 0, so is 〈L[A0]〉. In turn, one can show that L[〈A0〉] vanishes if 〈L[A0]〉 does,
see [32]. While L[〈A0〉] has so far only been computed with functional methods, we have a solid results for 〈L[A0]〉
from the lattice, both in Yang-Mills theory and in QCD. More recently, 〈L[A0]〉 has been also computed with the FRG
on the basis of L[〈A0〉] in quantitative agreement with the lattice results [31], see Fig. 21. Seemingly, their relation is
rather non-trivial but is has been shown in [31] that most of the difference between 〈L[A0]〉 and L[〈A0〉 comes from

FIG. 20: The infrared glue potential, V (ϕ3, ϕ8), is shown in the confined phase (left, T = 236 MeV) and in the
deconfined phase (right, T = 384 MeV). We restrict ourselves to the line ϕ8 = 0 and ϕ3 ≥ 0 (indicated by the black,
dashed line), where one of the equivalent minima is always found, and where L[〈A0〉] is real and positive semi-definite.
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FIG. 21: Expectation value of 〈L[A0]〉 versus L[〈Ā0〉] from [31]. Both observables are order parameters for the
confinement-deconfinement phase transition. Moreover, L[〈Ā0〉] = 1 entails 〈Ā0〉 = 0 . .

a temperature dependent normalisation of the former. In any case there is a relation

〈L[A0]〉(ϕ) (VI.91)

that maps ϕ = βg/(2π)〈A0〉 to the Polyakov loop epectation value in a given background.
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VII. PHASE STRUCTURE OF QCD

In this final chapter of the low energy part of the QCD lecture notes we discuss the phase structure of QCD at
finite temperature and density. Here we shall study this in a combination of the low energy model for chiral symmetry
breaking discussed in the chapters IV and V and the confinement physics of the Polyakov loop potential discussed
in the previous chapter VI. This class of low energy EFTs is called Polyakov loop augmented/enhanced low energy
EFTs. They are based on the following observation that can be made already on a one-loop level (with resummed
propagators). The full one loop resummed effective action of Nf = 2 flavour QCD including effective mesonic degrees
of freedom is given by

ΓQCD[Φ] = SQCD[Φ] +
1

2
Tr ln G−1

A [Φ]− Tr ln G−1
c [Φ]− Tr ln G−1

q [Φ] +
1

2
Tr ln G−1

φ [Φ] , Φ = (Aµ, c, c̄, ψ, ψ̄, σ, ~π) ,

(VII.1)

with the gluon and ghost propagators GA, Gc carrying the physics and fluctuations of the glue sector of QCD, and the
quark and meson propagators carrying the physics and fluctuations of the matter sector of QCD. Note that (VII.1)
with the full propagators is a complicated non-perturbative equation where all different loops feed into each other.
For example, taking the derivative of (VII.1) w.r.t. the gauge field, we get

δΓ− S
δA0

=
1

2
Tr
[
Γ(3)G

]
AA
− TrG−1

c [Φ]
[
Γ(3)G

]
cc̄
− Tr

[
Γ(3)G

]
qq̄

+
1

2
Tr
[
Γ(3)G

]
φ∗φ

, (VII.2)

where the mesonic part has been dropped and G is the full matrix propagator of all modes. This has to be compared
with the A0-DSE

δΓ

δA0
=

〈
δS

δA0

〉
, (VII.3)

the QCD-version of (IV.15). It is derived analoguously from the path integral representation of the QCD effective
action Γ, see (C.1), by taking an A0-derivative. It is depicted in Fig. 22. The vertices in the DSE (VII.3) are the
classical ones while in (VII.2) they are the full quantum vertices. The other difference is the two-loop term in Fig. 22
that is not present in (VII.2) but can be understood as part of the dressed vertices, see e.g. [30]. In any case, the
two-loop term in the DSE is typically dropped in explicit computations for technical reasons, and modern applications
often use 2PI and 3PI (three-particle irreducible) approximations that feature dressed vertices.

Note also that the Wegner-Houghton RG, or more generally functional renormalisation group equations for QCD,
are one loop excact, see chapter IV F 3. Hence, they are given by a sum of gluon, ghost, quark and optionally meson
diagrams, see Fig. 23. Note that the equation in Fig. 23 is exact, no two-loop or higher loop terms are missing.

1. Glue Sector

We conclude that (VII.1) provides a good qualitative approximation to full QCD, and the following formal arguments
also go through beyond the current approximation: we are interested in the low energy limit of QCD, in which the
gapped gluons do not drive the matter dynamics anymore. Since the ghost terms only couple to matter through the
gluons, they also decouple even though they are massless. Hence, in a first qualitative approximation we can drop the
dynamics of the glue sector. Still, the gluons, i.e. 〈A0〉 serve as a background for the matter fluctuations. Its value is
determined by the Polyakov loop potential in QCD, obtained by evaluating (VII.1) for constant A0-background. The

FIG. 22: Functional A0-Dyson-Schwinger equation for QCD.
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glue part of the potential,

Vglue(A0) =
1

2
Tr ln G−1

A [A0]− Tr ln G−1
c [A0] , (VII.4)

The definition of Vglue is identical to that in pure Yang-Mills theory, (VI.55). In (VII.4), however, the QCD gluon
and ghost propagator enter. A common procedure is now to use lattice results on the pressure and the Polyakov loop
expectation value in pure Yang-Mills theory for an estimate of Vglue. From the perspective of the correlation functions
approaches discussed here this is justified if the Yang-Mills gluon and ghost propagators in an A0-background are
similar to those in QCD. This is indeed the case, the biggest difference coming from the RG-scaling that is reflected in
the momentum-dependence at large and medium momenta p2 & 2−5 GeV2. This can be made even more quantitative
if simply comparing the two glue potentials (in terms of A0) in QCD and Yang-Mills theory, see [33]. Apart from the
different absolute temperature scale and the different RG-running the two potentials agree semi-quantitatively.

These results support in retrospect the low energy EFT approach with lattice-induced Polyakov loop potentials
V (L, L̄). On the lattice the Polyakov loop variables

L = 〈L[A0]〉 , L̄ = 〈L∗[A0]〉 , (VII.5)

are computed. At vanishing density we have L̄ = L∗. At non-vanishing density this relation is not valid anymore as
the chemical potential leads to a complex action in the path integral, and hence 〈L[A0]〉∗ 6= 〈L[A0]∗〉. The respective
potential is Upol(L, L̄). We emphasise that the potential Vpol(ϕ) is not simply U(L(ϕ), L̄(ϕ)) due to (VI.89).

These potentials are derived as follows:

(1a) Computee the Yang-Mills pressure (zero-point function) and the Polyakov loop expectation value (one-point
function)

pA(T ) = , L = 〈L[A0]〉(T ), L̄ = 〈L[A0]〉(T ) . (VII.6)

(1b) Further correlation functions of the Polyakov loop variable are computed. At present this approach only extends
to the two-point functions of the Polyakov loop, [34]. The two-point function of the Polyakov loop is nothing
but its propagator at large distances, which is given by the inverse of the second derivative of the Polyakov loop
potential. We write schematically

( 〈LL〉 〈LL̄〉

〈L̄L〉 〈L̄L̄〉

)
∝
(

∂2
LUpol ∂L∂L̄Upol

∂L̄∂LUpol ∂2
L̄
Upol

)−1

. (VII.7)

(2) Construct a potential VYM(L, L̄) that leads to all the observables under (1a) and potentially (1b). We have

pA = −V (LEoM, L̄EoM) ,
∂U(L, L̄)

∂L

∣∣∣∣ L = LEoM

L̄ = L̄EoM

= 0 ,
∂U(L, L̄)

∂L̄

∣∣∣∣ L = LEoM

L̄ = L̄EoM

= 0 , (VII.8)

and (VII.7), evaluated on the equations of motion.

Here we quote the standard form of the Polyakov loop potential. It reads

U(L, L̄) =
1

2
a(T )L̄ L+ b(T ) ln MH(L, L̄) +

1

2
c(T ) (L3 + L̄3) + d(T )(̄LL)2 , (VII.9)

FIG. 23: Functional renormalisation group equation for QCD. In the Wegner-Houghton case the cross stands for the
restriction of the loop integration to p2 = Λ2.
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where MH comes from the Haar measure of the gauge group

MH = 1− 6 L̄ L+ 4(L3 + L̄3)− 3(L̄ L)2 . (VII.10)

Eq.(VII.9) is a variation of a Landau-Ginsburg-type phi4-potential commonly used for describing phase transitions.
The cubic terms proportional to c(T ) and in MH carry the center symmetry L → zL where the cubic roots z ∈ Z3

has the property z3 = 1. Thse terms drives the phase transition. The parameters a(T ), b(T ), c(T ) are now adjusted to
the temperature-dependent observables in (1). Examples can be found e.g. in [34–36]. The latter work also contains a
detailed study of various model potentials. We close this discussion we a few remarks. Firstly, as it is not possible to
compute the glue potential in QCD on the lattice, we have to rely on Yang-Mills potentials on the lattice extrapolated
to the glue potential. Secondly, the direct computation of the Polyakov loop potential in Yang-Mills theory proves to
be very costly and has not fully been resolved yet. For that reason one has to rely on potentials that only match a
few but important observables. Thirdly, the Polyakov loop potential Upol is not the natural input in the low energy
EFTs, it is Vpol and the two only agree in the Gaußian approximations.

Alternatively one computes the glue potential directly in the continuum, but at present neither Upol nor Vpol has
been computed to a quantitative satisfactory precision. This task is left for future work.

2. Matter sector

It is left to discuss the matter sector. In (VII.1) it looks identical to the low energy EFT or the DSE/FRG in QCD
we have discussed in the context of strong chiral symmetry breaking. However, now we have to consider also the glue
background A0 or L, L̄ depending on the tratment of the glue sector. Since the mesons are color-neutral, they do not
couple to the gluon and hence the meson loop stays the same as before.

However, the quark loop has to be taken in an A0 background. We recall the one-loop expression in (V.28), now in
the presence of an A0 background as well as a chemical potential µ. It reads

Ωq,T − Ωq,T,µ=0 = − 4T
∑

n∈Z

∫
d3p

(2π)3
trf ln

(2πT )2
(
n+ 1

2 + ϕ̂+ i µ
)2

+ ~p2 +m2
q

(2πT )2
(
n+ 1

2

)2
+ ~p2 +m2

q

− pq,thermal

= − 2

π2
T
∑

n∈Z

∫ ∞

0

dp p2 trf

{
ln
(

1 + Pe−β(εqp−µ)
)

+ ln
(

1 + P †e−β(εqp+µ)
)}

, (VII.11)

where P (~x) = P (β, ~x) is the untraced Polyakov loop, see (VI.28), and we recall the quark dispersion and the thermal
distribution function from (V.27)

εqp =
√
~p2 +m2

q , nF (ω) =
1

eβω + 1
. (VII.12)

In the present approximation P, P † are ~x-independent. The combinations Peβµ and Pe−βµ reflect the relation of L
and L̄ to the creation operator of quark and anti-quark states respectively. The final expression in (VII.11) reduces
to the quark contribution of the grand potential (V.38) discussed in chapter V for P = 1l. Due to the subtraction of
the T = 0 grand potential hidden in pq,thermal is nothing but the negative thermal pressure in a given background. On
the EoM for all fields it is the physical quark pressure of the system. The color trace in (VII.11) can be rewritten as
a determinant with trf ln O = ln detf O, and we are led to

Ωq,T − Ωq,T,µ=0 = − 2

π2
T

∫ ∞

0

dp p2
{

ln
[
1 + 3(L+ L̄e−β(εqp−µ)) e−β(εqp−µ) + e−3β(εqp−µ)

]

+ ln
[
1 + 3(L̄+ Le−β(εqp+µ)) e−β(εqp+µ) + e−3β(εqp+µ)

]}
. (VII.13)

For L = L̄ = 1 and µ = 0 (VII.13) reduces to the one in (V.38) in chapter V. This happens for large temperatures,
T/Tconf → ∞ deep in the perturbative regime. Then we simply see the thermal distribution of single quarks. Note
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that (VII.13) only vanishes for T → 0 if εp > |µ| for all p. For µ2 > m2
q we have

lim
T→0

(Ωq,T − Ωq,T,µ=0) = − 6

π2

∫ √µ2−m2
q

0

dp p2
(
|µ| − εqp

)
, (VII.14)

reflecting the fact that for µ2 > m2
q the level of the Fermi sea is rising accordingly and the part of the quark fluctuations

below disappear from the fluctuation spectrum. As we have subtracted the grand potential at T = 0 and µ = 0, this
term is left in the T → 0 limit.

For T/Tconf → 0 the Polyakov loop expectation value tends towards one, L = L̄ = 0. Interestingly, for these values
we have

Ωq,T − Ωq,T,µ=0 = − 2

π2
T

∫ ∞

0

dp p2
{

ln
[
1 + e−3β(εqp−µ)

]
+ ln

[
1 + e−3β(εqp+µ)

]}
, (VII.15)

the grand potential (or negative thermal pressure) of a gas of three-quark states, in our case the nucleons. This
observation has been called statistical confinement as the confining value of the background Polyakov loop gives the
thermal distribution of nucleons. If this property is investigated more carefully, the related distribution functions are
given by

nF (x, L, L̄) =
1 + 2L̄ eβx + Le2βx

1 + 3L̄ e2βx + 3Le2βx + e3βx
, x =

√
p2 +m2

q − µ , x̄ =
√
p2 +m2

q + µ , (VII.16)

for the quark and nF (x̄, L̄, L) for the anti-quark. As for the grand potential, the Polyakov-loop enhanced themral
distribution functions tend towards the quark and anti-quark distribution functions for L, L̄ → 1. For L, L̄ → 0
(VII.16) gives the nucleon distribution function. However, this only happens if

lim
T/Tconf→0

Le2βx → 0 . (VII.17)

It can be shown that the limit (VII.17) is not present in QCD, see [37]. This does not invalidate the above picture as
the failure of (VII.17) orginates in mesonic contributions that indeed should be present. Moreover, the grand potential
is that of nucleons.

This concludes our derivation of the low energy EFT that governs the phase structure of QCD. This specific type
of low energy EFT has been constructed in [35]. On the one loop level its grand potential in Nf = 2 flavor QCD
is given by the sum of the quark contribution (VII.13), the mesonic contribution and the Polyakov loop potential.
This combination gives access to the two basic phenomena that governs the phase structure, confinement and chiral
symmetry breaking.

A. RG for the phase structure∗

Here we simply repeat the steps for the derivation of the Wegner-Houghton equation done in chapter V C for finite
temperature at finite temperature and density. The mesonic part is the same as in (V.40) and we can just take it
over here. The thermal quark part at finite density can be read off from (VII.15) while the vacuum part (at µ = 0)
of the integral is the same as before. In summary we get

Λ∂ΛΩΛ(ψ, ψ̄, φ) = − Λ3

2π2

{
1

2

[
εφΛ(mσ) +

3

2
εφΛ(mπ)

]
− 12 εqΛ

+ T
[
ln
(

1− e−βεφΛ(mσ)
)

+ ln
(

1− e−βεφΛ(mπ)
)]

− 4T
{

ln
[
1 + 3(L+ L̄e−β(εqΛ−µ)) e−β(εqΛ−µ) + e−3β(εqΛ−µ)

]

+ ln
[
1 + 3(L̄+ Le−β(εqΛ+µ)) e−β(εqΛ+µ) + e−3β(εqΛ+µ)

]}
. (VII.18)

In (VII.18) the first line is the T, µ = 0 part of the flow, the second line comprises the thermal part of the meson
fluctuations, while the last two lines comprise the thermal and density fluctuations of the quarks. As has been discussed
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above, this term does not vanish in the limit T → 0 but removes the infrared part of the vacuum fluctuations of the
quark above the onset chemical potential µ2 = m2

q, see (VII.14).

VIII. JET RADIATION

A. Jet ratios and jet veto

From the Feynman diagram for weak boson fusion we see that the diagram describing a gluon exchange between
the two quark lines multiplied with the Born diagram is proportional to the color factor trT atrT bδab = 0. The only
way to avoid this suppression is the interference of two identical final–state quarks, for example in ZZ fusion. First,
this does not involve only valence quarks and second, this assumes a phase space configuration where one of the two
supposedly forward jets turns around and goes backwards, so the interfering diagrams contribute in the same phase
space region. This means that virtual gluon exchange in weak boson fusion is practically absent.

In Section ?? we will see that virtual gluon exchange and real gluon emission are very closely related. Radiating a
gluon off any of the quarks in the weak boson fusion process will lead to a double infrared divergence, one because
the gluon can be radiated at small angles and one because the gluon can be radiated with vanishing energy. The
divergence at small angles is removed by redefining the quark parton densities in the proton. The soft, non–collinear
divergence has to cancel between real gluon emission and virtual gluon exchange. However, if virtual gluon exchange
does not appear, non–collinear soft gluon radiation cannot appear either. This means that additional QCD jet activity
as part of the weak boson fusion process is limited to collinear radiation, i.e. radiation along the beam line or at least
in the same direction as the far forward tagging jets. Gluon radiation into the central detector is suppressed by the
color structure of the weak boson fusion process.

While it is not immediately clear how to quantify such a statement it is a very useful feature, for example looking
at the top pair backgrounds. The WWbb̄ final state as a background to qqH,H →WW searches includes two bottom
jets which can mimic the signal’s tagging jets. At the end, it turns out that it is much more likely that we will produce
another jet through QCD jet radiation, i.e. pp→ tt̄+jet, so only one of the two bottom jets from the top decays needs
to be forward. In any case, the way to isolate the Higgs signal is to look at additional central jets.

As described above, for the signal additional jet activity is limited to small-angle radiation off the initial–state
and final–state quarks. For a background like top pairs this is not the case, which means we can reduce all kinds of
background by vetoing jets in the central region above pT,j & 30 GeV. This strategy is referred to as central jet veto
or mini-jet veto. Note that it has nothing to do with rapidity gaps at HERA or pomeron exchange, it is a QCD
feature completely accounted for by standard perturbative QCD.

From QCD we then need to compute the probability of not observing additional central jets for different signal
and background processes. Postponing the discussion of QCD parton splitting to Section ?? we already know that
for small transverse momenta the pT,j spectra for massless states will diverge, as shown in Eq.(??). Looking at some
kind of n-particle final state and an additional jet radiation we can implicitly define a reference point pcrit

T at which
the divergent rate for one jet radiation σn+1 starts to exceed the original rate σn, whatever the relevant process might
be

σn+1(pcrit
T ) =

∫ ∞

pcrit
T

dpT,j
dσn+1

dpT,j

!
= σn . (VIII.1)

This condition defines a point in pT below which our perturbation theory in αs, i.e. in counting the number of external
partons, breaks down. For weak boson fusion Higgs production we find pcrit

T ∼ 10 GeV, while for QCD processes like
tt̄ production it becomes pcrit

T = 40 GeV. In other words, jets down to pT =10 GeV are perturbatively well defined
for Higgs signatures, while for the QCD backgrounds jets below 40 GeV are much more frequent than they should
be looking at the perturbative series in αs. This fixes the pT range where a central jet veto will be helpful to reject
backgrounds

pT,j > 30 GeV and η
(tag 1)
j < ηj < η

(tag 2)
j . (VIII.2)

The second condition reminds us of the fact that only central jets will be rare in weak boson fusion. The smaller
the pT threshold the more efficient the central jet veto becomes, but at some point experimental problems as well as
non–perturbative QCD effects will force us to stay above 20 or 30 or even 40 GeV.
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FIG. 24: Different predictions for the jet veto survival probability Ppass as a function of the maximum allowed
pT,j . The example process chosen is Higgs production in gluon fusion. The shaded regions indicate the independent
variation of the factorization and renormalization scales within [mH/4,mH ] requiring µR/µF to lie within [0.5, 2].

The figure and the corresponding physics argument are taken from Ref. [? ].

If we assign a probability pattern to the radiation of jets from the core process we can compute the survival probability
Ppass of such a jet veto. For many years we have been told that higher orders in the perturbative QCD series for
the Higgs production cross section is the key to understanding LHC rates. For multi–jet observables like a jet veto
this is not necessarily true. As an example we assume NNLO or two-loop precision for the Higgs production rate
σ = σ0 + αsσ1 + α2

sσ2 where we omit the over–all factor α2
s in σ0. Consequently, we define the cross section passing

the jet veto σ(pass) = Ppass σ =
∑
j α

j
sσ

(pass)
j . Because the leading order prediction only includes a Higgs in the final

state we know that σ
(pass)
0 = σ0. Solving this definition for the veto survival probability we can compute

P (a)
pass =

σ(pass)

σ
=

σ0 + αsσ
(pass)
1 + α2

sσ
(pass)
2

σ0 + αsσ1 + α2
sσ2

, (VIII.3)

motivated by including the maximum number of terms (NNLO) in the numerator and denominator. The result as a
function of the maximum allowed pT,j is shown as ‘scheme a’ in Figure 24. The shaded region is an estimate of the
theoretical uncertainty of this prediction.

Alternatively, we can argue that the proper perturbative observable is the fraction of vetoed events (1 − Ppass).
Indeed, for small values of αs the jet radiation probability vanishes and with it (1 − Ppass) ∼ αs → 0. This vetoed

event fraction we can compute as σj − σ(pass)
j for j ≥ 0. However, we need to keep in mind that in the presence of an

additional jet the NNLO prediction for the inclusive Higgs production rate reduces to NLO accuracy, so we include
the two leading terms in the numerator and denominator,

1− P (b)
pass = αs

σ1 − σ(pass)
1 + αs(σ2 − σ(pass)

2 )

σ0 + αsσ1

P (b)
pass = 1− αs

σ1 − σ(pass)
1 + αs(σ2 − σ(pass)

2 )

σ0 + αsσ1
=
σ0 + αsσ

(pass)
1 + α2

sσ
(pass)
2 − α2

sσ2

σ0 + αsσ1
. (VIII.4)

This defines ‘scheme b’ in Figure 24. Obviously, in Eq.(VIII.4) we can move the term −α2
sσ2 into the denominator

and arrive at Eq.(VIII.3) within the uncertainty defined by the unknown α3
s terms.

Finally, we can consistently Taylor expand the definition of Ppass as the ratio given in Eq.(VIII.3). The two leading
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derivatives of a ratio read

(
f

g

)′
=
f ′g − fg′

g2

f=g
=

f ′ − g′
g

(
f

g

)′′
=

(
f ′g
g2
− fg′

g2

)′
=

(f ′g)′g2 − f ′g2gg′

g4
− (fg′)′g2 − fg′2gg′

g4

=
(f ′g)′ − 2f ′g′

g2
− (fg′)′g − 2fg′g′

g3
=
f ′′g − f ′g′

g2
− fg′′g − fg′g′

g3

f=g
=

f ′′ − g′′
g

− g′(f ′ − g′)
g2

(VIII.5)

In the last steps we assume f = g at the point where we evaluate the Taylor expansion. Applied to the perturbative
QCD series for (1− Ppass) around the zero-coupling limit this gives us

1− P (c)
pass = 1− σ0 + αsσ

(pass)
1 + α2

sσ
(pass)
2 + · · ·

σ0 + αsσ1 + α2
sσ2 + · · ·

P (c)
pass = 1 + αs

σ
(pass)
1 − σ1

σ0
+ α2

s

σ
(pass)
2 − σ2

σ0
− α2

s

σ1(σ
(pass)
1 − σ1)

σ2
0

, (VIII.6)

defining ‘scheme c’ in Figure 24. The numerical results indicate that the three schemes are inconsistent within their
theoretical uncertainties, and that the most consistent Taylor expansion around perfect veto survival probabilities is
doing particularly poorly. Towards small pT,j veto ranges the fixed order perturbative approach clearly fails. The way
to improve the theoretical prediction is a re-organization of the perturbation theory for small jet transverse momenta.
We introduce this approach with its leading term, the parton shower, in Section II F. For now we conclude that our
theoretical approach has to go beyond a fixed number of (hard) jets and include the production of any number of jets
in some kind of modified perturbative series.

One ansatz for the distribution of any number of radiated jets is motivated by soft photon emission off a hard
electron. In Section ?? we derive the Poisson distribution in the numbers of jet which follows in the soft limit. If we
for now assume a Poisson distribution, the probability of observing exactly n jets given an expected n̄ jets is

f(n; n̄) =
n̄ne−n̄

n!
⇒ Ppass ≡ f(0; n̄) = e−n̄ . (VIII.7)

Note that this probability links rates for exactly n jets, no at least n jets, i.e. it described the exclusive number of
jets. The Poisson distribution is normalized to unity, once we sum over all possible jet multiplicities n. It defines
the so-called exponentiation model. We consistently fix the expectation value in terms of the inclusive cross sections
producing at least zero or at least one jet,

〈n〉 ≡ n̄ =
σ1(pmin

T )

σ0
. (VIII.8)

This ensures that the inclusive jet ratio σ1/σ0 is reproduced by the ratio of the corresponding Poisson distributions.
Including this expectation value n̄ into Eq.(VIII.7) returns a veto survival probability of exp(−σ1/σ0). This comes
out roughly as 88% for the weak boson fusion signal and as 24% for the tt̄ background. For the signal–to–background
ratio this implies a three-fold increase.

An alternative model starts from a constant probability of radiating a jet, which in terms of the inclusive cross
sections σn, i.e. the production rate for the radiation of at least n jets, reads

σn+1(pmin
T )

σn(pmin
T )

= R
(incl)
(n+1)/n(pmin

T ) . (VIII.9)
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We derive this pattern in Section ??. The expected number of jets is then given by

〈n〉 =
1

σ0

∑

j=1

j(σj − σj+1) =
1

σ0


∑

j=1

jσj −
∑

j=2

(j − 1)σj


 =

1

σ0

∑

j=1

σj

=
σ1

σ0

∑

j=0

(R
(incl)
(n+1)/n)j =

R
(incl)
(n+1)/n

1−R(incl)
(n+1)/n

, (VIII.10)

if R
(incl)
(n+1)/n is a constant. Assuming the series converges this turns into a requirement on pmin

T . Radiating jets with

such a constant probability has been observed at many experiments, including most recently the LHC, and is in the
context of W+jets referred to as staircase scaling. We will derive both, the Poisson scaling and the staircase scaling
from QCD in Section ??. Even without saying anything on how to calculate exclusive processes with a fixed number
of jets we can derive a particular property of the constant probability of staircase scaling: the ratios of the (n+ 1)-jet
rate to the n-jet rate for inclusive and exclusive jet rates are identical. We can see this by computing the inclusive

R
(incl)
(n+1)/n in terms of exclusive jet rates

R
(incl)
(n+1)/n =

σn+1

σn
=

∑∞
j=n+1 σ

(excl)
j

σ
(excl)
n +

∑∞
j=n+1 σ

(excl)
j

=
σ

(excl)
n+1

∑∞
j=0R

j
(n+1)/n

σ
(excl)
n + σ

(excl)
n+1

∑∞
j=0R

j
(n+1)/n

with R(n+1)/n =
σ

(excl)
n+1

σ
(excl)
n

=

R(n+1)/nσ
(excl)
n

1−R(n+1)/n

σ
(excl)
n +

R(n+1)/nσ
(excl)
n

1−R(n+1)/n

=
R(n+1)/n

1−R(n+1)/n +R(n+1)/n

= R(n+1)/n . (VIII.11)

To show that the exponentiation model and staircase scaling are not the only assumptions we can make to compute
jet rates we show yet another, but similar ansatz which tries to account for an increasing number of legs to radiate
jets off. Based on

σj+1(pmin
T )

σj(pmin
T )

=
j + 1

j
R

(incl)
(n+1)/n(pmin

T ) , (VIII.12)

the expectation for the number of jets radiated gives, again following Eq.(VIII.10)

〈n〉 =
1

σ0

∑

j=1

jσj =
1

σ0
σ0

∑

j=1

j(R
(incl)
(n+1)/n)j

= R
(incl)
(n+1)/n

∑

j=1

j(R
(incl)
(n+1)/n)j−1 =

R
(incl)
(n+1)/n

(1−R(incl)
(n+1)/n)2

. (VIII.13)

All of these models are more or less well motivated statistical approximations. The do not incorporate experimental
effects or the non–perturbative underlying event, i.e. additional energy dependent but process independent jet activity
in the detectors from many not entirely understood sources. For many reasons none of them is guaranteed to give us
a final and universal number. However, by the time we get to Section ?? we will at least be able to more accurately
describe the central jet veto in QCD.

For the Poisson distribution and the staircase distribution we can summarize the main properties of the n-jet rates
in terms of the upper incomplete gamma function Γ(n, n̄):
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staircase scaling Poisson scaling

σ
(excl)
n σ

(excl)
0 e−bn σ0

e−n̄n̄n

n!

R(n+1)/n =
σ

(excl)
n+1

σ
(excl)
n

e−b
n̄

n+ 1

R
(incl)
(n+1)/n =

σn+1

σn
e−b

(
(n+ 1) e−n̄ n̄−(n+1)

Γ(n+ 1)− nΓ(n, n̄)
+ 1

)−1

〈n〉 1

2

1

cosh b− 1
n̄

Ppass 1− e−b e−n̄

B. Ordered emission

From the derivation of the Catani–Seymour dipoles we know that for example the emission of a gluon off a hard
quark line is governed by distinctive soft and collinear phase space regimes. In our argument for the exponentiation
of gluon radiation matrix elements in Eq.(??) there is one piece missing: multiple gluon emission has to be ordered
by some parameter, such that in squaring the multiple emission matrix element we can neglect interference terms.
These interference diagrams contributing to the full amplitude squared are called non–planar diagrams. The question
is if we can justify to neglect them from first principles field theory and QCD. There are three reasons to do this,
even though none of them gives exactly zero for soft and collinear splittings. On the other hand, in combination they
make for a very good reason.

First, an arguments for a strongly ordered gluon emission comes from the divergence structure of soft and collinear
gluon emission. Two successively radiated gluons look like

According to Eq.(II.109) single gluon radiation with momentum k off a hard quark with momentum p is described
by a kinematic term (ε∗p)(pk). For successive radiation the two Feynman diagrams give us the combined kinetic terms

(ε1p)

(p+ k1 + k2)2 −m2

(ε2p)

(p+ k2)2 −m2
+

(ε2p)

(p+ k1 + k2)2 −m2

(ε1p)

(p+ k1)2 −m2

=
(ε1p)

2(pk1) + 2(pk2) + (k1 + k2)2

(ε2p)

2(pk2)
+

(ε2p)

2(pk1) + 2(pk2) + (k1 + k2)2

(ε1p)

2(pk1)
k2

1 = 0 = k2
2

' (ε1p)

2 maxj(pkj)

(ε2p)

2(pk2)
+

(ε2p)

2 maxj(pkj)

(ε1p)

2(pk1)
(pkj) strongly ordered

'





(ε1p)(ε2p)

2 maxj(pkj)

1

2(pk2)
(pk2)� (pk1) k2 softer

(ε1p)(ε2p)

2 maxj(pkj)

1

2(pk1)
(pk1)� (pk2) k1 softer .

(VIII.14)

Going back to the two Feynman diagrams this means that once one of the gluons is significantly softer than the other
the Feynman diagrams with the later soft emission dominates. After squaring the amplitude there will be no phase
space regime where interference terms between the two diagrams are numerically relevant. The coherent sum over
gluon radiation channels reduces to a incoherent sum, ordered by the softness of the gluon.

This argument can be generalized to multiple gluon emission by recognizing that the kinematics will always be
dominated by the more divergent propagators towards the final state quark with momentum p. Note, however, that
it is based on an ordering of the scalar products (pkj) interpreted as the softness of the gluons. We already know
that a small value of (pkj) can as well point to a collinear divergence; every step in the argument of Eq.(VIII.14) still
applies.

Second, we can derive ordered multiple gluon emission from the phase space integration in the soft or eikonal approximation.
There, gluon radiation is governed by the so-called radiation dipoles given in Eq.(II.114). Because each dipole includes
a sum over all radiating legs in the amplitude, the square includes a double sum over the hard legs. Diagonal terms
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vanish at least for over–all color–neutral processes. Because the following argument is purely based on kinematics we
will ignore all color charges and other factors.

For successive gluon radiation off a quark leg the question we are interested in is where the soft gluon k is radiated,
for example in relation to the hard quark p1 and the harder gluon p2. The kinematics of this process is the same as
soft gluon radiation of a quark–antiquark pair produced in an electroweak process. For the dipoles we let the indices
i, j run over the harder quark, antiquark, and possibly gluon legs. A well–defined process with all momenta defined
as outgoing is

in the approximation of abelian QCD, i.e. no triple gluon vertices. We start by symmetrizing the leading soft
radiation dipole with respect to the two hard momenta in a particular way,

(J† · J)12 =
(p1p2)

(p1k)(p2k)

=
1

k2
0

1− cos θ12

(1− cos θ1k)(1− cos θ2k)
in terms of opening angles θ

=
1

2k2
0

(
1− cos θ12

(1− cos θ1k)(1− cos θ2k)
+

1

1− cos θ1k
− 1

1− cos θ2k

)
+ (1↔ 2)

≡ W
[1]
12 +W

[2]
12

k2
0

. (VIII.15)

The last term is an implicit definition of the two terms W
[1]
12 . The pre-factor 1/k2

0 is given by the leading soft
divergence. The original form of (J†J) is symmetric in the two indices, which means that both hard partons can take
the role of the hard parton and the interference partner. In the new form the symmetry in each of the two terms is
broken. Each of the two terms we need to integrate over the gluon’s phase space, including the azimuthal angle φ1k.
Note, however, that this splitting into two contributions is not the standard separation into the two diagrams. It is a
specific ansatz to show the ordering patterns we will see below.

To compute the actual integral we express the three parton vectors in polar coordinates where the initial parton
p1 propagates into the x direction, the interference partner p2 in the (x − y) plane, and the soft gluon in the full
three-dimensional space described by polar coordinates,

p̂1 = (1, 0, 0) hard parton

p̂2 = (cos θ12, sin θ12, 0) interference partner

k̂ = (cos θ1k, sin θ1k cosφ1k, sin θ1k sinφ1k) soft gluon

⇒ cos θ2k ≡ (p̂2k̂) = cos θ12 cos θ1k + sin θ12 sin θ1k cosφ1k . (VIII.16)

From the scalar product between these four-vectors we see that of the terms appearing in Eq.(VIII.15) only the
opening angle θ2k includes φ1k, which for the azimuthal angle integration means

∫ 2π

0

dφ1k W
[1]
12 =

1

2

∫ 2π

0

dφ1k

(
1− cos θ12

(1− cos θ1k)(1− cos θ2k)
+

1

1− cos θ1k
− 1

1− cos θ2k

)
.

=
1

2

1

1− cos θ1k

∫ 2π

0

dφ1k

(
1− cos θ12

1− cos θ2k
+ 1− 1− cos θ1k

1− cos θ2k

)

=
1

2

1

1− cos θ1k

(
2π + (cos θ1k − cos θ12)

∫ 2π

0

dφ1k
1

1− cos θ2k

)
. (VIII.17)
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The azimuthal angle integral in this expression for W
[i]
12 we can solve

∫ 2π

0

dφ1k
1

1− cos θ2k
=

∫ 2π

0

dφ1k
1

1− cos θ12 cos θ1k − sin θ12 sin θ1k cosφ1k

=

∫ 2π

0

dφ1k
1

a− b cosφ1k

=

∮

unit circle

dz
1

iz

1

a− bz + 1/z

2

with z = eiφ1k , cosφ1k =
z + 1/z

2

=
2

i

∮
dz

1

2az − b− bz2

=
2i

b

∮
dz

(z − z−)(z − z+)
with z± =

a

b
±
√
a2

b2
− 1 . (VIII.18)

This integral is related to the sum of all residues of poles inside the closed integration contour. Of the two poles z−
is the one which typically lies within the unit circle, so we find

∫ 2π

0

dφ1k
1

1− cos θ2k
=

2i

b
2πi

1

z− − z+
=

2π√
a2 − b2

=
2π√

(cos θ1k − cos θ12)2
=

2π

| cos θ1k − cos θ12|
. (VIII.19)

The entire integral in Eq.(VIII.17) then becomes

∫ 2π

0

dφ1k W
[1]
12 =

1

2

1

1− cos θ1k

(
2π + (cos θ1k − cos θ12)

2π

| cos θ1k − cos θ12|

)

=
π

1− cos θ1k
(1 + sign(cos θ1k − cos θ12)

=





2π

1− cos θ1k
if θ1k < θ12

0 else .
(VIII.20)

The soft gluon is only radiated at angles between zero and the opening angle of the initial parton p1 and its hard

interference partner or spectator p2. The same integral over W
[2]
12 gives the same result, with switched roles of p1 and

p2. Combining the two permutations this means that the soft gluon is always radiated within a cone centered around
one of the hard partons and with a radius given by the distance between the two hard partons. Again, the coherent
sum of diagrams reduces to an incoherent sum. This derivation angular ordering is exact in the soft limit.

There is a simple physical argument for this suppressed radiation outside a cone defined by the radiating legs. Part
of the deviation is that the over–all process is color–neutral. This means that once the gluon is far enough from the
two quark legs it will not resolve their individual charges but only feel the combined charge. This screening leads to
an additional suppression factor of the kind θ2

12/θ
2
1k. This effect is called coherence.

The third argument for ordered emission comes from color factors. Crossed successive splittings or interference
terms between different orderings are color suppressed. For example in the squared diagram for three jet production
in e+e− collisions the additional gluon contributes a color factor

tr(T aT a) =
N2
c − 1

2
= NcCF (VIII.21)

When we consider the successive radiation of two gluons the ordering matters. As long as the gluon legs do not cross
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each other we find the color factor

tr(T aT aT bT b) = (T aT a)il(T
bT b)li

=
1

4

(
δilδjj −

δijδjl
Nc

)(
δilδjj −

δijδjl
Nc

)
using T aijT

a
kl =

1

2

(
δilδjk −

δijδkl
Nc

)

=
1

4

(
δilNc −

δil
Nc

)(
δilNc −

δil
Nc

)

= Nc

(
N2
c − 1

2Nc

)2

= NcC
2
F =

16

3
(VIII.22)

Similarly, we can compute the color factor when the two gluon lines cross. We find

tr(T aT bT aT b) = −N
2
c − 1

4Nc
= −CF

2
= −2

3
. (VIII.23)

Numerically, this color factor is suppressed compared to 16/3. This kind of behavior is usually quoted in powers of
Nc where we assume Nc to be large. In those terms non–planar diagrams are suppressed by a factor 1/N2

c compared
to the planar diagrams.

Once we also include the triple gluon vertex we can radiate two gluons off a quark leg with the color factor

tr(T aT b) facdf bcd =
δab

2
Ncδ

ab =
Nc(N

2
c − 1)

2
= N2

cCF =
36

3
. (VIII.24)

This is not suppressed compared to successive planar gluon emission, neither in actual numbers not in the large-Nc
limit.

We can try the same argument for a purely gluonic theory, i.e. radiating gluons off two hard gluons in the final
state. The color factor for single gluon emission after squaring is

fabcfabc = Ncδ
aa = Nc(N

2
c − 1) ∼ N3

c , (VIII.25)

using the large-Nc limit in the last step. For planar double gluon emission with the exchanged gluon indices b and f
we find

fabdfabefdfgfefg = Ncδ
de Ncδ

de = N3
c . (VIII.26)

Splitting one radiated gluon into two gives

fabc f ceffdef fabd = Ncδ
cd Ncδ

cd = N3
c . (VIII.27)

This means that planar emission and successive splittings cannot be separated based on the color factor for either
hard radiating quarks or gluons. We can use the color factor argument only for abelian splittings to justify ordered
gluon emission.
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Appendix A: Feynman rules for QCD in the covariant gauge

In this Appendix we depict the Feynman rules for QCD in the general covariant gauge.

= g2(2⇡)4�(4)

 
4X

i=1

ki

!
f iabf icd (�µ⇢�⌫� � �µ��⌫⇢) + f iacf ibd (�µ⌫�⇢� � �µ��⌫⇢) + f iadf ibc (�µ⌫�⇢� � �µ⇢�⌫�)

�

d k4,�

a k1,µ b k2,⌫

c k3,⇢

= i gfabc(2⇡)4�(4)(k1 + k2 + k3)

"
(k2 � k1)⇢ �µ⌫ + (k1 � k3)⌫ �µ⇢ + (k3 � k2)µ �⌫⇢

#
a k1,µ

c k3,⇢ b k2,⌫

= �ab�(4)(p + k)

✓
�µ⌫ � (1� ⇠)pµp⌫

p2

◆
1

p2

a b

k⌫pµ

p k
= ��ab�(4)(p + k)

1

p2
-1ba

a kµ

= �i g�µT a (2⇡)
4
�(4)(p� q � k)

q p

-1

p k
= �(4)(p + k)

1

i p/ + m

a

b c

!

!

!

kµ

pq

c pb q

a kµ

= �i gfabcpµ(2⇡)4�(4)(p� q � k)

FIG. 25: Feynman rules.

Appendix B: Gribov copies

In Chapter I A we have derived the gauge-fixed path integral under the assumption that there is only one represen-
tative of the gauge orbit that satisfies the gauge fixing condition. However, there might be several (Gribov) copies,
i.e. several physically equivalent solutions to the gauge fixing condition that are related by gauge transformations not
yet fixed by the gauge fixing condition F = 0. Indeed, any sufficiently smooth gauge exhibits (infinite many) Gribov
copies,

∑
Gribov copies = #Gr. As for the integration over the gauge group, #Gr occurs in the numerator as well as the

denominator in (I.18) and hence cancels. It is left to compute the Jacobian J [A] = ∆F [A]. To that end we use the
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representation of the Dirac δ-function

δ[F [AU ]] =

#Gr∑

i=1

1

|det δFδω |
δ[ω − ωi] with U = eiω. (B.1)

which leads to

∆F [A] =

(
#Gr∑

i=1

1∣∣detMF [Ae
iωi ]
∣∣

)−1

with MF [A] =
δF
δω

∣∣∣∣
ω=0

[Ae
iω

] . (B.2)

In the QFTII lecture notes in chapter IV, Appendix A the occurance of the Gribov copies in gauge field reparam-
eterisations due to gauge fixings is elucidated at the simple example of the reparameterisation of a two-dimensional
intergal.

Appendix C: Some important fact of the background field approach

In the background field approach the effective action has the following integro-differential path integral representa-
tion which facilitates the access to important properties,

e−Γ[Ā,a] =

∫
Dâ∆F [Ā, â+ a] δ[D̄µ(âµ + a)] e

−SYM[A+â]+
∫
x
δΓ[Ā,a]
δaµ

âµ , J =
δΓ[Ā, a]

δa
a = 〈â〉 . (C.1)

where Â = Ā + â, D̄ = D(Ā), D = D(A) and we restricted ourselves to Landau-deWitt gauge (ξ = 0) with the
background gauge fixing condition

D̄µâµ = 0 , −→ M[Ā, â+ a] = −D̄µDµ , ∆F [Ā, â+ a] = detM[Ā, â+ a] . (C.2)

see (VI.48). Inserting the relation between the a-derivative of Γ and the current J in (C.1) as well as using Γ =∫
x
Jµaµ− logZ we arrive at the standard path integral expression for Z[J ] in the gauge (C.2). First we note that the

effective action, evaluated on the equation of motion for the fluctuation field a,

δΓ[Ā, a]

δaµ

∣∣∣∣
a=aEoM

= 0 (C.3)

does not depend on the background field: the effective action Γ[Ā, aEoM] is given by (C.1) without the source term.
Then the path integral in (C.1) reduces to

e−Γ[Ā,aEoM] =

∫
Dâgf e

−SYM[A+âgf] . (C.4)

Even though the measure depends on the background field via the gauge fixing, the intergration leads to Ā-independent
result as the action SYM is gauge invariant. Accordingly we have

δΓ[Ā, aEoM]

δĀ
=

δ

δĀ

∣∣∣∣
aEoM

Γ[Ā, aEoM]] = 0 . (C.5)

The first relation in (C.5) follows with (C.3), the second from the Ā-independence of the integration in (C.4). In
conclusion, a solution to the EoM of a also is one of Ā. Eq.(C.4) also entails that

Γ[Ā, aEoM(Ā)] = Γ[Ā+ aEoM(Ā)] , (C.6)

it only depends on the full gauge field A.
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