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I. BASICS

The theory of strong interactions, quantum chromodynamics (QCD), has been developed on the basis of scat-
tering experiments that showed an internal SU(3)-symmetry and related charges much the same way quantum-
electrodynamics (QED) shows the U(1)-symmetry related to the electric charge. The corresponding gauge theory,
SU(3) Yang-Mills theory, is non-Abelian and hence self-interacting, i.e. the (quantized) pure gauge theory is already
non-trivial, in contrast to the U(1)-based QED.

A. Yang-Mills theory

1. Classical action

We start by constructing the pure gauge part or Yang-Mills part of QCD as an SU(3) gauge theory, fixing our
conventions and repeating the main features known from the QFT II lecture. The weak SU(2)-theory turns out to
have the same qualitative features as QCD (asymptotic freedom and confinement), but is technically simpler. On the
other hand, the SU(2) gauge bosons in the Standard Model are massive, leading to a major modification of this theory.
Instead, we will assume massless gauge bosons throughout this lecture. As for QED, the classical action of QCD can
be derived from the gauge-invariant (minimal) extension of the action of a free spin-one particle. The requirement
of invariance of physics under local SU(Nc) or color rotations with U ↑ SU(Nc), combined with a minimal coupling,
leads us from partial to covariant derivatives,

ωµ ↓ Dµ(A) = ωµ ↔ i g Aµ . (I.1)

The gauge field Aµ in the adjoint representation is Lie-algebra–valued,

Aµ = Aa

µ
ta , with a = 1, ..., N2

c
↔ 1 . (I.2)

The matrices ta are the generators of SU(Nc). In physical QCD the gauge group has eight generators, a = 1, ..., 8,
the Gell-Mann matrices. They are defined through

[ta, tb] = i fabctc , trf (tatb) = 1
2εab , (I.3)

where the coe"cients fabc are the structure constants of the Lie algebra. and trf is the trace in the fundamental
representation. The covariant derivative (I.1) does not carry any indices. In the adjoint representation it links to
SU(Nc) indices and reads

Dab

µ
(A) = ωµεab

↔ g fabcAc

µ
. with (tc

ad)ab = ↔i fabc. (I.4)

The covariant derivative Dµ with its two color indices then has to transform as a tensor under gauge transformations,

Dµ(A) ↓ Dµ(AU ) = U Dµ U
† , with U = eiω

↑ SU(Nc) , (I.5)

where ϑ ↑ su(Nc) is the corresponding Lie algebra element. The covariance of D under gauge transformations in (I.5)
implies

Aµ ↓ AU

µ
= i

g
U (DµU†) = U Aµ U

† + i

g
U (ωµU

†) . (I.6)

From the first term we confirm that in a non-Abelian gauge theory the gauge boson Aµ carries the corresponding
color charge. There are various notations on the market leading to factors i and ↔ in the Lie algebra relations above.
In the present lecture notes we have chosen hermitian generators which leads to the factor +1/2 for the trace in (I.3).
It also entails real structure constants fabc in the Lie-algebra in (I.3).

In analogy to QED the field strength tensor is defined through the commutator of covariant derivatives, it is the
curvature tensor of the gauge theory. Based on the definitions in (I.1) and (I.3) we find

Fµε = i

g
[Dµ , Dε ] = F a

µε
ta with F a

µε
= ωµAa

ε
↔ ωεAa

µ
+ g fabcAb

µ
Ac

ε
. (I.7)
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FIG. 1: Diagrammatic depiction of the Yang-Mills action.

Defined as in (I.7) the field strength Fµε also transforms covariantly (as a tensor) under gauge transformations,

Fµε(AU ) = i

g
[Dµ(AU ), Dε(AU )]

= i

g
U [Dµ(Aµ), Dε(Aε)] U

† = U Fµε(A) U
† . (I.8)

This allows us to define a gauge-invariant Yang-Mills (YM) action,

SYM[A] = 1
2

∫

x

trf (Fµε Fµε) = 1
4

∫

x

F a

µε
F a

µε
, (I.9)

with
∫

x
=

∫
ddx. Its gauge invariance follows from (I.8),

SYM[AU ] = 1
2

∫

x

trf
(
U Fµε(A)Fµε(A) U

†
)

= SYM[A] , (I.10)

where the last equality holds due to cyclicity of the trace in color space. Clearly, the action (I.9) with the field
strength (I.7) is a self-interacting theory with coupling constant g. It has a quadratic kinetic term and three-gluon
and four-gluon vertices. This is illustrated diagrammatically as Figure 1.
This allows us to read o! the Feynman rules for the purely gluonic vertices. The full Feynman rules of QCD in the
general covariant gauge are summarized in Appendix A. As in QED we can identify color-electric and color-magnetic
fields as the components in the field strength tensor,

Ea

i
= F a

0i

Ba

i
= 1

2ϖijkF a

jk
. (I.11)

In contrast to QED these color-electric and magnetic fields are no observables, they change under gauge transforma-
tions. Only tr ϱE2, tr ϱB2 are observables.

A Yang-Mills theory can most easily be quantized through the path integral. Naively, the generating functional of
pure YM-theory would read

Z[J ] =
∫

dA exp
(

↔SYM[A] +
∫

x

Ja

µ
Aa

µ

)
. (I.12)

The fundamental problem is that it contains redundant integrations due to gauge invariance of the action, see I A 1.
These redundant integrations are usually removed by introducing a gauge fixing condition

F [Agf] = 0 (I.13)

Commonly used gauge fixings are

ωµAµ = 0 , covariant or Lorenz gauge ,

ωiAi = 0 , Coulomb gauge ,

nµAµ = 0 , axial gauge . (I.14)

The general covariant gauge has the technical advantage that it does not single out a space-time direction. This prop-
erty reduces the possible tensor structure of correlation functions and hence simplifies computations. The Coulomb
gauge and the axial gauge single out specific frames. At finite temperature (and density) this might be useful as the
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temperature singles out the thermal rest frame. In that case the Coulomb gauge and the temporal or Weyl gauge
(nµ = εµ0) are used often.

Gauge fields that are connected by gauge transformations are physically equivalent, i.e. their actions agree. They
lie in so-called gauge orbits, {AU , U ↑ SU(N)}, and fixing a gauge is equivalent to choosing a representative of such
an orbit A ↓ Agf , up to potential (Gribov) copies. The occurrence of Gribov copies and how to handle them is
discussed in Appendix B. To keep things simple we ignore them for the time being and continue with the construction
of the QCD Lagrangian.

The path integral measure dA introduced in I A 1 can be split into an integration over physically inequivalent
configurations Agf and the gauge transformations U ,

dA = J dAgf dU (I.15)

In (I.15) J denotes the Jacobian of the transformation A ↓ (Agf, U), and we include dU as the Haar measure of the
gauge group, see e.g. [1]. The coordinate transformation (I.15) and the computation of the Jacobian J are done using
the Faddeev-Popov quantization, [2]. To separate the integral I A 1 into the two parts shown in (I.15) we insert a very
convoluted unity into the path integral,

1 =
∫

dU ε
[
F [AU ]

]
!F [A] = !F [A]

∫
dU ε

[
F [AU ]

]
↗ !F [A] =

(∫
dU ε

[
F [AU ]

])↑1
, (I.16)

where !F [A] is gauge-invariant due to the property d(UV) = dU of the Haar measure. For the path integral this
gives us

∫
dA e↑SYM[A] =

∫
dA dU ε

[
F [AU ]

]
!F [A] e↑SYM[A] . (I.17)

Let us now consider a general observable O, like e.g. trF 2(x) trF 2(0). Observables are necessarily gauge invariant
and local. The expectation value of O is defined as

↘O≃ =
∫

dA O[A] e↑SYM[A]
∫

dA e↑SYM[A] =
∫

dA dU ε
[
F [AU ]

]
!F [A] O[A] e↑SYM[A]

∫
dA dU ε [F [AU ]] !F [A] e↑SYM[A] , (I.18)

where we have simply inserted (I.16) into the path integral. In (I.18) all terms are gauge invariant except for the
ε-function. Hence we can absorb the U-dependence via A ↓ AU

† . Then the (infinite) integral over the Haar measure
decouples in numerator and denominator, and we arrive at

↘O≃ =
∫

dA ε [F [A]] !F [A] O[A] e↑SYM[Agf]
∫

dA ε [F [A]] !F [A] e↑SYM[Agf]
. (I.19)

To compute the Jacobian !F [A] we apply a coordinate transformation to the ε-distribution

ε[F [AU ]] = ε[ϑ ↔ ϑ1]
|det ϑF

ϑω
|

⇐
ε[ϑ ↔ ϑ1]

|detMF [A]| with U = eiω , (I.20)

combined with a gauge fixing condition in the form (I.13)

F [Agf = AU(ω1)] = 0 . (I.21)

Using the definition (I.16) this leads to

!F [A] = | detMF [Agf] | with MF [A] = εF

εϑ

∣∣∣∣
ω=0

[A] . (I.22)

Here Agf is the solution with the minimal distance to A = 0. The inverse Jacobian detMF of the ansatz (I.15) is called
the Faddeev-Popov determinant. For its computation we consider an infinitesimal gauge transformation U = 1 + i g ϑ
where we have rescaled the transformation with the strong coupling g for convenience. Such a rescaling gives global
factors of powers of 1/g that drop out in normalized expectation values. Then, the infinitesimal variation of the
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covariant gauge ωµAµ = 0 follows as

F [AU ] = ωµAU

µ
= ωµAµ ↔ ωµDµϑ + O(ϑ2) != 0 . (I.23)

This gives us the Faddeev-Popov matrix

MF [A] = ↔
εωµDµϑ

εϑ
= ↔ωµDµ

εϑ

εϑ
= ↔ωµDµ1. (I.24)

We assume that ↔ωµDµ is a positive definite operator and we arrive at

!F [A] = det M[A] = det (↔ωµDµ) . (I.25)

A useful observation is that determinants can be represented by a Gaussian integral. In regular space such a Gaussian
integral reads

∫

x

e↑
1
2 x

T
Mx = (2ς)n

⇒
det M

. (I.26)

We want to use this relation to replace the Faddeev-Popov determinant (I.25) in the Lagrangian. It turns out that the
usual form does not give a useful action or Lagrangian. However, we can instead use two anti-commuting Grassmann
fields C and switch the sign in the exponent to

det MF [A] =
∫

dc dc̄ exp
{∫

ddx ddy c̄a(x)Mab

F
(x, y)cb(y)

}
. (I.27)

Finally we slightly modify the gauge by introducing a Gaußian average over the gauges

ε[F [AU ]] ↓

∫
dC ε[F [AU

↔ C]] exp
{

↔
1
2φ

∫

x

C
a
C

a

}
. (I.28)

In summary, and restricting ourselves to the covariant gauge we then arrive at the generating functional for our
Yang-Mills theory

Z[JA, Jc, J̄c] =
∫

dA dc dc̄ e
↑SA[A,c,c̄]+

∫
x

(JA·A+J̄c·c↑c̄·Jc) . (I.29)

The action including a general gauge fixing term and the Faddeev-Popov ghosts ca is

SA[A, c, c̄] = 1
4

∫

x

F a

µε
F a

µε
+ 1

2φ

∫

x

(
ωµAa

µ

)2 +
∫

x

c̄aωµDab

µ
cb , (I.30)

where
∫

x
=

∫
ddx and the Landau gauge is achieved for φ = 0. Note that the ghost action implies a negative

dispersion for the ghost, related to the determinant of the positive operator MF = ↔ωµDµ. However, this is a matter
of convention, we might as well use a positive dispersion, the minus sign drops out for all correlation functions which
do not involve ghosts, and only those are related to scattering amplitudes. The source term with all indices reads

∫

x

(
JA · A + J̄c · c ↔ c̄ · Jc

)
⇐

∫

x

(
Ja

A,µ
Aa

µ
+ J̄a

c
ca

↔ c̄aJa

c

)
. (I.31)

The Feynman rules derived from (I.30) are summarized in Appendix A.
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B. QCD

1. Classical action of the matter sector

After briefly sketching the gauge part of QCD we now add fermionic matter fields. As before we start with the
classical action, now given by the Dirac action of a quark doublet,

SDirac[↼, ↼̄, A] =
∫

x

↼̄ (D/ + mϖ ↔ ↽0 µ) ↼ , (I.32)

where the Dirac matrices are defined through

{↽µ , ↽ε} = 2 εµε and /D = ↽µDµ . (I.33)

In (VI.28), the fermions carry a Dirac index defining the 4-component spinor, gauge group indices in the fundamental
representation of SU(3), as well flavor indices. The latter we will ignore as long as we only talk about QCD and
neglect the doublet nature of the matter fields in the Standard Model. The Dirac operator D/ is diagonal in the flavor
space as is the chemical potential term. The mass term depends on the current quark masses related to spontaneous
symmetry breaking of the Higgs sector of the Standard Model. The up and down current quark masses are of the
order 2 ↔ 5 MeV whereas the current quark mass of the strange quark is of the order 102 MeV. The other quark
masses are of order 1↔200 GeV. In low energy QCD this has to be compared with the scale of strong chiral symmetry
breaking !m ⇑ 300 MeV. This mass scales are summarized in Table I.

Generation first second third Charge
Mass [MeV] 1.5-4 1150-1350 170⇓103

Quark u c t 2
3

Quark d s b ↔
1
3

Mass [MeV] 4-8 80-130 (4.1-4.4)⇓103

TABLE I: Quark masses and charges. The scale of strong chiral symmetry breaking is !m ⇑ 300 MeV as is ”QCD.
This entails that only 2 + 1 flavours have to be considered for most applications to the phase diagram of QCD.

Evidently, for most applications of the QCD phase diagram we only have to consider the three lightest quark flavors,
that is up, down and strange quark, to be dynamical. The current quark masses of up and down quarks are two order
of magnitude smaller than all QCD infrared scales related to ”QCD. Hence, the up and down quarks can be considered
to be massless. This leads to the important observation that the physical masses of neutrons and protons — and
hence the masses of the world around us — comes about from strong chiral symmetry breaking and has nothing to
do with the Higgs sector.

In turn, the mass of the strange quark is of the order of ”QCD and has to be considered heavy for application in low
energy QCD. The three heavier flavors, charm, bottom and top, are essentially static they do not contribute to the
QCD dynamics relevant for its phase structure even though in particular the c-quark properties and bound states are
much influenced by the infrared dynamics of QCD. In summary we will consider the Nf = 2 and Nf = 2 + 1 flavor
cases for the phase structure of QCD, while for LHC physics all flavors are relevant.

2. Generating functional of QCD and perturbation theory

Again in analogy to the Yang-Mills action we describe the quantized theory using its generating functional. The
full generating functional of QCD is the straightforward extension of the Yang-Mills version in I A 1. The quark fields
are Grassmann fields because of their fermionic nature and we are led to the generating functional

Z[J ] =
∫

d# e
↑SQCD[!]+

∫
x

J·ϱ
, (I.34)
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FIG. 2: Diagrammatic depiction of the gauge fixed QCD action.

As a notation we have introduced super-fields and super-currents

# = (A, c, c̄, ↼, ↼̄) J = (JA, Jc, J̄c, Jϖ, J̄ϖ)

d# =
∫

dA dc dc̄ d↼ d↼̄ J · # = JA · A + J̄c · c ↔ c̄ · Jc + J̄ϖ · ↼ ↔ ↼̄ · Jϖ . (I.35)

The gauge-fixed action SQCD in (I.34) in the Landau gauge is given by

SQCD[#] = 1
4

∫

x

F a

µε
F a

µε
+ 1

2φ

∫

x

(
ωµAa

µ

)2 +
∫

x

c̄aωµDab

µ
cb +

∫

x

↼̄
(

/D + mϖ ↔ ↽0 µ
)

↼ . (I.36)

The action in (I.36) is illustrated diagrammatically in Figure 2. For physical observables the gauge dependence entering
through the last two graphs in the first line, the ghost terms, is cancelled by the hidden gauge fixing dependence of
the inverse gluon propagator. The Feynman rules are summarized in Appendix A.

The two equations (I.34), (I.36) define the fundamental quantum theory of strong interactions and have, apart from
the mass matrix mq of the quarks one input parameter, the strong coupling. In the full quantum theory we have a
running coupling

⇀s(p) = g2

4ς
, (I.37)

where p is the relevant momentum/energy scale of a given process. The scale-dependence of ⇀s(p) is inflicted by
quantum corrections. For perturbation theory being applicable the expansion parameter ⇀s/(4ς) should be small.
Moreover, the perturbative expansion is an asymptotic series (with convergence radius ⇀s,max = 0). The gluon self-
coupling in QCD, depicted in Figure 2 leads to a running coupling which decreases with the momentum scale, i.e.
,

⇁g = 1
2pωp⇀s = ↔⇁0⇀2 + O(⇀3

s
) with ⇁0 = ⇀2

s

12ς
(11Nc + 2Nf ) . (I.38)

Integrating the ⇁-function (I.38) at one loop leads to the running coupling

⇀s(p) = ⇀s(µ)
1 + ⇁0⇀s(µ) log p2

µ2

+ O(⇀2
s
) , (I.39)

with some reference (momentum) scale µ2. The running coupling in (I.39) tends to zero logarithmically for p ↓ ⇔.
This property is called asymptotic freedom (Nobel prize 2004) and guarantees the existence of the the perturbative
expansion of QCD. Its validity for large energies and momenta is by now impressively proven in various scattering
experiments, see e.g. [3]. These experiments can also be used to define a running coupling (which is not unique beyond
two loop, see e.g. [4]) and the related plot of ⇀s(p2) in Figure 3 has been taken from [3].

In turn, in the infrared regime of QCD at low momentum scales, perturbation theory is not applicable any more.
The coupling grows and the failure of perturbation theory is finally signaled by the so-called Landau pole with
⇀s(”QCD) = ⇔. We emphasise that a large or diverging coupling does not imply confinement, the theory could still
be QEDsS-like showing a Coulomb-potential with a large coupling. The latter would not lead to the absence of colored
asymptotic states but rather to so-called color charge superselection sectors as in QED. There, we have asymptotic
charged states and no physics process can change the charge.
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FIG. 3: Experimental tests of the running coupling, figure taken from [3].

II. DIVERGENCES

A. Ultraviolet divergences

From general field theory we know that when we are interested for example in cross section prediction with higher
precision we need to compute further terms in its perturbative series in ⇀s. This computation will lead to ultraviolet
divergences which can be absorbed into counter terms for any parameter in the Lagrangian. The crucial feature is
that for a renormalizable theory like our Standard Model the number of counter terms is finite, which means once we
know all parameters including their counter terms our theory becomes predictive.

In Section II B we will see that in QCD processes we also encounter another kind of divergences. They arise from
the infrared momentum regime. Infrared divergences is what this lecture is really going to be about, but before
dealing with them it is very instructive to see what happens to the much better understood ultraviolet divergences.
In Section II A 1 we will review how such ultraviolet divergences arise and how they are removed. In Section II A 2 we
will review how running parameters appear in this procedure, i.e. how scale dependence is linked to the appearance
of divergences. Finally, in Section II A 3 we will interpret the use of running parameters physically and see that in
perturbation theory they resum classes of logarithms to all orders in perturbation theory. Later in Section II B we will
follow exactly the same steps for infrared divergences and develop some crucial features of hadron collider physics.

1. Counter terms

Renormalization as the proper treatment of ultraviolet divergences is one of the most important things to understand
about field theories; you can find more detailed discussions in any book on advanced field theory. The particular aspect
of renormalization which will guide us through this section is the appearance of the renormalization scale.

In perturbation theory, scales automatically arise from the regularization of infrared or ultraviolet divergences. We
can see this by writing down a simple scalar loop integral, with to two virtual scalar propagators with masses m1,2
and an external momentum p flowing through a diagram,

B(p2; m1, m2) ⇐

∫
d4q

16ς2
1

q2 ↔ m2
1

1
(q + p)2 ↔ m2

2
. (II.1)

Such two-point functions appear for example in the gluon self energy with virtual gluons, with massless ghost scalars,
with a Dirac trace in the numerator for quarks, and with massive scalars for supersymmetric scalar quarks. In those
cases the two masses are identical m1 = m2. The integration measure 1/(16ς2) is dictated by the Feynman rule for
the integration over loop momenta. Counting powers of q in Eq.(II.1) we see that the integrand is not suppressed by
powers of 1/q in the ultraviolet, so it is logarithmically divergent and we have to regularize it. Regularizing means
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expressing the divergence in a well–defined manner or scheme, allowing us to get rid of it by renormalization.
One regularization scheme is to introduce a cuto! into the momentum integral ”, for example through the so-

called Pauli—Villars regularization. Because the ultraviolet behavior of the integrand or integral cannot depend on
any parameter living at a small energy scales, the parameterization of the ultraviolet divergence in Eq.(II.1) cannot
involve the mass m or the external momentum p2. The scalar two-point function has mass dimension zero, so its
divergence has to be proportional to log(”/µR) with a dimensionless prefactor and some scale µ2

R
which is an artifact

of the regularization of such a Feynman diagram. Because it is an artifact, this scale µR has to eventually vanish from
our theory prediction.

A more elegant regularization scheme is dimensional regularization. It is designed not to break gauge invariance
and naively seems to not introduce a mass scale µR. When we shift the momentum integration from 4 to 4 ↔ 2ϖ
dimensions and use analytic continuation in the number of space–time dimensions to renormalize the theory, a
renormalization scale µR nevertheless appears once we ensure the two-point function and with it observables like
cross sections keep their correct mass dimension

∫
d4q

16ς2 · · · ↔↓ µ2ς

R

∫
d4↑2ςq

16ς2 · · · = iµ2ς

R

(4ς)2

[
C↑1

ϖ
+ C0 + C1 ϖ + O(ϖ2)

]
. (II.2)

At the end, the scale µR might drop out after renormalization and analytic continuation, but to be on the safe side
we keep it. The constants Ci in the series in 1/ϖ depend on the loop integral we are considering. To regularize the
ultraviolet divergence we have to assume ϖ > 0, to find mathematically well defined poles 1/ϖ. Defining scalar integrals
with the integration measure 1/(iς2) will make for example C↑1 come out as of the order O(1). This is the reason
we usually find factors 1/(4ς)2 = ς2/(2ς)4 in front of the loop integrals.

The poles in 1/ϖ will cancel with the universal counter terms once we renormalize the theory. Counter terms we
include by shifting parameters in the Lagrangian and the leading order matrix element. They cancel the poles in the
combined leading order and virtual one-loop prediction

|MLO(g) + Mvirt|
2 = |MLO(g)|2 + 2 Re MLO(g)Mvirt + · · ·

↓ |MLO(g + εg)|2 + 2 Re MLO(g)Mvirt + · · ·

with g ↓ gbare = g + εg and εg ↖ ⇀s/ϖ . (II.3)

The dots indicate higher orders in ⇀s, for example absorbing the εg corrections in the leading order and virtual
interference. As we can see in Eq.(II.3) the counter terms do not come with a factor µ2ς

R
in front. Therefore, while

the poles 1/ϖ cancel just fine, the scale factor µ2ς

R
will not be matched between the actual ultraviolet divergence and

the counter term.
We can keep track of the renormalization scale best by expanding the prefactor of the regularized but not yet

renormalized integral in Eq.(II.2) in a Taylor series in ϖ, no question asked about convergence radii

µ2ς

R

[
C↑1

ϖ
+ C0 + O(ϖ)

]
= e2ς log µR

[
C↑1

ϖ
+ C0 + O(ϖ)

]

=
[
1 + 2ϖ log µR + O(ϖ2)

] [
C↑1

ϖ
+ C0 + O(ϖ)

]

= C↑1
ϖ

+ C0 + C↑1 log µ2
R

+ O(ϖ)

↓
C↑1

ϖ
+ C0 + C↑1 log µ2

R

M2 + O(ϖ) . (II.4)

In the last step we correct by hand for the fact that log µ2
R

with a mass dimension inside the logarithm cannot appear
in our calculations. From somewhere else in our calculation the logarithm will be matched with a log M2 where M2 is
the typical mass or energy scale in our process. This little argument shows that also in dimensional regularization we
introduce a mass scale µR which appears as log(µ2

R
/M2) in the renormalized expression for our observables. There is

no way of removing ultraviolet divergences without introducing some kind of renormalization scale.
In Eq.(II.4) there appear two finite contributions to a given observable, the expected C0 and the renormalization–

induced C↑1. Because the factors C↑1 are linked to the counter terms in the theory we can often guess them without
actually computing the complete loop integral, which is very useful in cases where they numerically dominate.

Counter terms as they schematically appear in Eq.(II.3) are not uniquely defined. They need to include a given
divergence to return finite observables, but we are free to add any finite contribution we want. This opens many ways
to define a counter term for example based on physical processes where counter terms do not only cancel the pole but
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also finite contributions at a given order in perturbation theory. Needless to say, such schemes do not automatically
work universally. An example for such a physical renormalization scheme is the on–shell scheme for masses, where we
define a counter term such that external on–shell particles do not receive any corrections to their masses. For the top
mass this means that we replace the leading order mass with the bare mass, for which we then insert the expression
in terms of the renormalized mass and the counter term

mbare
t

= mt + εmt

= mt + mt

⇀sCF

4ς

(
3

(
↔

1
ϖ

+ ↽E ↔ log(4ς) ↔ log µ2
R

M2

)
↔ 4 + 3 log m2

t

M2

)

⇐ mt + mt

⇀sCF

4ς

(
↔

3
ϖ̃

↔ 4 + 3 log m2
t

M2

)
↗

1
ϖ̃

(µR

M

) ⇐
1
ϖ

↔ ↽E + log 4ςµ2
R

M2 , (II.5)

with the color factor CF = (N2
↔1)/(2N) and the Euler constant ↽E ⇑ 0.577 coming from the evaluation of the Gamma

function $(ϖ) = 1/ϖ + ↽E + O(ϖ). The convenient scale dependent pole 1/ϖ̃ includes the universal additional terms like
the Euler gamma function and the scaling logarithm. This logarithm is the big problem in this universality argument,
since we need to introduce the arbitrary energy scale M to separate the universal logarithm of the renormalization
scale and the parameter-dependent logarithm of the physical process.

A theoretical problem with this on–shell renormalization scheme is that it is not gauge invariant. On the other
hand, it describes for example the kinematic features of top pair production at hadron colliders in a stable perturbation
series. This means that once we define a more appropriate scheme for heavy particle masses in collider production
mechanisms it better be numerically close to the pole mass. For the computation of total cross sections at hadron
colliders or the production thresholds at e+e↑ colliders the pole mass is not well suited at all, but since this is not
where we expect to measure particle masses at the LHC we should do fine with something very similar to the pole
mass.

Another example for a process dependent renormalization scheme is the mixing of ↽ and Z propagators. There we
choose the counter term of the weak mixing angle such that an on–shell Z boson cannot oscillate into a photon, and
vice versa. We can generalize this scheme for mixing scalars as they for example appear in supersymmetry, but it is
not gauge invariant with respect to the weak gauge symmetries of the Standard Model either. For QCD corrections,
on the other hand, it is the most convenient scheme keeping all exchange symmetries of the two scalars.

To finalize this discussion of process dependent mass renormalization we quote the result for a scalar supersymmetric
quark, a squark, where in the on–shell scheme we find

mbare
q̃

= mq̃ + εmq̃

= mq̃ + mq̃

⇀sCF

4ς


↔

2r

ϖ̃
↔ 1 ↔ 3r ↔ (1 ↔ 2r) log r ↔ (1 ↔ r)2 log

∣∣∣∣
1
r

↔ 1
∣∣∣∣ ↔ 2r log

m2
q̃

M2


. (II.6)

with r = m2
g̃
/m2

q̃
. The interesting aspect of this squark mass counter term is that it also depends on the gluino mass,

not just the squark mass itself. The reason why QCD counter terms tend to depend only on the renormalized quantity
itself is that the gluon is massless. In the limit of vanishing gluino contribution the squark mass counter term is again
only proportional to the squark mass itself

mbare
q̃

∣∣∣∣∣
mg̃=0

= mq̃ + εmq̃ = mq̃ + mq̃

⇀sCF

4ς


↔

1
ϖ̃

↔ 3 + log
m2

q̃

M2


. (II.7)

Taking the limit of Eq.(II.6) to derive Eq.(II.7) is computationally not trivial, though.
One common feature of all mass counter terms listed above is εm ↖ m, which means that our renormalization is

actually multiplicative,

mbare = Zm m = (1 + εZm) m =
(

1 + εm

m

)
m = m + εm with εZm = εm

m
, (II.8)

linking the two ways of writing the mass counter term. This form implies that particles with zero mass will not obtain
a finite mass through renormalization. If we remember that chiral symmetry protects a Lagrangian from acquiring
fermion masses this means that on–shell renormalization does not break this symmetry. A massless theory cannot
become massive by mass renormalization. Regularization and renormalization schemes which do not break symmetries
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of the Lagrangian are ideal.
When we introduce counter terms in general field theory we usually choose a slightly more model independent

scheme — we define a renormalization point. This is the energy scale at which the counter terms cancels all higher
order contributions, divergent as well as finite. The best known example is the electric charge which we renormalize
in the Thomson limit of zero momentum transfer through the photon propagator

e ↓ ebare = e + εe . (II.9)

Looking back at εmt as defined in Eq.(II.5) we also see a way to define a completely general counter term: if
dimensional regularization, i.e. the introduction of 4 ↔ 2ϖ dimensions does not break any of the symmetries of our
Lagrangian, like Lorentz symmetry or gauge symmetries, we can simply subtract the ultraviolet pole and nothing
else. The only question is: do we subtract 1/ϖ in the MS scheme or do we subtract 1/ϖ̃ in the MS scheme. In the MS
scheme the counter term is then scale dependent.

Carefully counting, there are three scales present in such a scheme. First, there is the physical scale in the process.
In our case of a top self energy this is for example the top mass mt appearing in the matrix element for the process
pp ↓ tt̄. Next, there is the renormalization scale µR, a reference scale which is part of the definition of any counter
term. And last but not least, there is the scale M separating the counter term from the process dependent result,
which we can choose however we want, but which as we will see implies a running of the counter term. The role of
this scale M will become clear when we go through the example of the running strong coupling ⇀s. Of course, we
would prefer to choose all three scales the same, but in a complex physical process this might not always be possible.
For example, any massive (2 ↓ 3) production process naturally involves several external physical scales.

Just a side remark for completeness: a one loop integral which has no intrinsic mass scale is the two-point function
with zero mass in the loop and zero momentum flowing through the integral: B(p2 = 0; 0, 0). It appears for example in
the self energy corrections of external quarks and gluons. Based on dimensional arguments this integral has to vanish
altogether. On the other hand, we know that like any massive two-point function it has to be ultraviolet divergent
B ↙ 1/ϖUV because setting all internal and external mass scales to zero is nothing special from an ultraviolet point of
view. This can only work if the scalar integral also has an infrared divergence appearing in dimensional regularization.
We can then write the entire massless two-point function as

B(p2 = 0; 0, 0) =
∫

d4q

16ς2
1
q2

1
(q + p)2 = iς2

16ς2

(
1

ϖUV
↔

1
ϖIR

)
, (II.10)

keeping track of the divergent contributions from the infrared and the ultraviolet regimes. For this particular integral
they precisely cancel, so the result for B(0; 0, 0) is zero, but setting it to zero too early will spoil any ultraviolet and
infrared finiteness test. Treating the two divergences strictly separately and dealing with them one after the other
also ensures that for ultraviolet divergences we can choose ϖ > 0 while for infrared divergences we require ϖ < 0.

2. Running coupling

To get an idea what these di!erent scales which appear in the process of renormalization mean let us compute such
a scale dependent parameter, namely the running strong coupling ⇀s(µ2

R
). The Drell–Yan process is one of the very

few relevant processes at hadron colliders where the strong coupling does not appear at tree level, so we cannot use it
as our toy process this time. Another simple process where we can study this coupling is bottom pair production at
the LHC, where at some energy range we will be dominated by valence quarks: qq̄ ↓ bb̄. The only Feynman diagram
is an s-channel o!–shell gluon with a momentum flow p2

⇐ s.

At next–to–leading order this gluon propagator will be corrected by self energy loops, where the gluon splits into two
quarks or gluons and re-combines before it produces the two final–state bottoms. Let us for now assume that all
quarks are massless. The Feynman diagrams for the gluon self energy include a quark look, a gluon loop, and the
ghost loop which removes the unphysical degrees of freedom of the gluon inside the loop.
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The gluon self energy correction or vacuum polarization, as propagator corrections to gauge bosons are usually labelled,
will be a scalar. This way, all fermion lines close in the Feynman diagram and the Dirac trace is computed inside
the loop. In color space the self energy will (hopefully) be diagonal, just like the gluon propagator itself, so we
can ignore the color indices for now. In unitary gauge the gluon propagator is proportional to the transverse tensor
T µε = gµε

↔ pεpµ/p2. As mentioned in the context of the e!ective gluon–Higgs coupling, the same should be true for
the gluon self energy, which we therefore write as %µε

⇐ % T µε . The case with only one external momentum gives us
the useful simple relations

T µεgφ

ε
=

(
gµε

↔
pµpε

p2

)
gφ

ε
= T µφ

T µεT φ

ε
=

(
gµε

↔
pµpε

p2

) (
gφ

ε
↔

pεpφ

p2

)
= gµφ

↔ 2pµpφ

p2 + p2 pµpφ

p4 = T µφ . (II.11)

Including the gluon, quark, and ghost loops the regularized gluon self energy with a momentum flow p2 through the
propagator reads

↔
1
p2 %

(
µ2

R

p2

)
= ⇀s

4ς

(
↔

1
ϖ̃

+ log p2

M2

) (
13
6 Nc ↔

2
3nf

)
+ O(log m2

t
)

⇐ ⇀s

(
↔

1
ϖ̃

+ log p2

M2

)
b0 + O(log m2

t
)

with b0 = 1
4ς

(
13
6 Nc ↔

2
3nf

)

and better b0 = 1
4ς

(
11
3 Nc ↔

2
3nf

)
SM
> 0 . (II.12)

The minus sign arises from the factors i in the propagators. The number of fermions coupling to the gluons is nf .
From the comments on B(p2; 0, 0) we understand how the loop integrals will give a logarithm log p2 which is then
matched by a process-dependent logarithm log M2 implicitly included in the definition of ϖ̃.

The factor b0 arises from one-loop corrections, i.e. from diagrams which include one additional power of ⇀s. Strictly
speaking, it gives the first term in a perturbative series in the strong coupling ⇀s = g2

s
/(4ς). Later on, we will indicate

where additional higher order corrections would enter.
In the last step of Eq.(II.12) we have snuck in additional contributions to the renormalization of the strong coupling

from the other one-loop diagrams in the process, replacing the factor 13/6 by a factor 11/3. This is related to the
fact that there are actually three types of divergent virtual gluon diagrams in the physical process qq̄ ↓ bb̄: the
external quark self energies with renormalization factors Z1/2

f
, the internal gluon self energy ZA, and the vertex

corrections ZAff . The only physical parameters we can renormalize in this process are the strong coupling and, if
finite, the bottom mass. Wave function renormalization constants are not physical, but vertex renormalization terms
are. The entire divergence in our qq̄ ↓ bb̄ process which needs to be absorbed in the strong coupling Zg is given by
the combination

ZAff = ZgZ1/2
A

Zf ↗
ZAff

Z1/2
A

Zf

⇐ Zg . (II.13)

The additional contributions change the above factor from 13/6 to 11/3 in the running of the strong coupling.
We can check this definition of Zg by comparing all vertices in which the strong coupling gs appears, namely the

gluon coupling to quarks and ghosts, as well as the triple and quartic gluon vertex. All of them need to have the same
divergence structure

ZAff

Z1/2
A

Zf

!= ZA↼↼

Z1/2
A

Z↼

!= Z3A

Z3/2
A

!=


Z4A

Z2
A

. (II.14)
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If we had done the same calculation in QED and looked for a running electric charge, we would have found that the
vacuum polarization diagrams for the photon do account for the entire counter term of the electric charge. The other
two renormalization constants ZAff and Zf cancel because of gauge invariance.

In contrast to QED, the strong coupling diverges in the Thomson limit because QCD is confined towards large
distances and weakly coupled at small distances. Lacking a well enough motivated reference point we are lead to
renormalize ⇀s in the MS scheme. From Eq.(II.12) we know that the ultraviolet pole which needs to be cancelled by
the counter term is proportional to the function b0

gbare
s

= Zggs = (1 + εZg) gs =
(

1 + εgs

gs

)
gs

∝ (g2
s
)bare = (Zggs)2 =

(
1 + εgs

gs

)2
g2

s
=

(
1 + 2εgs

gs

+ · · ·

)
g2

s
=

(
1 + ε(g2

s
)

g2
s

)
g2

s

∝ ⇀bare
s

=
(

1 + ε⇀s

⇀s

)
⇀s

MS=



1 ↔
%
p2

∣∣∣∣∣
pole



 ⇀s(M2) Eq.(II.12)=



1 ↔
⇀s

ϖ̃
(µR

M

) b0



 ⇀s(M2) . (II.15)

In the last step we have explicitly included the scale dependence of the counter term. Because the bare coupling
does not depend on any scales, this means that ⇀s depends on the unphysical scale M . Similar to the top mass
renormalization scheme we can switch to a more physical scheme for the strong coupling as well: we can absorb
also the finite contributions of %(µ2

R
/p2) into the strong coupling by simply identifying M2 = p2. Based again on

Eq.(II.12) this implies

⇀bare
s

= ⇀s(p2)
(

1 ↔
⇀s(p2)b0

ϖ̃
+ ⇀s(p2)b0 log p2

M2

)
. (II.16)

On the right hand side ⇀s is consistently evaluated as a function of the physical scale p2. The lograrithm just shifts
the argument of ϖ̃ from M2 to p2. This formula defines a running coupling ⇀s(p2), because the definition of the
coupling now has to account for a possible shift between the original argument p2 and the scale M2 coming out of
the MS scheme. Combining Eqs.(II.15) and (II.16) the bare strong coupling can be expressed in terms of ⇀s(M2) or
in terms of ⇀s(p2), and we can link the two scales through

⇀s(M2) = ⇀s(p2) + ⇀2
s
(p2)b0 log p2

M2 = ⇀s(p2)
(

1 + ⇀s(p2)b0 log p2

M2

)

↗
d⇀s(p2)
d log p2 = ↔⇀2

s
(p2)b0 + O(⇀3

s
) . (II.17)

To the given loop order the argument of the strong coupling squared on the right side can be neglected — its e!ect is of
higher order. We nevertheless keep the argument as a higher order e!ect to later distinguish di!erent approaches to the
running coupling. From Eq.(II.12) we know that b0 > 0, which means that towards larger scales the strong coupling
has a negative slope. The ultraviolet limit of the strong coupling is zero. This makes QCD an asymptotically free
theory. We can compute the function b0 in general models by simply adding all contributions of strongly interacting
particles in this loop

b0 = ↔
1

12ς



colored states
Dj TR,j , (II.18)

where we need to know some kind of counting factor Dj which is -11 for a vector boson (gluon), +4 for a Dirac
fermion (quark), +2 for a Majorana fermion (gluino), +1 for a complex scalar (squark) and +1/2 for a real scalar.
Note that this sign is not given by the fermionic or bosonic nature of the particle in the loop. The color charges are
TR = 1/2 for the fundamental representation of SU(3) and CA = Nc for the adjoint representation. The masses of
the loop particles are not relevant in this approximation because we are only interested in the ultraviolet regime of
QCD where all particles can be regarded massless. When we really model the running of ⇀s we need to take into
account threshold e!ects of heavy particles, because particles can only contribute to the running of ⇀s at scales above
their mass scale.

We can do even better than this fixed order in perturbation theory: while the correction to ⇀s in Eq.(II.16) is
perturbatively suppressed by the usual factor ⇀s/(4ς) it includes a logarithm of a ratio of scales which does not need
to be small. Instead of simply including these gluon self energy corrections at a given order in perturbation theory
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we can instead include chains of one-loop diagrams with % appearing many times in the o!–shell gluon propagator.
It means we replace the o!–shell gluon propagator by

T µε

p2 ↓
T µε

p2 +
(

T

p2 · (↔T %) ·
T

p2

)µε

+
(

T

p2 · (↔T %) ·
T

p2 · (↔T %) ·
T

p2

)µε

+ · · ·

= T µε

p2

↓

j=0

(
↔

%
p2

)j

= T µε

p2
1

1 + %/p2 , (II.19)

schematically written without the factors i. To avoid indices we abbreviate T µεT φ

ε
= T · T which make sense because

according to Eq.(II.11)

(T · T · T )µε = T µφT ↽

φ
T ε

↽
= T µ↽T ε

↽
= T µε . (II.20)

This resummation of the logarithm which appears in the next–to–leading order corrections to ⇀s moves the finite shift
in ⇀s shown in Eqs.(II.12) and (II.16) into the denominator, while we assume that the pole will be properly taken
care o! in any of the schemes we discuss

⇀bare
s

= ⇀s(M2) ↔
⇀2

s
b0

ϖ̃
⇐

⇀s(p2)

1 ↔ ⇀s(p2) b0 log p2

M2

↔
⇀2

s
b0

ϖ̃
. (II.21)

Just as in the case without resummation, we can use this complete formula to relate the values of ⇀s at two reference
points, i.e. we consider it a renormalization group equation (RGE) which evolves physical parameters from one scale
to another in analogy to the fixed order version in Eq.(II.17)

1
⇀s(M2) = 1

⇀s(p2)

(
1 ↔ ⇀s(p2) b0 log p2

M2

)
= 1

⇀s(p2) ↔ b0 log p2

M2 + O(⇀s) . (II.22)

The factor ⇀s inside the parentheses we can again evaluate at either of the two scales, the di!erence is a higher
order e!ect. If we keep it at p2 we see that the expression in Eq.(II.22) is di!erent from the un-resummed version
in Eq.(II.16). If we ignore this higher order e!ect the two formulas become equivalent after switching p2 and M2.
Resumming the vacuum expectation bubbles only di!ers from the un-resummed result once we include some next–
to–leading order contribution. When we di!erentiate ⇀s(p2) with respect to the momentum transfer p2 we find, using
the relation d/dx(1/⇀s) = ↔1/⇀2

s
d⇀s/dx

1
⇀s

d⇀s

d log p2 = ↔⇀s

d

d log p2
1

⇀s

= ↔⇀s b0 + O(⇀2
s
) or p2 d⇀s

dp2 ⇐
d⇀s

d log p2 = ⇁ = ↔⇀2
s



n=0
bn⇀n

s
. (II.23)

This is the famous running of the strong coupling constant including all higher order terms bn.

In the running of the strong coupling constant we relate the di!erent values of ⇀s through multiplicative factors of
the kind

(
1 ± ⇀sb0 log p2

M2

)
. (II.24)

Such factors appear in the un-resummed computation of Eq.(II.17) as well as in Eq.(II.21) after resummation. Because
they are multiplicative, these factors can move into the denominator, where we need to ensure that they do not vanish.
Dependent on the sign of b0 this becomes a problem for large scale ratios |⇀s log p2/M2

| > 1, where it leads to the
Landau pole. For b0 > 0 and large coupling values at small scales p2

′ M2 the combination (1 + ⇀sb0 log p2/M2) can
indeed vanish and become a problem.

It is customary to replace the renormalization point of ⇀s in Eq.(II.21) with a reference scale defined by the Landau
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pole. At one loop order we first define the reference scale ”QCD

1 + ⇀s(M2) b0 log
”2

QCD
M2

!= 0 ↗ log
”2

QCD
M2 = ↔

1
⇀s(M2)b0

↗ log p2

M2 = log p2

”2
QCD

↔
1

⇀s(M2)b0
,

(II.25)

and then include it in the running

1
⇀s(p2)

Eq.(II.22)= 1
⇀s(M2) + b0 log p2

M2 (II.26)

= 1
⇀s(M2) + b0 log p2

”2
QCD

↔
1

⇀s(M2) = b0 log p2

”2
QCD

↗ ⇀s(p2) = 1

b0 log p2

”2
QCD

.

This scheme can be generalized to any order in perturbative QCD and is not that di!erent from the Thomson
limit renormalization scheme of QED, except that with the introduction of ”QCD we are choosing a reference point
which is particularly hard to compute perturbatively. One thing that is interesting in the way we introduce ”QCD
is the fact that we introduce a scale into our theory without ever setting it. All we did was renormalize a coupling
which becomes strong at large energies and search for the mass scale of this strong interaction. This trick is called
dimensional transmutation.

In terms of language, there is a little bit of confusion between field theorists and phenomenologists: up to now
we have introduced the renormalization scale µR as the renormalization point, for example of the strong coupling
constant. In the MS scheme, the subtraction of 1/ϖ̃ shifts the scale dependence of the strong coupling to M2 and
moves the logarithm log M2/”2

QCD into the definition of the renormalized parameter. This is what we will from now
on call the renormalization scale in the phenomenological sense, i.e. the argument we evaluate ⇀s at. Throughout
this section we will keep the symbol M for this renormalization scale in the MS scheme, but from Section II B on we
will shift back to µR instead of M as the argument of the running coupling, to be consistent with the literature.

3. Resumming scaling logarithms

In the last Section II A 2 we have introduced the running strong coupling in a fairly abstract manner. For example,
we did not link the resummation of diagrams and the running of ⇀s in Eqs.(II.17) and (II.23) to physics. In what way
does the resummation of the one-loop diagrams for the s-channel gluon improve our prediction of the bottom pair
production rate at the LHC?

To illustrate those e!ects we best look at a simple observable which depends on just one physical energy scale p2.
The first observable coming to mind is again the Drell–Yan cross section σ(qq̄ ↓ µ+µ↑), but since we are not really
sure what to do with the parton densities which are included in the actual hadronic observable, we better use an
observable at an e+e↑ collider. Something that will work and includes ⇀s at least in the one-loop corrections is the
R parameter

R = σ(e+e↑
↓ hadrons)

σ(e+e↑ ↓ µ+µ↑) = Nc



quarks
Q2

q
= 11Nc

9 . (II.27)

The numerical value at leading order assumes five quarks. Including higher order corrections we can express the result
in a power series in the renormalized strong coupling ⇀s. In the MS scheme we subtract 1/ϖ̃(µR/M) and in general
include an unphysical scale dependence on M in the individual prefactors rn

R

(
p2

M2 , ⇀s

)
=



n=0
rn

(
p2

M2

)
⇀n

s
(M2) r0 = 11Nc

9 . (II.28)

The rn we can assume to be dimensionless — if they are not, we can scale R appropriately using p2. This implies
that the rn only depend on ratios of two scales, the externally fixed p2 on the one hand and the artificial M2 on the
other.

At the same time we know that R is an observable, which means that including all orders in perturbation theory
it cannot depend on any artificial scale choice M . Writing this dependence as a total derivative and setting it to zero
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we find an equation which would be called a Callan–Symanzik equation if instead of the running coupling we had
included a running mass

0 != M2 d

dM2 R

(
p2

M2 , ⇀s(M2)
)

=
[
M2 ω

ωM2 + ⇁
ω

ω⇀s

] 

n=0
rn

(
p2

M2

)
⇀n

s

=


n=1
M2 ωrn

ωM2 ⇀n

s
+



n=1
⇁ rn n⇀n↑1

s
with r0 = 11Nc

9 = const

= M2


n=1

ωrn

ωM2 ⇀n

s
↔



n=1



m=0
nrn ⇀n+m+1

s
bm with ⇁ = ↔⇀2

s



m=0
bm⇀m

s

= M2 ωr1
ωM2 ⇀s +

(
M2 ωr2

ωM2 ↔ r1b0

)
⇀2

s
+

(
M2 ωr3

ωM2 ↔ 2r2b0 ↔ r1b1

)
⇀3

s
+ O(⇀4

s
) . (II.29)

In the second line we have to remember that the M dependence of ⇀s is already included in the appearance of ⇁, so
⇀s should be considered a variable by itself. This perturbative series in ⇀s has to vanish in each order of perturbation
theory. Our kind–of–Callan–Symanzik equation requires

ωr1
ω log M2 = 0

ωr2
ω log M2 = r1b0

ωr3
ω log M2 = r1b1 + 2r2(M2)b0

... (II.30)

The mix of rn derivatives and the perturbative terms in the ⇁ function we can read o! the ⇀3
s

term: first, we have the
appropriate NNNLO corrections r3; next, we have one loop in the gluon propagator b0 and two loops for example in
the vertex r2; and finally, we need the two-loop diagram for the gluon propagator b1 and a one-loop vertex correction
r1. The dependence on the argument M2 vanishes for r0 and r1. Keeping in mind that there will be integration
constants cn and that another, in our case, unique momentum scale p2 has to cancel the mass units inside log M2 we
find

r0 = c0 = 11Nc

9
r1 = c1

r2 = c2 + r1b0 log M2

p2 = c2 + c1b0 log M2

p2

r3 =
∫

d log M ↔2

p2


c1b1 + 2


c2 + c1b0 log M ↔2

p2


b0


= c3 + (c1b1 + 2c2b0) log M2

p2 + c1b2
0 log2 M2

p2

... (II.31)

This chain of rn values looks like we should interpret the apparent fixed-order perturbative series for R in Eq.(II.28)
as a series which implicitly includes terms of the order logn↑1 M2/p2 in each rn. They can become problematic if
this logarithm becomes large enough to spoil the fast convergence in terms of ⇀s ↙ 0.1, evaluating the observable R
at scales far away from the scale choice for the strong coupling constant M .

Instead of the series in rn we can use Eq.(II.31) to express R in terms of the cn and collect the logarithms appearing
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with each cn,

R =


n

rn

(
p2

M2

)
⇀n

s
(M2) = c0 + c1

(
1 + ⇀s(M2)b0 log M2

p2 + ⇀2
s
(M2)b2

0 log2 M2

p2 + · · ·

)
⇀s(M2)

+ c2

(
1 + 2⇀s(M2)b0 log M2

p2 + · · ·

)
⇀2

s
(M2) + · · · (II.32)

We encounter geometric series, which we resum as

R = c0 + c1
⇀s(M2)

1 ↔ ⇀s(M2)b0 log M2

p2

+ c2




⇀s(M2)

1 ↔ ⇀s(M2)b0 log M2

p2





2

+ · · · ⇐


cn ⇀n

s
(p2) . (II.33)

In the original ansatz ⇀s is always evaluated at the scale M2. In the last step we use Eq.(II.22) with flipped
arguments p2 and M2, derived from the resummation of the vacuum polarization bubbles. In contrast to the rn

integration constants the cn are by definition independent of p2/M2 and therefore more suitable as a perturbative
series in the presence of potentially large logarithms. Note that the un-resummed version of the running coupling in
Eq.(II.16) would not give the correct result, so Eq.(II.33) only holds for resummed vacuum polarization bubbles.

This re-organization of the perturbation series for R can be interpreted as resumming all logarithms of the kind
log M2/p2 in the new organization of the perturbative series and absorbing them into the running strong coupling
evaluated at the scale p2. All scale dependence in the perturbative series for the dimensionless observable R is moved
into ⇀s, so possibly large logarithms log M2/p2 have disappeared. In Eq.(II.33) we also see that this series in cn will
never lead to a scale-invariant result when we include a finite order in perturbation theory. Some higher–order factors
cn are known, for example inserting Nc = 3 and five quark flavors just as we assume in Eq.(II.27)

R = 11
3


1 + ⇀s(p2)

ς
+ 1.4

(
⇀s(p2)

ς

)2

↔ 12
(

⇀s(p2)
ς

)3

+ O

(
⇀s(p2)

ς

)4
. (II.34)

This alternating series with increasing perturbative prefactors seems to indicate the asymptotic instead of convergent
behavior of perturbative QCD. At the bottom mass scale the relevant coupling factor is only ⇀s(m2

b
)/ς ↙ 1/14,

so a further increase of the cn would become dangerous. However, a detailed look into the calculation shows that
the dominant contributions to cn arise from the analytic continuation of logarithms, which are large finite terms for
example from Re(log2(↔E2)) = log2 E2 + ς2. In the literature such ς2 terms arising from the analytic continuation
of loop integrals are often phrased in terms of ζ2 = ς2/6.

Before moving on we collect the logic of the argument given in this section: when we regularize an ultraviolet
divergence we automatically introduce a reference scale µR. Naively, this could be an ultraviolet cuto! scale, but even
the seemingly scale invariant dimensional regularization in the conformal limit of our field theory cannot avoid the
introduction of a scale. There are several ways of dealing with such a scale: first, we can renormalize our parameter at
a reference point. Secondly, we can define a running parameter and this way absorb the scale logarithm into the MS
counter term. In that case introducing ”QCD leaves us with a compact form of the running coupling ⇀s(M2; ”QCD).

Strictly speaking, at each order in perturbation theory the scale dependence should vanish together with the
ultraviolet poles, as long as there is only one scale a!ecting a given observable. However, defining the running strong
coupling we sum one-loop vacuum polarization graphs. Even when we compute an observable at a given loop order,
we implicitly include higher order contributions. They lead to a dependence of our perturbative result on the artificial
scale M2, which phenomenologists refer to as renormalization scale dependence.

Using the R ratio we see what our definition of the running coupling means in terms of resumming logarithms: reor-
ganizing our perturbative series to get rid of the ultraviolet divergence ⇀s(p2) resums the scale logarithms log p2/M2

to all orders in perturbation theory. We will need this picture once we introduce infrared divergences in the following
section.
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B. Infrared divergences

After this brief excursion into ultraviolet divergences and renormalization we can return to the original example,
the Drell–Yan process, written in the low-energy QED limit as

σ(pp ↓ ▷+▷↑)

∣∣∣∣∣
QED

= 4ς⇀2Q2
⇀

3Nc

∫ 1

0
dx1dx2



j

Q2
j

fj(x1) f
j̄
(x2) 1

q2 , (II.35)

At this stage the parton distributions (pdfs) fj(x) in the proton are only functions of the collinear momentum fraction
of the partons inside the proton about which from a theory point of view we only know a set of sum rules.

The perturbative question we need to ask for µ+µ↑ production at the LHC is: what happens if together with the
two leptons we produce additional jets which for one reason or another we do not observe in the detector. Such jets
could for example come from the radiation of a gluon from the initial–state quarks. In Section II B 1 we will study the
kinematics of radiating such jets and specify the infrared divergences this leads to. In Sections II B 2 and IV A we will
show that these divergences have a generic structure and can be absorbed into a re-definition of the parton densities,
similar to an ultraviolet renormalization of a Lagrangian parameter. In Sections IV B and IV C we will again follow
the example of the ultraviolet divergences and specify what absorbing these divergences means in terms logarithms
appearing in QCD calculations.

Throughout this writeup we will use the terms jets and final state partons synonymously. This is not really correct
once we include jet algorithms and hadronization. On the other hand, the purpose of a jet algorithm is to take us
from some kind of energy deposition in the calorimeter to the parton radiated in the hard process. The two should
therefore be closely related.

1. Single jet radiation

Let us look at the radiation of additional partons in the Drell–Yan process. We can start for example by computing
the cross section for the partonic process qq̄ ↓ Zg. However, this partonic process involves renormalization of
ultraviolet divergences as well as loop diagrams which we have to include before we can say anything reasonable, i.e.
ultraviolet and infrared finite.

To make life easier and still learn about the structure of collinear infrared divergences we instead look at the crossed
process

It should behave similar to any other (2 ↓ 2) jet radiation, except that it has a di!erent incoming state than the
leading order Drell–Yan process and hence does not involve virtual corrections. This means we do not have to deal
with ultraviolet divergences and renormalization, and can concentrate on parton or jet radiation from the initial state.
Moreover, let us go back to Z production instead of a photon, to avoid confusion with additional massless particles
in the final state.

The amplitude for this (2 ↓ 2) process is — modulo charges and averaging factors, but including all Mandelstam
variables

|M|
2

↙ ↔
t

s
↔

s2
↔ 2m2

Z
(s + t ↔ m2

Z
)

st
. (II.36)

The Mandelstam variable t for one massless final–state particle can be expressed in terms of the rescaled gluon
emission angle

t = ↔s(1 ↔ ◁)y with y = 1 ↔ cos 0

2 and ◁ = m2
Z

s
. (II.37)

Similarly, we obtain u = ↔s(1 ↔ ◁)(1 ↔ y), so as a first check we can confirm that t + u = ↔s(1 ↔ ◁) = ↔s + m2
Z

. The
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collinear limit when the gluon is radiated in the beam direction is given by

y ↓ 0 ↗ t ↓ 0 ↗ u = ↔s + m2
Z

< 0

|M|
2

↓
s2

↔ 2sm2
Z

+ 2m4
Z

s(s ↔ m2
Z

)
1
y

+ O(y0) . (II.38)

This expression is divergent for collinear gluon radiation or gluon splitting, i.e. for small angles y. We can translate
this 1/y divergence for example into the transverse momentum of the gluon or Z

sp2
T

= tu = s2(1 ↔ ◁)2 y(1 ↔ y) = (s ↔ m2
Z

)2y + O(y2) (II.39)

In terms of pT , the collinear limit our matrix element squared in Eq.(II.38) becomes

|M|
2

↙
s2

↔ 2sm2
Z

+ 2m4
Z

s2
s ↔ m2

Z

p2
T

+ O(p0
T

) . (II.40)

The matrix element for the tree level process qg ↓ Zq has a leading divergence proportional to 1/p2
T

. To compute the
total cross section for this process we need to integrate the matrix element over the entire two-particle phase space.
Approximating the matrix element as C ↔/y or C/p2

T
, we then integrate

∫
y

max

ymin
dy

C ↔

y
=

∫
p

max
T

p
min
T

dp2
T

C

p2
T

= 2
∫

p
max
T

p
min
T

dpT pT

C

p2
T

∞ 2C

∫
p

max
T

p
min
T

dpT

1
pT

= 2C log pmax
T

pmin
T

(II.41)

The form C/p2
T

for the matrix element is of course only valid in the collinear limit; in the non–collinear phase space
C is not a constant.

Next, we follow the same strategy as for the ultraviolet divergence. First, we regularize the divergence for example
using dimensional regularization. Then, we find a well–defined way to get rid of it. Dimensional regularization means
writing the two-particle phase space in n = 4 ↔ 2ϖ dimensions. Just for reference, the complete formula for the
y-distribuion reads

s
dσ

dy
= ς(4ς)↑2+ς

$(1 ↔ ϖ)

(
µ2

F

m2
Z

)ς
◁ ς(1 ↔ ◁)1↑2ς

yς(1 ↔ y)ς
|M|

2
↙

(
µ2

F

m2
Z

)ς
|M|

2

yς(1 ↔ y)ς
. (II.42)

In the second step we only keep the factors we are interested in. The additional factor 1/yς regularizes the integral
at y ↓ 0, as long as ϖ < 0 by slightly increasing the suppression of the integrand in the infrared regime. This means
that for infrared divergences we can as well choose n = 4 + 2ϖ space–time dimensions with ϖ > 0. After integrating
the leading collinear divergence 1/y1+ς we are left with a pole 1/(↔ϖ). This regularization procedure is symmetric
in y ∈ (1 ↔ y). What is important to notice is again the appearance of a scale µ2ς

F
with the n-dimensional integral.

This scale arises from the infrared regularization of the phase space integral and is referred to as factorization scale.
The actual removal of the infrared pole — corresponding to the renormalization in the ultraviolet case — is called
mass factorization and works exactly the same way as renormalizing a parameter: in a well–defined scheme we simply
subtract the pole from the fixed-order matrix element squared.

2. Parton splitting

In this section we will show that we can indeed write all collinear divergences in a universal form, independent of
the hard process which we choose as the Drell–Yan process. In the collinear limit, the radiation of additional partons
or the splitting into additional partons will be described by universal splitting functions.

Infrared divergences occur for massless particles in the initial or final state, so we need to go through all ways
incoming or outgoing gluons and quark can split into each other. The description of the factorized phase space,
with which we will start, is common to all these di!erent channels. The first and at the LHC most important case
is the splitting of one gluon into two, shown in Figure 4. The two daughter gluons are close to mass shell while
the mother has to have a finite positive invariant mass p2

a
∋ p2

b
, p2

c
. We again assign the direction of the momenta

as pa = ↔pb ↔ pc, which means we have to take care of minus signs in the particle energies. We can describe the
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FIG. 4: Splitting of one gluon into two gluons. Figure from Ref. [5].

kinematics of this approximately collinear process in terms of the energy fractions z and 1 ↔ z defined as

z = |Eb|

|Ea|
= 1 ↔

|Ec|

|Ea|
p2

a
= (↔pb ↔ pc)2 = 2(pbpc) = 2z(1 ↔ z)(1 ↔ cos 0)E2

a
= z(1 ↔ z)E2

a
02 + O(04)

↗ 0 ⇐ 0b + 0c ∞
1

|Ea|


p2

a

z(1 ↔ z) , (II.43)

in the collinear limit and in terms of the opening angle 0 between ϱpb and ϱpc. Because p2
a

> 0 we call this final–state split-
ting configuration time–like branching. For this configuration we can write down the so-called Sudakov decomposition
of the four-momenta

↔pa = pb + pc = (↔zpa + ⇁n + pT ) + (↔(1 ↔ z)pa ↔ ⇁n ↔ pT ) . (II.44)

It defines an arbitrary unit four-vector n, a pT component orthogonal to the mother momentum and to n and pa,

(papT ) = 0 = (npT ) , (II.45)

and a free factor ⇁. We can specify n such that it defines the direction of the pb–pc decay plane. In this decomposition
we can set only one invariant mass to zero, for example that of a radiated gluon p2

c
= 0. The second final state will

have a finite invariant mass p2
b

△= 0.
As specific choice for the three reference four-vectors is

pa =





|Ea|

0
0

pa,3



 = |Ea|





1
0
0

1 + O(0)



 n =





1
0
0

↔1



 pT =





0
pT,1
pT,2

0



 . (II.46)

Relative to ϱpa we can split the opening angle 0 for massless partons according to Figure 4

0 = 0b + 0c and 0b

0c

=

pT

|Eb|

pT

|Ec|

= 1 ↔ z

z
↗ 0 = 0b

1 ↔ z
= 0c

z
. (II.47)

The momentum choice in Eq.(II.46) has the additional feature that n2 = 0, which allows us to extract ⇁ from the
momentum parameterization shown in Eq.(II.44) and the additional condition p2

c
= 0

p2
c

= (↔(1 ↔ z)pa ↔ ⇁n ↔ pT )2

= (1 ↔ z)2p2
a

+ p2
T

+ 2⇁(1 ↔ z)(npa)

= (1 ↔ z)2p2
a

+ p2
T

+ 4⇁(1 ↔ z)|Ea|(1 + O(0)) != 0 ↗ ⇁∞ ↔
p2

T
+ (1 ↔ z)2p2

a

4(1 ↔ z)|Ea|
. (II.48)

Using this phase space parameterization we divide an (n + 1)-particle process into an n-particle process and a
splitting process of quarks and gluons. First, this requires us to split the (n + 1)-particle phase space alone into
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an n-particle phase space and the collinear splitting. The general (n + 1)-particle phase space separating o! the
n-particle contribution

d#n+1 = · · ·
d3ϱpb

2(2ς)3|Eb|

d3ϱpc

2(2ς)3|Ec|
= · · ·

d3ϱpa

2(2ς)3|Ea|

d3ϱpc

2(2ς)3|Ec|

|Ea|

|Eb|

⇐ d#n

dpc,3dpT pT d1

2(2ς)3|Ec|

1
z

= d#n

dpc,3dp2
T

d1

4(2ς)3|Ec|

1
z

(II.49)

azimuthal angle 1. In other words, separating the (n + 1)-particle space into an n-particle phase space and a (1 ↓ 2)
splitting phase space is possible without any approximation, and all we have to take care of is the correct prefactors
in the new parameterization.

Our next task is to translate pc,3 and p2
T

into z and p2
a
. Starting from Eq.(II.44) for pc,3 with the third components

of pa and pT given by Eq.(II.46) we insert ⇁ from Eq.(II.48) and obtain

dpc,3
dz

= d

dz
[↔(1 ↔ z)|Ea|(1 + O(0)) + ⇁] = d

dz

[
↔(1 ↔ z)|Ea|(1 + O(0)) ↔

p2
T

+ (1 ↔ z)2p2
a

4(1 ↔ z)|Ea|

]

= |Ea|(1 + O(0)) ↔
p2

T

4(1 ↔ z)2Ea

+ p2
a

4|Ea|

= |Ec|

1 ↔ z
(1 + O(0)) ↔

02z2E2
c

4(1 ↔ z)2Ea

+ z(1 ↔ z)E2
a
02 + O(04)

4|Ea|
using Eq.(II.43) and Eq.(II.47)

= |Ec|

1 ↔ z
+ O(0) ↗

dpc,3
|Ec|

∞
dz

1 ↔ z
. (II.50)

Next, we replace dp2
T

with dp2
a

according to

p2
T

p2
a

= E2
b
02

b

z(1 ↔ z)E2
a
02 = z2E2

a
(1 ↔ z)202

z(1 ↔ z)E2
a
02 = z(1 ↔ z) ↗ dp2

T
= z(1 ↔ z)dp2

a
. (II.51)

This gives us the final result for the separated collinear phase space

d#n+1 = d#n

dz dp2
a

d1

4(2ς)3 = d#n

dz dp2
a

4(2ς)2 , (II.52)

where in the second step we assume an azimuthal symmetry.

Adding the transition matrix elements to this factorization of the phase space and ignoring the initial–state flux
factor which is common to both processes we can now postulate a full factorization for one emission and in the
collinear approximation

dσn+1 = |Mn+1|2 d#n+1

= |Mn+1|2 d#n

dp2
a

dz

4(2ς)2 (1 + O(0))

∞
2g2

s

p2
a

P̂ (z) |Mn|2 d#n

dp2
a

dz

16ς2 assuming |Mn+1|2 ∞
2g2

s

p2
a

P̂ (z) |Mn|2 . (II.53)

This last step is an assumption. We will proceed to show it step by step by constructing the appropriate
splitting kernels P̂ (z) for all di!erent quark and gluon configurations. If Eq.(II.53) holds true this means that
we can compute the (n + 1) particle amplitude squared from the n-particle case convoluted with the appropriate
splitting kernel. Using dσn ↙ |Mn|2 d#n and g2

s
= 4ς⇀s we can write this relation in its most common form

σn+1 ∞

∫
σn

dp2
a

p2
a

dz
⇀s

2ς
P̂ (z) . (II.54)
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Reminding ourselves that relations of the kind |Mn+1|2 = p|Mn|2 can typically be summed, for example for the case
of successive soft photon radiation in QED, we see that Eq.(II.54) is not the final answer. It does not include the
necessary phase space factor 1/n! from identical bosons in the final state which leads to the simple exponentiation.

As the first parton splitting in QCD we study a gluon splitting into two gluons, shown in Figure 4. To compute
its transition amplitude we need to write down all gluon momenta and polarizations in a specific frame. We skip the
derivation and just quote the result

|Mn+1|2 = 2g2
s

p2
a

Nc

2 2
[

z

1 ↔ z
+ z(1 ↔ z) + 1 ↔ z

z

]
|Mn|2

⇐
2g2

s

p2
a

P̂g↗g(z) |Mn|2

↗ P̂g↗g(z) = CA

[
z

1 ↔ z
+ 1 ↔ z

z
+ z(1 ↔ z)

]
, (II.55)

using CA = Nc. The form of the splitting kernel is symmetric when we exchange the two gluons z and (1 ↔ z). It
diverges if either of the gluons become soft. The notation P̂i↗j ↙ P̂ij is inspired by a matrix notation which we can
use to multiply the splitting matrix from the right with the incoming parton vector to get the final parton vector.
Following the logic described above, with this calculation we prove that the factorized form of the (n + 1)-particle
matrix element squared in Eq.(II.53) holds for gluons only.

The same kind of splitting kernel we can compute for the splitting of a gluon into two quarks and the splitting of
a quark into a quark and a gluon

g(pa) ↓ q(pb) + q̄(pc) and q(pa) ↓ q(pb) + g(pc) . (II.56)

Both splittings include the quark–quark–gluon vertex, coupling the gluon current to the quark and antiquark spinors.
Again, we omit the calculation and quote the result

|Mn+1|2 = 2g2
s

p2
a

TR

[
z2 + (1 ↔ z)2]

|Mn|2

⇐
2g2

s

p2
a

P̂q↗g(z) |Mn|2

↗ P̂q↗g(z) = TR

[
z2 + (1 ↔ z)2]

, (II.57)

with TR = 1/2. In the first line we implicitly assume that the internal quark propagator can be written as something
like uū/p2

a
and we only need to consider the denominator. This splitting kernel is again symmetric in z and (1 ↔ z)

because QCD does not distinguish between the outgoing quark and the outgoing antiquark.

The third splitting we compute is gluon radiation o! a quark,

q(pa) ↓ q(pb) + g(pc) , (II.58)

sandwiching the qqg vertex between an outgoing quark ū±(pb) and an incoming quark u±(pa). The result is

|Mn+1|2 = 2g2
s

p2
a

CF

1 + z2

1 ↔ z
|Mn|2

⇐
2g2

s

p2
a

P̂q↗g(z) |Mn|2

↗ P̂q↗q(z) = CF

1 + z2

1 ↔ z
. (II.59)

The color factor for gluon radiation o! a quark is CF = (N2
↔ 1)/(2N). The averaging factor 1/Na = 2 now is the

number of quark spins in the intermediate state. Just switching z ∈ (1 ↔ z) we can read o! the kernel for a quark
splitting written in terms of the final–state gluon

P̂g↗q(z) = CF

1 + (1 ↔ z)2

z
. (II.60)
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This result finalizes our calculation of all QCD splitting kernels P̂i↗j(z) between quarks and gluons. As alluded to
earlier, similar to ultraviolet divergences which get removed by counter terms these splitting kernels are universal.
They do not depend on the hard n-particle matrix element which is part of the original (n + 1)-particle process. In
Eqs.(II.55), (II.57), (II.59), and (II.60) we have shown by construction that the collinear factorization Eq.(II.54) holds
at this level in perturbation theory.

Before using this splitting property to describe QCD e!ects at the LHC we need to look at the splitting of partons
in the initial state, meaning |p2

a
|, p2

c
′ |p2

b
| where pb is the momentum entering the hard interaction. The di!erence to

the final–state splitting is that now we can consider the split parton momentum pb = pa ↔ pc as a t-channel diagram,
so we already know p2

b
= t < 0 from our usual Mandelstam variables argument. This space–like splitting version of

Eq.(II.44) for p2
b

gives us

t ⇐ p2
b

= (↔zpa + ⇁n + pT )2

= p2
T

↔ 2z⇁(pan) with p2
a

= n2 = (papT ) = (npT ) = 0

= p2
T

+ p2
T

z

1 ↔ z
using Eq.(II.48)

= p2
T

1 ↔ z
= ↔

p2
T,1 + p2

T,2
1 ↔ z

< 0 . (II.61)

The calculation of the splitting kernels and matrix elements is the same as for the time–like case, with the one
exception that for splitting in the initial state the flow factor has to be evaluated at the reduced partonic energy
Eb = zEa and that the energy fraction entering the parton density needs to be replaced by xb ↓ zxb. The factorized
matrix element for initial–state splitting then reads just like Eq.(II.54)

σn+1 =
∫

σn

dt

t
dz

⇀s

2ς
P̂ (z) . (II.62)

What we are missing for the infrared or better collinear divergences is the description of the scale dependence and
the interpretation in terms of perturbation theory. That will lead us to the DGLAP equations in Sec. IV.

III. STRONG CHIRAL SYMMETRY BREAKING

In the previous sections we discussed the ultraviolet renomalisation of QCD and its relation to the scale dependence
of physics. This scale dependence is apparent in the momentum dependence of the strong running coupling ⇀s(p2) =
g2(p2)/(4ς) defined in (I.39) and (II.23). Here p is the relevant momentum/energy scale of a given process. The
running coupling in (I.39) tends to zero logarithmically for p ↓ ⇔. This property is called asymptotic freedom
(Nobel prize 2004) and guarantees the existence of the the perturbative expansion of QCD. Its validity for large
energies and momenta is by now impressively proven in various scattering experiments, see e.g. Figure 3 from [3].
These experiments can also be used to define a running coupling (which is not unique beyond two loop, see e.g. [4]).

In turn, in the infrared regime of QCD at low momentum scales, perturbation theory is not applicable any more.
The coupling grows and the failure of perturbation theory is finally signaled by the so-called Landau pole with
⇀s(”QCD) = ⇔. We infer from (I.39) that at one loop, ”QCD is given by

”QCD = µ e↑
1

2ω0εs(µ) , with µ
d”QCD

dµ
= 0 . (III.1)

The RG-invariance of ”QCD is readily proven with the ⇁-function (I.38) up to two-loop terms. This implies that
”QCD may be related to a physical scale and indeed it is (non-trivially) related to the mass gap in QCD. However, we
emphasise that a large or diverging coupling does not imply confinement, the theory could still be QED-like showing
a Coulomb-potential with a large coupling. The latter would not lead to the absence of coloured asymptotic states
but rather to so-called color charge superselection sectors as in QED. There, we have asymptotic charged states and
no physics process can change the charge. For more details see e.g. [6].
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A. Spontaneous symmetry breaking and the Goldstone theorem

In the Standard Model we have two phenomena involving spontaneous symmetry breaking. The first is the sponta-
neous symmetry breaking in the Higgs sector (Englert-Brout-Higgs-Guralnik-Hagen-Kibble) which provides (current)
masses for the quarks and leptons as well as for the W, Z vector bosons, the gauge bosons of the weak interactions. The
corresponding Goldstone boson manifest itself as the third polarisation of the massive vector bosons (Higgs-Kibble
dinner).

The second phenomena is strong chiral symmetry breaking in the quark sector with a mass scale of ⇑ 300 MeV.
This mechanism, loosely speaking, lifts the current quark masses to constituent quark masses. For the up and down
quarks the current quark mass is negligible, see Table I. The corresponding (pseudo-) Goldstone bosons, the pions ϱς,
are composite (quark–anti-quark) states and do not appear in the QCD action.

In the following we discuss similarities of and di!erences between these two phenomena. Before we come to the
Standard Model, let us recall some basic facts about spontaneous symmetry breaking. Further details can be found
in the literature. As a basic, but important, example we consider a simple scalar field theory with N real scalars and
action

S[1] = 1
2

∫

x

(ωµ1a)2 +
∫

x

V (2) , with a = 1, ..., N , and 2 = 1
21a1a , (III.2)

and the 14-potential

V (2) = ↔
1
2µ2

ϱ
(1a1a) + 3ϱ

8 (1a1a)2 = ↔µϱ2 + 3ϱ

2 22 . (III.3)

In the following considerations we shall not need the specific form (III.3) but only its symmetries. Still, the simple
potential (III.3) serves as a good showcase. The action (III.2) with the potential (III.3) has O(N)-symmetry. Moreover,
the potential (III.3) has a manifold of non-trivial minima, each of which breaks O(N)-symmetry. This leads us to the
vacuum manifold

V ↔(20) = 0 , with 20 =
µ2

ϱ

3ϱ

, (III.4)

where the prime stands for the derivative w.r.t. 2. In Figure 5 the potential is depicted for the O(2)-case with N = 2.
Without loss of generality we pick a specific point on the vacuum manifold (III.4), to wit

10 =





0
...
0

⇒
220




. (III.5)

V (⇢)

�2

�1

FIG. 5: Illustration of the Mexican hat potential for N = 2. The radial massive mode 2 is indicated by the arrow.
The angular mode is the Goldstone mode.
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The vacuum vector 10 in (III.5) is invariant under the subgroup (little group) O(N ↔ 1) with the generators ta,
a = N, N + 1, ...N(N ↔ 1)/2 of O(N) that acts trivially on the Nth component field 1N . This subgroup rotates the
first N ↔ 1 component fields into each other. It leaves us with N ↔ 1 generators ta, a = 1, ..., N ↔ 1 (of the quotient
O(N)/O(N ↔ 1)) of the N(N ↔ 1)/2 generators of the group O(N). In turn, a rotation of the vacuum vector within
this quotient generates the full vacuum manifold. Applied to a vector 1a = εNa

⇒
22 with length it generates all fields,

1 = e
ϑa

↘
2ϖ0

t
a





0
...
0
σ




, (III.6)

where the denominator 1/
⇒

220 is chosen for convenience. Commonly, the Nth component field 1N is expanded about
the minimum σ0 =

⇒
220.

In the present lecture we choose a slightly di!erent approach and stick to the Cartesian fields 1 which we split into
the radial mode σ and the rest, ϱς, i.e.

1 =
(

ϱς
σ

)
, with 10 =

(
0
σ

)
. (III.7)

Note that in an expansion about the minimum 10 in the fields ϱ0 and ϱς agree in leading order. Using the representation
(III.7) in the kinetic term in the action (III.2) we are led to

Skinetic[1] = 1
2

∫

x

[
(ωµσ)2 + (ωµϱς)2]

. (III.8)

The mass term of the model is given by the quadratic term of the potential in an expansion about the minimum. It
reads generally

1
2

∫

x

m2 ab(10)1a 1b , with m2 ab(10) = ωϱaωϱbV (20) = εab V ↔(20) + 1a

01b

0 V ↔↔(20) . (III.9)

Using the expansion point (III.5) leads to the mass matrix

m2 ab(10) = εab V ↔(20) + 2 εNaεNb20V ↔↔(20) = εNaεNb20 3 . (III.10)

Equation (III.10) entails that in the symmetry-broken phase of the model we have N ↔1 massless fields, the Goldstone
fields. Note that we have not used the specific form (III.3) of the potential for this derivation.

The occurrence of the massless modes in (III.10) is a specific case/manifestation of the Goldstone theorem. It
entails in general that in the case of a spontaneous symmetry breaking of a continuous symmetry massless modes,
the Goldstone modes, occur. Their number is related to the number of generators in the Quotient G/H, where G is
the symmetry group and H is the subgroup (little group) which leaves the vacuum invariant.

B. Spontaneous symmetry breaking, quantum fluctuations and masses→

The classical analysis done in chapter Section III A su"ces to uncover the occurrence of massless modes in spon-
taneous symmetry breaking. However, it does not unravel the mechanism. The stability of the chosen vacuum, e.g.
(III.5), necessitates, that an infinitesimal rotation on the vacuum manifold costs an infinite amount of energy. This
does only happen (for continuous symmetries) in dimensions d > 2. In d ▽ 2 no spontaneous symmetry breaking
of a continuous symmetry occurs, which is covered by the Mermin-Wagner theorem (Mermin-Wagner-Hohenberg-
Coleman). In d = 2 dimensions theories with discrete symmetry can exhibit spontaneous symmetry breaking, e.g. the
Ising model.

Hence, the full analysis has to be done on the quantum level. A convenient way to address these questions is
the quantum analogue of the classical action, the (quantum) e!ective action. Formally it is defined as the Legendre
transform of the Schwinger functional, W [J ] = log Z[J ]. In the present case this is

$[1] = sup
J

{∫

x

J(x)1(x) ↔ log Z[J ]
}

, where Z[J ] =
∫

D4 e
↑S[⇁]+

∫
x

J⇁
. (III.11)
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In the following we simply assume that (III.11) has a maximum and is di!erentiable w.r.t. J . Then the definition in
(III.11) leads to

1 = 1
Z[J ]

εZ[J ]
εJ

= ↘4≃ , and J = ε$
ε1

. (III.12)

The e!ective action also has a closed path integral representation in terms of a functional integro-di!erential equation,
which we also quote for later use. For the derivation we substitute the current in (III.11) with (III.12) and use that
Z = exp{↔$ +

∫
x

J1}. This leads us to

e↑”[ϱ] =
∫

D4↔ e
↑S[ϱ+⇁

→]+
∫

x

ϱ!
ϱς ⇁

→

, with ↘4↔
≃c = 0 , (III.13)

where we also shifted the integration variable 4 = 4↔ + 4. Equation (III.13) leads us immediately to the quantum
equations of motion in general backgrounds 1, the Dyson-Schwinger equations. We simply take the 1-derivatives on
both sides and arrive at

ε$
ε1

=


εS

ε4


, (III.14)

the quantum eqautions of motion (EoM) in a given background 1 = ↘4≃ triggered by the current J . Evaluated on the
EoM with J = 0,

ε$
ε1

∣∣∣∣
ϱ=ϱEoM

= 0 , (III.15)

The e!ective action $[1EoM] = ↔ log Z[0] it is the free energy of the theory and implies J [1EoM] = 0. It is also a
generating functional and generates the one-particle-irreducible (1PI) diagrams of the theory. As all diagrams can be
constructed from 1PI diagrams, it contains the full information about the correlation functions of the theory. In the
present context, the interesting feature is its relation to the free energy. It allows us to define the e!ective potential

Ve![1c] = $[1c]/vol4 , (III.16)

with constant fields 1c and the four-volume vol4 =
∫

d4x. If the e!ective potential shows the vacuum structure
discussed above in the classical case, the theory exhibits spontaneous symmetry breaking. The Mermin-Wagner
theorem simply entails that in lower dimensions the longe range nature of the quantum fluctuations washes out the
non-trivial vacua.

The rôle of the e!ective action as the quantum analogue of the classical action is also very apparent in its relation
to the propagator of the theory,

↘1(p)1(↔p)≃c = ε2 log Z[J ]
εJ(p)εJ(↔P )

∣∣∣∣
J=0

= 1
Z[0]

ε2Z

εJ(p)εJ(↔P )

∣∣∣∣
J=0

↔ ↘1(p)≃↘1(↔p)≃ , with ↘1≃ = 1
Z[0]

εZ

εJ
,

(III.17)

where the subscript c stands for connected. Now we use the relation of log Z to the e!ective action defined in (III.11).
We have

ε(p ↔ q) = εJ(q)
εJ(p) =

∫

l

ε1(l)
εJ(p) ·

εJ(q)
ε1(l) =

∫

l

ε2 log Z

εJ(l)εJ(p) ·
ε2$[1]

ε1(l)ε(q) ∝ ↘1(p)1(q)≃c = 1
$(2) (p, q) , (III.18)

with the vertices

εn$
ε1(p1) · · · 1(pn) = $(n)(p1, ..., pn) , with ↘4(p1) · · · 4(pn)≃1PI = $(n)(p1, ..., pn) . (III.19)

The proof of the latter identity of the nth 4-derivatives with the 1PI n-point correlation functions we leave to the
reader. Instead let us now come back to our simple example for spontaneous symmetry breaking. Let us assume for
the moment that the full e!ective action resembles the classical action in (III.2). Then the 14-potential in (III.3)
is the full quantum e!ective potential of the theory for 2 ̸ 20 (why is this not possible for smaller 2?). The full
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propagator of the theory is now given by

↘4(p)4(↔p)≃c = 1
$(2)[1EoM]

(p, ↔p) = 1
p2

(
εab

↔ εaN εbN
)

+ 1
p2 + 8203

εab , (III.20)

which describes the massless propagation of the N ↔ 1 Goldstone modes, and that of one massive one, the radial field
σ, with mass m2

↽
= 8203. This links the curvature of the e!ective potential to the masses of the propagating modes

in the theory. Note however, that this is a Euclidean concept and finally we are interested in the pole masses of
the physical excitations. They are defined via the respective (inverse) screening lengths in the spatial and temporal
directions. The latter are defined by

lim
≃,x↑,y≃⇐↓

↘1(x)1(y)≃ ↙ e↑≃,x↑,y≃/ξspat , and lim
|x0↑y0|⇐↓

↘1(x)1(y)≃ ↙ e↑|x0↑y0|/ξtemp . (III.21)

The screening lengths φspat/temp are inversely related to the pole mass mpol = 1/φtemp and screening mass mscreen = 1/φspat

respectively. In the present example with the classical dispersion p2 these masses are identical and also agree with the
curvature masses mcurv derived from the e!ective potential. This is easily seen from (III.20). The screening lengths
and masses are derived from the Fourier transform of the propagator in momentum space and we have e.g. for the
radial mode 4N at ϱp = 0

lim
|x0↑y0|⇐↓

∫
dp0
(2ς) ↘4N (p0, 0)4N (↔p0, 0)≃ceip0 (x0↑y0)

↙ e↑|x0↑y0|8φ0▷ , (III.22)

and hence mpol = 1/φtemp = mcurv. Here ϱp = 0 has only be chosen for convenience. A similar computation can be made
for the spatial screening length which agrees with the temporal one. In summary this leaves us with the definition of
the pole mass as the smallest value for

$(2)(p0 = mpol, ϱp = 0) = 0 , (III.23)

related to the pole (or cut) that is closest to the Euclidean frequency axis. A similar definition holds for the screening
mass.

In principle this allows for the extraction of the pole and screening masses from the Euclidean propagators. In
practice this quickly runs in an accuracy problem if the propagator is only known numerically. Moreover, this problem
is tightly related to reconstruction problems of analyticity properties from numerical data which is an ill-posed problem
without any further knowledge.

As a last remark we add that the above identity between screening lengths, and pole, screening and curvature
masses fails in the full quantum theory:

• the coincidence of curvature and screening/pole masses hinges on the classical dispersion proportional to p2,
any non-trivial momentum dependence of the propagator leads to a violation.

• The coincidence of screening and pole mass hinges on the dispersion only being a function of p2. While this is
true in the vacuum (at vanishing temperature T = 0 and density/chemical potential n/µ = 0), finite temperature
and density singles out a rest frame and the dispersion depends on ϱp2 and p2

0 separately.

Having said this, in the following we shall first use simple approximations to the full low energy e!ective action of
QCD for extracting the physics of chiral symmetry breaking and confinement, as well as the mechanisms behind these
phenomena.

C. Little reminder on the Higgs mechanism

Now we are in the position to discuss the Higgs mechanism in the Standard Model. Again we refer to the literature
for the details. The Higgs mechanisms serves as an example, at which we can discuss similarities and di!erences for
strong chiral symmetry breaking. Moreover, it is the combination of both mechanisms of mass generation that leads
to the observed world. The action of the Standard Model is given by

SSM[#] = 1
4

∫

x

F a

µε
F a

µε
+ 1

4

∫

x

W a

µε
W a

µε
+ 1

4

∫

x

BµεBµε + (D1)†D1 + VH(1) +
∫

x

↼̄ · (iD/ + i mϖ(1) + iµ↽0) · ↼ ,

(III.24)
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where we have introduced the electroweak gauge bosons W, B and the Higgs, a complex scalar SU(2)-doublet 1,

1 =
(

11
12

)
, (III.25)

with complex components 11, 12. The Higgs potential VH is a 14-potential as (III.3) with

VH(1) = ↔
1
2µ2

ϱ
1†1 + 3ϱ

8 (1†1)2 . (III.26)

with non-trivial vacuum manifold

20 =
µ2

ϱ

3ϱ

with 2 = 1
21†1 . (III.27)

In the spirit of the discussion at the end of chapter Section III A we should interpret VH as an approximation of
the full e!ective potential of the theory. The Higgs field couples to the electroweak gauge group with the covariant
derivative

Dµ1 = (ωµ ↔ ig
W

Wµ ↔ ig
H

Bµ) 1 , (III.28)

The mass term in (III.24) is linear in the Higgs field and vanishes for 1 = 0. The left-handed fermions ↼L in the
Standard Model, leptons and quarks, couple to the weak isospin (fundamental representation) with weak isospin
± ↔ 1/2, while the right-handed fermions ↼R do not couple (trivial representation) with weak isospin 0, that is for
example

Wµ↼
R

= 0 . (III.29)

The related covariant derivative of the fermions reads

Dµ↼ = (ωµ ↔ igAµ ↔ ig
W

Wµ ↔ ig
H

Bµ) ↼ . (III.30)

The mass term m(1) is linear in the Higgs field 1 and hence constitues a Yukawa interaction. It relates to the
Cabibbo-Kobayashi-Maskawa-Matrix (CKM) , and is not discussed in further details here. What is important in the
present context, is, that a non-vanishing expectation value of the Higgs field, ↘1≃ = (0, 20/

⇒
2) provides mass terms

for the weak gauge fields, the W, Z as well as for the (left-handed) quarks an leptons:

As in our O(N)-example in the previous section we expect spontaneous symmetry breaking in the scalar Higgs
sector. The current masses of the leptons and quarks are then generated by the disappearance of the mass term for
10 △= 0. Since the structure of the full term is quite convoluted, we illustrate this at a simple example with one Dirac
fermion ↼ and a real scalar field σ. Then the Yukawa term reads in a mean field approximation

h↼̄σ↼
mean field
↔↔↔↔↔↔↓ hσ0 ↼̄↼ , (III.31)

with mass m = hσ0 which is proportional to the vacuum expectation value of the scalar field (vacuum expectation
value of the Higgs) and the Yukawa coupling h.

For the masses of the gauge field we cut a long story short and simply note that in a mean field analysis as that
done above for the fermion

(Wµ1)†(Wµ1) mean field
↔↔↔↔↔↔↓ (Wµ10)†(Wµ10) , (III.32)

leads to mass terms for the gauge fields. Since the vacuum field 10 has vanishing upper component 11 it is a
combination of the generator t3 = σ3/2 of the weak SU(2) and the generator 1l of the hypercharge U(1) which remains
massless: the photon. This also determines the subgroup which leaves the vacuum invariant. The superficial analysis
here also reveals that the quotient involves three generators and hence we have three Goldstone bosons. In summary
we hence start with three gauge bosons with two physical polarisations each together with three Goldstone bosons,
which adds up to nine field degrees of freedom (dof). A convenient reparameterisation (including an appropriate gauge
fixing, e.g. the unitary gauge) of the Standard Model leads us to three massive vector bosons with three polarisations
each, that is again nine dofs.
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D. Low energy e!ective theories of QCD

The Higgs mechanism in the electroweak sector of the Standard Model leads to (current) quark masses for the up
and down quark of a couple of MeVs, (mu/d)cur ⇑ 2-5 MeV, see Table I. However, the masses of the nucleons, the
protons and neutrons, is about 1 GeV (proton (uud) ⇑ 938 MeV , neutron (udd) ⇑ 940 MeV ), that is two orders of
magnitude bigger. In other words, the three constituent quarks in the nucleons must have an e!ective mass of about
(mu/d)con ⇑ 300-400 MeV, the constituent quark masses. We already infer from this that there should be a further
mechanism to generate this mass scale.

In low energy QCD with its mass scale ”QCD ⇑ 200 ↔ 300 MeV, the electroweak sector of the Standard Model
decouples as do the heavier quarks. We are left with two light (up and down) and one heavy quark (charm), Table I.
Within fully quantitative computations of the QCD dynamics at low energies the strange quark with its current mass
of about 1.2 GeV is also added. Still, its dynamics is very much suppressed at momentum scales of ”QCD. For the
present structural analysis we first resort to two flavour QCD (Nf = 2) with the Euclidean action

SQCD[#] = 1
4

∫

x

F a

µε
F a

µε
+

∫

x

↼̄ · (D/ + mϖ ↔ µ↽0) · ↼ , (III.33)

where ↼ is a Dirac spinor with two flavours and # is the two-flavour super field, see (I.35) and (I.36). The physics
of the matter sector at low energies and temperatures, and not too large densities is well-described by quark-hadron
models, the most prominent of which is the Nambu–Jona-Lasino model. From the perturbative point of view these
models are seeded in the four-Fermi coupling already being generated from the propagators and couplings depicted
in Figure 2 at tree level. The related one-loop diagram is depicted in Figure 6. It is built from one-gluon exchange
tree level scatterings of quark–anti-quark pair into another one, which is highlighted in the red box in Figure 6. This
t-channel process (in terms of the momentum routing the full one-loop diagram) has the structure

g2 (
↼̄↽µta↼

)
(p)

[(
εµε ↔ (1 ↔ φ)pµpε

p2

)
1
p2

] (
↼̄↽εta↼

)
(↔p) , (III.34)

with t = p2. In (III.34) the ta are generators of the color gauge group and the fermions are summed over the two
flavours. The fermionic currents couple to each other via the exchange of a gluon with the classical gluon propagator
in the square bracket, for the Feynman rules see Appendix A. In summary, (III.34) generates a four-Fermi interaction
with a non-trivial momentum structure in the e!ective action of QCD.

The full momentum- and tensor structure is complicated even for the present simplified Nf = 2 case. As in the
four-Fermi theory (Fermi theory) for weak interactions we resort to an approximation with point-like interactions
(no momentum dependence). Then (III.34) can be rewritten in terms of an e!ective local (point-like) four-Fermi
interaction. Such a rewriting in terms of local four-Fermi interactions holds for energies that are su"ciently low and
do not resolve the large momentum structure of the scattering in (III.34). Moreover, the coupling is dimensionful
and has the canonical momentum dimension ↔2 (related to the 1/p2 term in (III.34). In the Fermi theory of weak
interactions this is the electroweak scale. In the present case it has to be related to the QCD mass gap proportional
to ”QCD.

We postpone the detailed analysis of this scale, and first concentrate on the tensor structure of (III.34). This is
constrained by the symmetries of the theory, for a full discussion of the symmetry pattern we refer to the literature,
e.g. [7, 8] and literature therein. Since the current masses of the light quarks are nearly vanishing we first work in the
chiral limit. Then, any interaction that is generated by the dynamics of QCD carries chiral symmetry: the related
four-Fermi interaction is chirally invariant, that is the invariance under the chiral transformations

↼ ↓ ei
1±φ5

2 ◁↼ ↓ ↼̄ ↓ ↼̄ei
1↑φ5

2 ◁ with ↽5 = ↽0↽1↽2↽3 , and {↽5 , ↽µ} = 0 , (III.35)

which holds separately for each vector current ↼↽µta↼. Furthermore, in the chiral limit QCD is invariant under
flavour rotations SU(Nf ). For example, for Nf = 2 with up (u) and down (d) quarks and the flavour isospin group
with SU(2), the transformation reads

↼ =
(

u
d

)
↓ V

(
u
d

)
, with V = ei0

a
1

a

↑ SU(2) , (III.36)

with a = 1, 2, 3. For the 2+1 flavour case also considered here the respective symmetry is SU(3)F . Chiral symmetry
entails that the flavour rotations are a symmetry for the left- and right-handed quarks separately and the combined
symmetry is SU(2)L ⇓ SU(2)R with symmetry transformations VL/R = ei

1±φ5
2 0

a
t

a . Including also the chiral U(1)
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FIG. 6: One loop diagrams for the four-Fermi coupling 3ϖ in QCD.

rotations leads us to the full symmetry group

Gsym = SU(Nc) ⇓ SU(Nf )V ⇓ SU(Nf )A ⇓ U(1)V ⇓ U(1)A , (III.37)

where we have also taken into account the gauge group SU(Nc). If we approximate (III.34) by a point-like four-Fermi
interaction, one has to expand the tensor ↽µ ⊗ ↽ε multiplied by gauge group and flavour tensors. Then, the most
general symmetric Ansatz is a combination of the tensor structures

(V ↔ A) = (↼̄↽µ↼)2 + (↼̄↽µ↽5↼)2

(V + A) = (↼̄↽µ↼)2
↔ (↼̄↽µ↽5↼)2

(S ↔ P ) = (↼̄f ↼g)2
↔ (↼̄f ↽5↼g)2

(V ↔ A)adj = (↼̄↽µta↼)2 + (↼̄↽µ↽5ta↼)2 , (III.38)

where f, g are flavour indices and (↼̄f ↼g)2
⇐ ↼̄f ↼g↼̄g↼f . While each separate term in the tensors in (III.38) is invariant

under gauge transformation, and under the flavour vector transformations, axial rotations in SU(Nf )A ⇓U(1)A rotate
the terms on the right hand side in (III.38) into each other. For a related full analysis we refer to the literature.
However, below we shall exemplify these computations at the relevant example of the scalar–pseudo-scalar channel

The chiral invariants (III.38) can be rewritten using the Fierz transformations which relates di!erent four-Fermi
terms on the basis of the Grassmann natures of the fermions. These transformations are explained and detailed in
the literature, see e.g. [7, 8]. Here we just concentrate on the scalar–pseudo-scalar channels in physical two-flavour
QCD with Nc = 3 and Nf = 2. These channels are related to the scalar σ-meson and the pseudo-scalar pions ϱς. The
(S ↔ P )-channel is given by

(S ↔ P ) = 1
2

[
(↼̄↼)2 + (↼̄ϱ◁↼)2

↔ (↼̄↽5↼)2
↔ (↼̄↽5ϱ◁↼)2]

, (III.39)

where ϱ◁ = (σ1, σ2, σ3) with Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 ↔i
i 0

)
, σ3 =

(
1 0
0 ↔1

)
, (III.40)

The representation (III.39) simplifies the identification of the scalar mode ↼̄↼ related to the scalar σ-meson, and the
pseudo-scalar modes i↼̄↽5ϱ◁↼ related to the pseudo-scalar (axial-scalar) pions ϱς.

We shall use the representation (III.39) in the following investigations of the chiral properties of low energy QCD.
Hence we discuss its symmetry properties in more detail, and show explicitly its invariance under Gsym. To begin
with, the invariance of (S ↔ P ) under gauge and flavour UV (1) transformation is apparent. The flavour SU(2)V

transformations ↼ ↓ ei0
a

1
a

↼ trivially leaves ↼̄↼ and ↼̄↽5↼ invariant. For the vector and pseudo-vector bilinears we
concentrate on infinitesimal transformations ei0

a
1

a = 1 + i0a◁a + O(02). Then the second term in (III.39) transforms
as

(↼̄ϱ◁↼)2
↔↓ (↼̄ϱ◁↼)2 + 2i 0a(↼̄ϱ◁↼)(↼̄[ϱ◁ , ◁a]↼) = (↼̄ϱ◁↼)2

↔ 2 0aϖbac(↼̄◁ b↼)(↼̄◁ c↼) = (↼̄ϱ◁↼)2 . (III.41)

The invariance of the last term in (III.39) under SU(2)V transformations follows analogously. Finally, axial transfor-
mations related the first two terms to the last two terms. We exemplify this property with the axial UA(1) rotations
↼ ↓ ei25◁↼, where we consider infinitesimal transformations with ei25◁ = 1l + i↽5⇀ + O(⇀2). Concentrating on the
scalar and pseudo-scalar terms we have

(↼̄↼)2
↔ (↼̄↽5↼)2

↔↓ (↼̄↼)2
↔ (↼̄↽5↼)2 + 4i ⇀


(↼̄↼)(↼̄↽5↼) ↔ (↼̄↽5↼)(↼̄↼)


= (↼̄↼)2

↔ (↼̄↽5↼)2 , (III.42)

The invariance for the full expression in (III.39) follows analogously. It is left to study SU(2)A transformations. Now
we show that (III.39) also carries the SU(2)A-invariance. To that end we consider infinitesimal SU(2)A transformations



D Low energy e!ective theories of QCD 32

FIG. 7: One loop diagrams for the four-Fermi coupling 3ϖ from the action (III.50).

ei250
a

1
a = 1 + i↽50a◁a + O(02) of the combination (↼̄↼)2

↔ (↼̄↽5ϱ◁↼)2, and use the Lie algebra identity

◁a◁ b = εab + iϖabc◁ c , ↓ {◁a , ◁ b
} = 2εab . (III.43)

Then we are led to

(↼̄↼)2
↔ (↼̄↽5ϱ◁↼)2

↔↓ (↼̄↼)2
↔ (↼̄↽5ϱ◁↼)2 + 2i 0a


(↼̄↼)(↼̄↽5◁a↼) ↔ (↼̄↽5◁ b↼)

(
↼̄{◁a , ◁ b

}↼
)

= (↼̄↼)2
↔ (↼̄↽5↼)2 .

(III.44)

The invariance of the combination (↼̄↽5↼)2
↔ (↼̄ϱ◁↼)2 is shown along the same lines. Consequently (III.39) is invariant

under SU(2)A transformation and hence under the full symmetry group Gsym.
In QCD, we have experimental evidence for the breaking of the axial UA(1)-symmetry, i.e. the pseudo-scalar

5↔-meson (in Nf = 2 the 5) is anomalously heavy. This mass-di!erence can be nicely explained by the anomalous
breaking of axial UA(1) symmetry. Consequently, giving up axial UA(1)-symmetry we have to consider more four-Fermi
interactions as in (III.38) (altogether 10 invariants for Nf = 2), in particular

1
2

[
(↼̄↼)2

↔ (↼̄ϱ◁↼)2 + (↼̄↽5↼)2
↔ (↼̄↽5ϱ◁↼)2]

. (III.45)

It is the relative minus signs in the scalar and pseudo-scalar terms in comparison to (III.39) that leads to the breaking
of UA(1)-symmetry. This is easily seen by re-doing the infinitesimal analysis (III.42) in (III.45). If also follows easily
that the other symmetries still hold, in particular the SU(2)V ⇓ SUA(2)A invariance follows as (III.45) contains
the same SU(2)V ⇓ SUA(2)A-invariant combinations of four-quark terms as (III.39). Hence we conclude that the
combination (III.45) only breaks UA(1)-symmetry, and adding up the two channels (III.39) and (III.45) leads to the
UA(1)-breaking combination

1
2

[
(↼̄↼)2

↔ (↼̄↽5ϱ◁↼)2]
. (III.46)

Equation (III.46) is invariant under the remaining symmetries SU(Nc)⇓SU(Nf )V ⇓SU(Nf )A⇓U(1)V . This concludes
our brief discussion of the global symmetries of QCD in the chiral limit.

In summary the following picture emerges: assume we perform a chain of scattering experiments of QCD/Standard
Model starting at the electroweak scale ⇑ 90 Gev towards the strong QCD scale ”QCD. At each scale we can describe
the quantum equations of motion and scattering experiments by a suitably chosen e!ective action $[1]. On the level
of the path integral for QCD, (I.34), this is described by the Wilsonian idea of integrating out momentum modes
above some momentum scale µ,

Zµ[J ] =
∫

[d#]p2⇒µ2 e
↑SQCD[!]+

∫
x

J·!
∝ E&ective Action $µ[#] , (III.47)

where the path integral measure only contains an integration over fields #µ that are non-vanishing for p2
̸ µ2:

#µ(p2 < µ2) ⇐ 0. After Legendre transformation this leads us to an e!ective action $µ[#] that only contains the
quantum e!ects of scales larger than the running (RG) scale µ and serves as a classical action for the quantum e!ects
with momentum scales p2 < µ2. This e!ective action also carries the symmetries of the fundamental QCD action, as
long as these symmetries are not (anomalously broken by quantum e!ects.

We know already from the perturbative renormalisation programme that this amounts to adjusting the (running)
coupling in the (classical) action with the sliding (experimental) momentum scale. In such a Wilsonian setting this is
very apparent. The running of the coupling comes from the loop diagrams that are evaluated at the momentum scale
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FIG. 8: Gluon propagator for Nf = 2 from the lattice and from non-perturbative diagrammatic methods, taken from
[9].

µ. On top of this momentum adjustment of the fundamental parameters of the theory one also creates additional
terms in the -e!ective- action. The one of importance for us is the four-Fermi terms argued for above. It is created
at one-loop with the box diagrams depicted in depicted in Figure 6. This leads us finally to the following four-Fermi
interaction in the e!ective action,

$4↑fermi[1]|1↑loop = ↔
3ϖ

4

∫ [
(↼̄↼)2

↔ (↼̄↽5ϱ◁↼)2]
+ · · · with 3ϖ ↖ ⇀2

s
, (III.48)

where it is understood that the coupling 3ϖ carries the running momentum or RG scale µ introduced above. Together
with the kinetic term of the quarks this is the classical action of the Nambu–Jona-Lasinio type model. Equation (III.48)
holds for massless quarks and two flavours, Nf = 2. The two terms in (III.48) carry the same quantum number as
the scalar and axial-scalar excitations in low energy QCD, the sigma-meson σ and pion ϱς respectively. The one loop
diagrams generating the four-Fermi coupling 3ϖ are depicted in Figure 6. In line with the picture outlined above
the four-Fermi coupling 3ϖ at a given momentum scale p = µ should be computed with the loop momenta q in the
box diagrams in Figure 6 being bigger than µ. Than the related diagram is peaked at this scale and we conclude by
dimensional analysis that

3ϖ(µ) ∞ ⇀2
s
(µ) 1

µ2 . (III.49)

Note that this coupling feeds back into the loop expansion of other correlations functions such as the quark propagator
and quark-gluon vertices. However, in comparison to other (one-loop) diagrams it is suppressed by additional orders
of the strong coupling ⇀s. In turn, in the low momentum regime where ⇀s grows strong it gives potentially relevant
contributions. Indeed, taking as a starting point for a loop analysis the sum of the QCD action (III.33) and the
four-Fermi term (III.48)

$[1] ∞ SQCD[1] + $4↑fermi[1] , (III.50)

we get also self-interaction terms of the four-Fermi coupling proportional to 32
ϖ

as well as terms proportional to ⇀s3ϖ.
This is depicted in Figure 7.

The glue sector of QCD is expected to have a mass gap already present in the purely gluonic theory, related to the
confinement property of Yang-Mills theory. Then this has to manifest itself in a decoupling of the gluonic contribution
to the four-Fermi coupling in Figure 7. In the Landau gauge this mechanism is easily visible due to the mass gap in
the gluon propagators, see Figure 8 for lattice results and results from non-perturbative diagrammatic methods.

Note that the gluon propagator is gauge dependent, and the careful statement is that the Landau gauge facilitates
the access to the related physics. One should not confuse this with a massive gluon, as the gluon is no physical particle
and shows positivity violation. Moreover, the gluonic sector is certainly relevant for the confining physics and hence
the decoupling discussed above only takes place in the matter sector for the specific question under investigation, the
mechanism of strong chiral symmetry breaking.
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FIG. 9: Sketch of the ⇁-function of the dimensionless four-quark coupling 3̄ϖ in NJL-type models.

E. Strong chiral symmetry breaking and quark-hadron e!ective theories

Assuming for the moment the gluonic decoupling we are left with a purely fermionic theory. The four-Fermi term
(III.48) is the interaction part of the Nambu–Jona-Lasino model, one of the best-studied model for low energy QCD,
see e.g. [7, 8, 10]. It is non-renormalisable as can be seen from the momentum dimension of the four-Fermi coupling
which is ↔2. As shown above, in QCD it is generated by fluctuations with 3ϖ(p) ↖ ⇀s(p) and tends to zero in the
UV, that is for large momenta p ↓ ⇔. Its momentum dependence is best extracted from the dimensionless coupling

3̄ϖ = 3ϖ(µ)µ2 , (III.51)

where we have introduced the renormalisation group scale µ, here being identical with the momentum scale of the
scattering process described, µ2 = p2. The ⇁-function of the dimensionless four-Fermi coupling in (III.51) is given by

⇁
▷̄↼

= µωµ3̄ϖ = 23̄ϖ ↔ A 3̄2
ϖ

with A > 0 , (III.52)

and is depicted in Figure 9. The prefactor A depends on the RG-scale µ as well as other parameters of the theory
such as the masses. The full RG equation for the four-quark coupling in QCD is depicted in Figure 11 and its analysis
will be done in Section III F. Here we concentrate on the underlying mechanism of chiral symmetry breaking. The
first term on the right hand side of (III.52) encodes the trivial dimensional running of 3̄ϖ. The second term on the
right hand side originates in the last diagram in Figure 7, the pure four-Fermi term. In the absense of other mass
scales this loop has to be proportional to µ2 leading to a factor two in the ⇁-function in comparison to the loop itself.
The key feature relevant for the description of chiral symmetry breaking is the sign of the diagram. It is negative,
↔A3̄2, with a positive constant A leading to (III.52).

From the perspective of a one-loop investigation based on the classical fermionic action in (III.50) the coupling
in the loop term on the right hand side of (III.52) is the classical one in this action. As we have done for the ⇁-
function of the strong coupling, e.g. (II.17), we can elevate this coupling to the full running coupling in terms of
a one-loop RG-improvement. This accounts for a one-loop resummation of diagrams. In the present context the
physics behind such an improvement is very apparent: As already indicated, the NJL-type action was derived within
a successive integrating out of momentum modes, and constitutes an e!ective action for the UV physics with p2

̸ µ2.
Accordingly, its couplings depend on this RG-scale. In summary we end up with (III.52) with µ-dependen couplings
on the right hand side. Note that this is only a one-loop RG improvement as we have discarded the µ-dependence
of the couplings in the diagram when taking the µ-derivative. The related terms are proportional to ↔A/2 3̄ϖ µωµ3̄ϖ

and can be shu#ed to the left hand side. This accounts for a further resummation leading to (III.52) with a global
factor 1/(1 + A/2 3̄) on the right hand side. In the following qualitative analysis it is dropped and we strictly resort
to the one-loop improvement.

The ⇁-function of (III.52) is depicted in Figure 9. It divides the positive 3̄ϖ-axis into two physically distinct regimes,

I1 = [0, 3̄UV) and I2 = (3̄UV, ⇔) with ⇁
▷̄↼

(3̄UV) = 0 with 3̄UV = 2
A

. (III.53)

The zeroes of the ⇁-function are fixed points of the renormalisation group flows, and 3̄UV △= 0 is a non-trivial fixed
point FP of the ⇁-function while 3̄Gauß = 0 is the trivial Gaußian fixed point (related to the free Gaußian theory). Now
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we initiate the RG-flow at an initial ultraviolet scale µin with some value of the dimensionless four-quark coupling

3̄ϖ(µ in) = 3̄ϖ, in . (III.54)

If 3̄ϖ, in < 3̄UV and we lower the running momentum scale, the RG-flow lowers the four-Fermi coupling towards 0.
Accordingly 3̄ϖ(µ ↓ 0) = 0. Since the regime of small couplings is governed by the linear term 23̄ϖ in the ⇁-function
in (III.52) this entails 3ϖ(µ ↓ 0) = 30. Here 30 is some finite value which is adjusted by the input 3̄ϖ,in at the initial
scale µin.

In turn, if 3̄ϖ, in > 3̄UV, the RG-flow toward smaller µ drives 3̄ϖ towards ⇔. Then the linear term can be neglected
as it is sub-leading and the RG-flow reads

µωµ3̄ϖ = ↔A 3̄2
ϖ

, ↔↓ 3̄ϖ(µ) = 3̄(µ0)
1 + 3̄ϖ(µ0)A log µ/µ0

, (III.55)

where µ0 is some reference scale at which the approximation in the RG-flow in (III.55) is already valid. We conclude
from (III.55) diverges at

µ = µ0 exp
{

↔
1

A 3̄(µ0)

}
, (III.56)

which signals a resonance in the four-quark scalar-pseudo–scalar channel with the quantum numbers of the σ- mode
and the pion.

At this scale chiral symmetry breaking occurs. To make this more apparent we resort to a further rewriting of our
low energy e!ective theory in terms of the scalar, σ, and pseudo-scalar, ϱς, degrees of freedom. This is suggestive
already for the reason that the divergence in (III.55) entails that these resonance are relevant degrees of freedom for
lower momentum scales. For the rewriting of the theory we use the Hubbard-Stratonovich transformation, see e.g.
[7, 8, 10]. With this transformation we a four-Fermi interaction using a scalar auxiliary field. Concentrating on the
scalar part of the four-Fermi interaction in (III.48) we write at some momentum scale µ,

↔
3ϖ

4 (↼̄↼)2 =


h

2 (↼̄↼)σ +
m2

⇁

2 σ2



EoM(↽)

, with 3ϖ = h2

m2
⇁

. (III.57)

Accordingly we can extend the e!ective action $[1] given in (III.50) by the right hand side of (III.57) while dropping
the four-Fermi term. For the sake of simplicity we concentrate on the σ-meson first and reduce the four-Fermi term
to its scalar part. Then

$[1] ↓ $[1, σ] = $[1]|
▷↼⇐0 +

[
h

2 (↼̄↼)σ + m2

2 σ2
]

h2/m2=▷↼

, (III.58)

This new e!ective action agrees with the original one on the equation of motion of σ and hence carries the same physics.
As a side remark, note that the 1PI correlation functions of quarks and gluon derived from $[1, σ] at fixed σ do not
agree with the quark and gluon correlation functions derived from $[1] = $[1, σEoM(1)], the implicit dependences also
contribute.

A similar derivation can be done for the pion part of the four-Fermi interaction, and hence the whole four-Fermi
interaction can be bosonised. The mesonic equations of motion can be summarised in

σEoM = h

2m2
⇁

↼̄↼ , ϱςEoM = h

2m2
⇁

↼̄ i↽5ϱ◁↼ . (III.59)

On the level of the generating functional of QCD, (III.57) and its extension to pions can be implemented by a Gaußian
path integral with

exp
{

3ϖ

4

∫ [
(↼̄↼)2

↔ (↼̄↽5ϱ◁↼)2]}
=

∫
dσdϱς exp

{
↔

∫

x

(
1
2m2(σ2 + ϱς2) + h

2 ↼̄ [σ + i↽5ϱ◁ϱς] ↼

)}

h2/m2=▷↼

. (III.60)
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We also remark that as shift in the σ-field,

σ ↓ ↔
2
h

mϖ + σ , (III.61)

eliminates the quark mass term at the expense of the linear term in σ that can be interpreted as a source term.
Inserting this identity in the path integral for the low energy dofs including the currents for the fundamental fields,
the quarks and gluons (and ghosts) as well as current for the mesonic dofs we have the full generating functional in
this setting. Performing the Legendre transformation we are immediately led to (III.58). Kinetic terms as well as a
potential for σ are generated by further quantum e!ects. In summary this leads us finally to a low energy e!ective
theory with a classical action Se! = $UV, where $UV is the full quantum e!ective action including quantum fluctuations
above a given cuto! scale ”. This also entails that Se! carries a ”-dependence. Se! is given by

Se![↼, ↼̄, 1] ↖

∫

x

↼̄ · (D/ + mϖ) · ↼ +
∫

x

[
(ωµσ)2 + (ωµϱς)2]

+
∫

x

h

2 ↼̄ [σ + i↽5ϱ◁ϱς] ↼ +
∫

x

VUV(2) (III.62)

with 1 = (σ, ϱς) and

VUV(2) = m2
⇁

2 + 3

2 22 , with 2 = 1
2

(
σ2 + ϱς2)

. (III.63)

As indicated above, the quark mass term can be eliminated at the expense of a linear term in σ by the shift of σ in
(III.61). On the level of the quadratic quark-meson interaction (III.60) this triggers a linear term c↽σ and the full
potential reads

VUV(2) = m2
⇁

2 + 3⇁

2 22
↔ c↽ σ , with c↽ = 2

h
m2

⇁
mϖ . (III.64)

This concludes the derivation of the low energy e!ective theory with the action (III.62) from QCD by integrating-out
QCD quantum fluctuations above the validity scale of the low energy e!ective theory. From the gluonic decoupling
scale ”dec ↭ 1 GeV one concludes that (III.62) should be seen as a classical action for quantum fluctuations with
momenta p2 ↭ 1 GeV, see Figure 8. A more detailed analysis reveals that the initial scale for low energy e!ective
theories has to be taken far lower for quantitative computations. Nonetheless, for qualitative considerations it is
su"cient, and, as a matter of fact, low energy e!ective theories even work well quantitatively at surprisingly large
moment scale about 1 GeV.

In (III.62) we have introduced a self-interaction of the mesonic fields proportional to 22 as well as an explicit
breaking term linear in σ related to the quark mass term. The question arises, is this the most general 14-term
one can generate from QCD? As mentioned before, the symmetries of this low energy e!ective field theory (EFT)
are determined by those of the action of QCD. In the chiral limit the full symmetry group is (III.37). The axial
UA(1) symmetry is anomalously broken, hence our restriction to the UA(1)-breaking combination (III.46). In its
bosonised quark-meson mode version the symmetry transformations with Gsym also involve transformations of the
mesonic fields. Their transformation properties can be most easily accessed in the matrix notation for the field. To
that end we introduce

1̂ = 1l σ + i↽5ϱ◁ϱς with 1̂EoM = h

2m2
⇁

(
1l ↼̄↼ ↔ ↽5ϱ◁ ↼̄↽5ϱ◁↼

)
, (III.65)

where we have used (III.59) in the second equation. Now we can read-o! the symmetry transformations under
V ↑ SU(Nc) ⇓ SU(Nf )V ⇓ SU(Nf )A ⇓ U(1)V from (III.65) by evoking the symmetry transformations of the quarks.
One easily sees that axial U(1)A-rotations do not close on σ and ϱς. For example, σEoM transforms into ↼̄↽5↼.
Furthermore, 1 is invariant under vector UV (1) transformations. Similarly, σ is invariant under transformations with
ei0

a
1

a

↑ SU(2)V , while ς is rotated, ϱς ↓ V ϱς with V = e0
a

t
a

↑ O(3) with (ta)bc = ϖabc. This follows from

↼̄↽5ϱ◁↼ ↔↓ ↼̄↽5ϱ◁↼ + i0a↼̄↽5[ϱ◁ , ◁a]↼ = ↼̄↽5ϱ◁↼ ↔ 0aϖbac↼̄↽5◁ c↼ . (III.66)

Finally, transformations with ei250
a

1
a

↑ SU(2)A rotate (σ, ϱς) into each other. This is read-o! from the infinitesimal
transformations of 1̂EoM leading to

σ ↓ σ + 20aςa , ςb
↓ ςb

↔ 0bσ . (III.67)
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FIG. 10: Scale dependence of the e!ective four-Fermi coupling. The shaded area is the regime where the e!ective
field theory is triggered.

Combining all the manifestations of the symmetry group we are led to an O(4) invariance of our low energy e!ective
field theory, sloppily written as

↼ ↓ V ↼ with V ↑ Gsym/UA(1) , 1 ↓ e0
a

t
a

1 , with 1 =
(

ϱς
σ

)
and e0

a
t

a

↑ O(4) . (III.68)

In conclusion chiral symmetry breaking is in one-to-one correspondence to the breaking of the O(4)-symmetry. More-
over, the formulation with e!ective mesonic σ and pion degrees of freedom now allows us to discuss strong chiral
symmetry breaking in complete analogy to the Higgs mechanism that served as an introductory example. Let us first
consider the fully symmetric case with c↽ = 0. The mesonic sector of (III.62) simply is an O(4)-model, and the QCD
four-Fermi coupling are related to the Yukawa coupling and the mesonic mass parameters via the relation (III.57) in
the Hubbard-Stratonovich transformation. Accordingly, a diverging 3ϖ implies a vanishing m⇁ if the Yukawa coupling
is fixed. Hence, at the singularity of 3ϖ the mesonic mass parameter m2

⇁
changes sign. For m2

⇁
< 0 we are in the

phase of -spontaneously- broken O(4)-symmetry. We choose the σ direction as our radial mode, and its expectation
value is given by

σ0 =


↔m2

⇁

3⇁

, (III.69)

in the chiral limit. This leads to an e!ective quark mass term with

mϖ = h

2 σ0 = h

2


↔m2

⇁

3⇁

, (III.70)

which in QCD is of the order of 300 MeV.

In summary we have derivated low energy EFTs in QCD by successively integrating out momentum shells of
quantum fluctuations in QCD. The first class of low energy EFTS we encountered are the Nambu-Jona–Lasigno type
four-quark models (in short in a slight abuse of notation NJL-model), baptised after a seminal work of Nambu and
Jona-Lasigno from 1961 introducing a four-Fermi model for Nucleons. NJL-type models are not renormalisable and
requires a ultraviolet cuto! scale ”UV that cannot be removed.

In a second step we have bosonised the resonant scalar–pseudo-scalar channels of the four-quark interaction leading
us to a Yukawa-type model, the Quark-Meson Model (QM-model). This model is renormalisable and its UV cuto! ”UV

seemingly can be removed to infinity. However, we emphasise that the two models are equivalent on the level of the
respective path integrals via the Hubbard-Stratonovich transformation. In other words, if one considers all quantum
fluctuations in both models the physics results are the same, as must be the necessity of a ultraviolet cuto! scale ”UV.
In the QM model this necessity is encoded in a UV-instability of the model. In other words, its renormalisability is
of no help if it comes to the existence of the model at large scales.
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λ

∂tλ

α > αcr

α = αcr

α = 0

α = 0, T > 0

FIG. 11: Flow ωt3̄q of the dimensionless four-quark coupling 3̄ϖ = 3ϖk2 in the scalar-pseudoscalar channel as a
function of the four-quark coupling for di!erent values of the strong couplings ⇀s. If the strong coupling is large
enough, ⇀s > ⇀s,cr with the critical coupling ⇀s,cr, the flow is negative for all 3̄q. Then, chiral symmetry breaking
happens for all initial values of 3̄ϖ, for more details see the discussion below(III.71).

F. Chiral symmetry breaking in QCD

In the last Chapters we have derived low energy e!ective theories of QCD that capture chiral symmetry breaking
in terms of the respective initial condition for the four-quark coupling at the UV-scale ” ↖ 1 GeV of these models.
It is left to analyse how QCD triggers the respective symmetry-breaking four-quark couplings. For this analysis we
extend the renormalisation group analysis of the four-quark coupling on the basis of (III.52) to that in full QCD. The
respective RG-equation can be derived from the diagrammatic form of the four-quark coupling, its sketch has been
provided in 7. In contradistinction to (III.52) the full ⇁-function has two further terms, one is proportional to ⇀2

s
with

⇀s = g2
s
/(4ς). It is given by ↔C ⇀2 with a positive prefactor C and comprises the contributions of the quark-gluon

box diagrams in (III.52), see also 6. These diagrams generate the four-quark coupling at large momentum scales in the
first place. A further contribution comes from the mixed diagram in 7 with one gluon exchange and one four-quark
coupling. Accordingly it is proportional to ⇀s3ϖ, and is given by -B ⇀s3̄ϖ with a positive prefactor B . In summary
this leaves us with the full RG-equation for the dimensionless four-quark interaction 3̄ϖ in the scalar–pseudoscalar
channel, schematically given by

⇁
▷̄↼

= 23̄ϖ ↔ A 3̄2
ϖ

↔ B3̄ϖ⇀s ↔ C ⇀2
s

+ tadpole-terms , (III.71)

and the positive constants A, B, C depend on other parameters of the theory, and in particular on the mass scales. It
is depicted in Figure 11. In (III.71), 23̄ϖ is the canonical scaling term and the other terms are quantum corrections
computed from the respective diagrams in the flow. For ⇀s = 0, the ⇁-function in(III.71) reduces to that of the
four-quark coupling in an NJL-type model, (III.52). Then, for large enough initial coupling 3̄ϖ(µ = ”) > 2/A(”) at
the UV cuto! scale ”, the ⇁-function ωt3̄ϖ is negative and the coupling grows towards the infrared. It finally diverges
at a pole that signals chiral symmetry breaking. In turn, for 3̄ϖ(µ = ”) < 2/A(”) the coupling weakens towards the
infrared and runs into the Gaußian fixed point without chiral symmetry breaking.

When switching on the strong coupling, the ⇁-function of the four-quark coupling in(III.71) is deformed: Firstly,
the canonical running gets an anomalous part with 23̄ϖ ↓ (2 ↔ B ⇀s)3̄ϖ. More importantly the whole ⇁-function is
shifted down globally by ↔C ⇀2

s
, see Figure 11. This term originates from quark-gluon box diagrams and is negative.

For large enough ⇀s the ⇁-function ⇁
▷̄↼

is negative for all 3̄ϖ,

ωt3̄ϖ < 0 ∀3̄ if ⇀s > ⇀s,cr , with ⇀s,cr = 2
B + 2

⇒
A C

, (III.72)

with the critical coupling ⇀s,cr, see Figure 11. Accordingly, if the growth of the strong coupling towards the infrared
is unlimited, chiral symmetry breaking in QCD is always present, and is basically the converse of asymptotic freedom.
More precisely it is the one-gluon exchange coupling in the quark-gluon box diagrams that has to satisfy(III.72) in
the infrared. In this context it is important to mention that it is the gapping of the gluon depicted in Figure 8 related
to confinement that stops the growth of the exchange couplings in the infrared and even leads to their decay for
small momenta. In short, the glue dynamics decouples below momenta of one GeV, leaving us with the quark-hadron
dynamics.

Moreover, the simple relation between the size of the strong coupling and chiral symmetry breaking also provides
a simple explanation for the restoration at finite temperature, which we already add here as a sneak preview: the
strong coupling melts down and finally we have ⇀s < ⇀s,cr for all frequencies and momenta, and spontaneous chiral
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symmetry breaking cannot happen any more.
In summary, the analyses in the last Chapters have revealed, how dynamical chiral symmetry breaking occurs in

QCD and the glue dynamic decouples in the infrared, and the dynamics of low energy QCD is well-described with
the low energy e!ective theories introduced before. Despite being low energy EFTs, these models have a complicated
dynamics reflecting the strongly-correlated nature of low energy QCD. Hence, typically one resorts to approximations
within these models. In the reminder of this chapter we shall discuss di!erent approximations to the Quark-Meson
model ranging from a mean-field treatment to a full non-perturbative renormalisation group study.

G. Low energy quantum fluctuations

In the last chapter we have derived the action of the QM-model by integrating out quantum fluctuations above
a momentum scale ” ⇑ 1 GeV. We have argued that below this scale the gluonic degrees of freedom become less
important and decouple from the theory below the mass gap of QCD. Practically, this can be seen from the results for
gluonic correlation functions such as the gluon propagator displayed in Figure 8. This entails that the action (III.62)
serves as a classical action for the quantum fluctuations with momenta p2

▽ ”2. More explicitly we use the definition
(III.47) with µ = ” and arrive at the path integral

Z ⇑

∫
[d1 d↼d↼̄]p2⇑#2e↑Se!,”[ϖ<,ϖ̄<,ϱ<] with Z# ∞ e↑Se!,” , (III.73)

where we have dropped the source terms. The fields ↼<, ↼̄<, 1< only carry low momentum modes with momenta
p2 < ”2. Then the full quark field ↼ = ↼< + ↼> is a sum of ↼< = ↼p2⇒µ2 and ↼> = ↼p2⇒µ2 . Note also that the path
integral of the large momentum modes in (III.47) is performed in the presence of fields that also carry low momentum
contributions,

Z#[↼<, ↼̄<, 1<] =
∫

[d#]p2⇒µ2 e↑S[ϱ,!] . (III.74)

where S is the QCD action with a bosonised scalar–pseudo-scalar channel. Equation (III.73) is approximate as we do
not integrate out the low momentum gluons. Therefore low energy quantum e!ects with momentum scales p2

▽ ”
are encoded in loop diagrams with the classical action Se!,# ∞ $# defined in (III.62). Here, $# is the e!ective action
that originates in the integrating-out of QCD fluctuations with momenta p2

̸ ”2. Henceforth we drop the supscripts
<,> for the sake of readability.

As we have seen at the end of the last chapter, the coupling parameters in the mesonic potential play a crucial rôle
for chiral symmetry breaking. Here we compute the one-loop correction to the ’classical’ potential V in (III.64) as
well as studying its the renormalisation group or flow equation.

1. Quark quantum fluctuations

First we note that the quark path integral in (III.73) with the action Se!,# in (III.62) is Gaußian, and hence the
one-loop computation is exact. This leads to the following representation of (III.73),

Z ⇑

∫ ∫
[d1]p2⇑#2e↑Sς,e!,”[ϱ] , (III.75)

with

Sϱ,e!,#[1] =
∫

x

[
(ωµσ)2 + (ωµϱς)2]

+
∫

x

VUV(2) ↔ ln
[

1
N

∫
[d↼d↼̄]p2⇑#2e

↑

∫
x

ϖ̄·

(
D/ + m↼

)
·ϖ+

∫
x

h
2 ϖ̄[↽+i25,1,3]ϖ

]
, (III.76)

where 1/N is an appropriate, field-independent normalisation specified later. The quark path integral can be rewritten
as follows,

1
N

∫
[d↼d↼̄]p2⇑#2 e

↑

∫
x

ϖ̄·

(
D/ + h

2 [↽+i25,1,3]
)

·ϖ = 1
N

det #

(
D/ + h

2 [σ + i↽5ϱ◁ϱς]
)

, (III.77)
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where det # is the determinant from momentum modes with p2
▽ ”2. Expanded in powers of the field, the logarithm

of (III.77) adds to the kinetic term in (III.76) as well as to the potential V . It also leads to terms with higher order
derivatives or derivative couplings such as Z(2)(ωµ1)2, (1!1)2. As we work at low energies we drop these terms in
the spirit of an expansion in p2/m2

gap where m2
gap is the lowest mass scale in QCD. Evidently the pion plays a special

role as is has a very small mass in comparison to the QCD mass scale ”QCD The mass scales mhad of all other hadronic
low energy degrees of freedom in QCD satisfy mhad ↫ ”QCD. Accordingly the pion carries the quantum fluctuations in
QCD for scales below ”QCD. These scale considerations are also behind the impressively successful framework of chiral
perturbation theory. In summary at leading order the low energy e!ective action Sϱ,e! only changes to VUV ↓ Vϱ,e!,

Vϱ,e!(2) = VUV(2) + !Vq(2) , (III.78)

with

!Vq(2) = ↔Tr# ln
(

D/ + h

2 [σ + i↽5ϱ◁ϱς]
)

+ ln N , VUV(2) = m2
⇁

2 + 3⇁

2 22 . (III.79)

In (III.79) we have used that for a given operator O we have ln det# O = Tr# ln O, where the trace sums over momenta
with p2

▽ ”2, as well as Dirac and internal indices, and the ’classical’ potential V defined in (III.63). For the present
considerations and scales the gluonic fluctuations and background are irrelevant. Thus we have dropped the gluonic
fluctuations and we also put the gauge field to zero, Aµ = 0. At finite temperature and density we also will consider
constant temporal backgrounds A0 △= 0 which is related to so-called statistical confinement. Finally we introduce a
convenient choice for the normalisation ln N : the quark determinant at vanishing background,

ln N ∞
1
2Tr# ln

(
↔/ω

2
)

, (III.80)

where we have rewritten the determinant in terms of the positive semi-definite Laplace operator ↔/ω
2 = ↔ω2

µ
. Due to

the symmetry analysis performed above the fermionic determinant can only depend on the O(4)-invariant combination
2 = 1/2(σ2 + ϱς2), and we can simplify the computation by using ϱς ⇐ 0. In momentum space we have

Vϱ,e!(σ2/2) = VUV(σ2/2) ↔ Nf Nc

∫
d’4

(2ς)4

∫ #

0
dp p3 trDirac ln

ip/ + h

2 σ

ip/

= VUV(σ2/2) ↔
6
ς2

∫ #

0
dp p3 ln

p2 + h
2

4 σ2

p2 , (III.81)

where
∫

d’4 = 2ς2 is the four-dimensional angular integration. The prefactor Nf Nc = 6 in the middle part in
(III.81) results from the trace over flavour and colour space. The Dirac trace gives a factor 4, while the momentum
symmetrisation with p ↓ ↔p provides a factor 1/2. The denominators in (III.81) take care of the normalisation
(III.80). Note also that up to these prefactors (III.81) is nothing but the Coleman-Weinberg potential of a 44-theory
with interaction 3/4! 42 where we substitute 3 42

↓ h2 2. We have an important relative minus sign due to the
fermion loop and a symmetry factor 4Nf Nc = 24 due to the number of degrees of freedom. We simply could take over
this well-known result, for a detailed discussion see e.g. Chapter 11.2 in the QFT I+II lecture notes from 2022/23 .

For its importance we recall the computation here, and also discuss some particularities due to the embedding in
QCD in the present low energy EFT context. The momentum integral in (III.81) is easily performed. We also restore
the full mesonic field content, σ2/2 ↓ 2, and arrive at

Vϱ,e!(2) = VUV(2) ↔
3

8ς2

[
2”2h22 + h422

[
ln h22

2”2 ↔ ln
(

1 + h22

2”2

)]
+ 4”4 ln

(
1 + h22

2”2

)]
. (III.82)

As mentioned above, up to the symmetry factor ↔24 this is precisely the result of the Coleman-Weinberg computa-
tion performed originally in the context of the Higgs mechanism. We note that (III.82) seemingly depends on the
momentum cuto! scale ”. However, the potential VUV(2) is the result of integrating-out quantum fluctuations up to
the momentum scale ”. Hence, it also carries a ”-dependence. Now we use, that the full generating functional Z
of QCD in (III.73) is ”-independent: we only introduced ” as an intermediate scale, splitting the path integral over
momentum modes into a UV-part with p2 > ”2 and an IR-part with p2 < ”2. We conclude

”ωZ

ω” = 0 . (III.83)

https://www.thphys.uni-heidelberg.de/~pawlowski/qftII_23/qft-script.php
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Equation (III.83) is the (momentum cuto!) RG-equation for the generating functional of QCD. In the present context
it is only approximately valid as we did not include the quantum fluctuations of gluons below the cuto! scale ”.
Accordingly, (III.83) only holds in our present EFT setting if the cuto! scale ” is small enough. This will be aparent
in the final, renormalised result, and we shall resume the discussion of the su"cient smallness of the cuto! scale there.

We start the analysis by first performing the integration over the quark fluctuations. This is a path integral with
a bilinear action and can be readily performed. It leaves us with a purely mesonic low energy e!ective theory, and
Vϱ,e!(2) is the full e!ective potential computed from the fermionic quantum fluctuations, but also has the interpretation
of a classical potential of the mesonic low energy e!ective theory. Using (III.83) for the full e!ective potential (III.81)
or (III.82), ”ω#Ve! = 0, leads us to scaling relations for the couplings in the potential V . As ” only appears in the
integration limit in (III.81), the integrand simply is the ”-derivative and we obtain

”ω#VUV = 6
ς2 ”4 ln

(
1 + h22

2”2

)

= 3
ς2

(
”2h22 ↔

h4

4 22
)

+ O(23/”2) , (III.84)

and

”ω#VUV = ”
ωm2

⇁

ω” 2 + 1
2”ω3⇁

ω” 22 . (III.85)

The RG equation (III.85) signifies that the present quark-meson model is indeed renormalisable: the divergences
can be absorbed in the couplings of the classical action. For the sake of completeness we remark that two further
logarithmic singularities occur in a full analysis: the wave function renormalisations of quarks and mesons which also
can be absorbed by wave functions in the classical action with e.g. ωµ12

↓ Zϱ,#ωµ12. The scale derivatives of m2
⇁

and 3⇁ define the ⇁-functions of meson mass and self-coupling respectively,

⇁m2
↽

= ”
ω(m2

⇁
/”2)

ω” , ⇁▷↽ = ”ω3⇁

ω” , (III.86)

in analogy to the ⇁-function of the strong coupling in (I.38) and the four-Fermi coupling in (III.52) discussed before.
Now we use ”ω#”2 = 2”2 and ”ω# ln ”2/”2

QCD = 2 for integrating the RG-equation (III.84). For the logarithmic
term we have to introduce a reference scale which we choose to be the dynamical scale of QCD, ”2

QCD. Practically
this scale is identified with the UV cuto! scale of the low energy EFT which is proportional to ”2

QCD, and is typically
of the order of 1 GeV. In summary this leads us to

m2
⇁

= m2
⇁,r + 3

2ς2 ”2h2 , 3⇁ = 3⇁,r ↔
3

4ς2 h4 ln ”2

”2
QCD

, (III.87)

with the renormalised couplings m2
⇁,r, 3⇁,r. In the present approximation without the mesonic quantum fluctuations

they directly carry the physics. The ”-independent constant part in the subtraction is chosen such that the 22-term
in the e!ective potential has the coupling 3⇁,r. It is evident from (III.87) that a variation of the reference scale in the
logarithmic term can be absorbed in an according variation of 3⇁,r,

”QCD
ω3⇁

ω”QCD
= 0 ↔↓ ”QCD

ω3⇁,r

ω”QCD
= ⇁▷↽ , (III.88)

where we have assumed the absense of other scales. This relation is again governed by the ⇁-function ⇁▷↽ , and reflects
the invariance observables do not depend on this choice. Inserting these results back into (III.82) leads us to the final,
”-independent e!ective potential

Vϱ,e!(2) = m2
⇁,r2 + 3⇁,r

2 22
↔

3
8ς2 h422

[
ln h22

2”2
QCD

↔
1
2

]
. (III.89)

As already discussed in the beginning of the derivation, (III.89) is the Coleman-Weinberg result in disguise. Multi-
plying with the symmetry factor ↔4Nf Nc = ↔24 gives precisely the same logarithmic term in the 22 contribution.
The missing constant term simply originates in the di!erent renormalisation procedure: with the present one all
corrections to the relevant couplings including the constant parts are absorbed, that is m2

⇁
↓ m2

⇁,r and 3⇁ ↓ 3⇁,r.
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As these couplings have to be fixed by appropriate infrared observables this is a convenient choice. In summary we
have the following practical and consistent RG procedure:

(0) Regularisation: Sharp momentum cuto! with p2
▽ ”2 in all loops.

(1) Renormalisation: Remove all divergent terms in the loop contributions. For the logarithmic term substitute
ln ”2

↓ ln ”2
QCD.

(2) Renormalisation scheme: we demand ωφVϱ,e! = ωφVϱ,UV + O(22) + ln 2–terms. This is arranged by the ↔1/2
in the bracket in (III.89). It enforces that the 2-dependent pion mass function m3(2) = ωφVϱ,e!(2) simply is
m2

ϱ,r in the symmetric regime, that is for vanishing 2. Moreover, the linear term in 2 of m2
3

is given by the UV
coupling 3ϱ,r. This cannot be expressed within a Taylor expansion at 2 = 0 due to the logarithmic term.

(3) Physics: The relevant parameters h, m⇁,r, 3⇁,r and the explicit symmetry breaking scale c are fixed by the pion
decay constant f3, the physical pion and σ pole masses, m3,pol, m↽,pol and the constituent quark mass mq,const.

Depending on the values of m2
⇁,r, 3⇁,r the e!ective potential in (III.89) has non-trivial minima or describes the

symmetric phase. The e!ect of the fermionic quantum fluctuations is most easily accessed via the scale-running
of the parameters in the ’classical’ potential V (2). Concentrating on the scale-dependence of the mass parameter
m2

⇁
in (III.87) we conclude that lowering the cuto! scale ” lowers the e!ective mass m2

⇁
. This entails that the

fermionic quantum fluctuation<s indeed lower the mass parameter. Put di!erently, the quark fluctuations trigger
chiral symmetry breaking.

Moreover, deep in the symmetric phase, that is for large ”, the mesonic quantum fluctuations are suppressed in
comparison to the quark fluctuations. In the vicinity of the symmetry breaking scale ”4 the mesonic fluctuations are
getting massless, m⇁ ↓ 0 and the mesonic fluctuations kick in. In turn, the e!ective quark mass grows in the chirally
broken regime with mϖ = h/2σ0, and eventually the quark fluctuations are switched o! for ” below the constituent
quark mass. ...

2. Mesonic quantum fluctuations

The remaining mesonic fluctuations can be treated at one loop similarly to the fermionic computation done above.
The result is a Coleman-Weinberg type potential without the relative minus sign. Accordingly, the mesonic fluctuations
work against chiral symmetry breaking. Due to the di!erent scales and coupling sizes this is a marginal e!ect even
in the chiral limit. In the physical scale with explicit chiral symmetry breaking and a pion mass of about 140 MeV
the mesonic quantum fluctuations also decouple for scales ” below the pion mass.

It is left to integrate-out the quantum fluctuations of the mesonic degrees of freedom in (III.75). Again concentrating
on the low energy e!ective potential in the spirit of the lowest order of a derivative expansion we have

Ve!(2) = Vϱ,e!(2) + !Vϱ(2) + c↽ σ with !Vϱ(2) = 1
2Tr# ln

[
↔ω2

µ
+ m2

ϱ
(2)

]
, (III.90)

where !Vϱ is the one loop approximation to the mesonic path integral (III.75) with the ’classical’ potential Vϱ,e!(2),
and Tr# sums over all momenta p2

▽ ”2. In (III.90) we have re-introduced the linear term in σ that triggers the
explicit symmetry breaking. In the present case !Vϱ boils down to

!Vϱ(2) = 1
4ς2

∫ #

0
dp p3


3 ln

(
p2 + m2

3
(2)

)
+ ln

(
p2 + m2

↽
(2)

)
. (III.91)

For (III.91) we have used that we can evaluate the expressions for vanishing ϱς = 0 as done in the quark case. Then
the mass matrix is diagonal, see (III.10), and the meson loop splits into a sum of the pion and σ loops. The two
diagonal mass functions read for a given potential V

m2
3
(2) = ωφV (2) , m2

↽
(2) =

(
ωφ + 22ω2

φ

)
V (2) . (III.92)

Accordingly, the factor three in front of the first term on the right hand side in (III.91) accounts for the N2
f

↔ 1 = 3
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pions. In the present case we have Vϱ,e!(2) and we get

m2
3
(2) = m2

⇁,r +
(

3⇁,r ↔
3

4ς2 h4 ln h22

2”2
QCD

)
2 ,

m2
↽
(2) = m2

⇁,r + 3
(

3⇁,r ↔
1

2ς2 ↔
3

4ς2 h4 ln h22

2”2
QCD

)
2 (III.93)

The integration in (III.92) is the same as in the quark case and we arrive at

!Vϱ(2) = 3
16ς2


”2m2

3
+ m4

3

[
ln m2

3

”2 ↔ ln
(

1 + m2
3

”2

)]
+ ”4 ln

(
1 + m2

3

”2

)

+ 1
16ς2


”2m2

↽
+ m4

↽

[
ln m2

↽

”2 ↔ ln
(

1 + m2
↽

”2

)]
+ ”4 ln

(
1 + m2

↽

”2

)
, (III.94)

where m2
3
, m2

↽
are the 2-dependent masses defined in (III.92). Seemingly (III.94) introduces divergent terms that

are neither proportional to 20, 2, 22 due to !Vq in (III.92). However, (III.94) goes beyond one-loop (!Vq is already
one-loop) and these terms are to be expected and can be removed within a consistent renormalisation procedure.
Here, our simple renormalisation procedure discussed below (III.89) pays o!. Then after renormalisation (III.94)
turns into

!Vϱ(2) = 3
16ς2 m4

3

[
ln m2

3

”2
QCD

↔
1
2

]
+ 1

16ς2 m4
↽

[
ln m2

↽

”2
QCD

↔
1
2

]
, (III.95)

where m3(2), m↽(2) are derived from (III.92). In (III.95) we have applied to renormalisation scheme summarised in
the points (1)-(4) below (III.89). The factor ↔1/2 in the brackets arrange for

m2
e!,3

(2) = ωφVe!(2) = m2
⇁,r + 3⇁,r2 ↔

3
8ς2 2 ln h22

2”2
QCD

+ 3
8ς2 m2

3
(ωφm2

3
) ln m2

3

”2
QCD

. (III.96)

From (III.95) we can proceed in several ways:

(0) We drop !Vϱ completely. As in (2) the missing quantum fluctuations are partially absorbed in the couplings
m⇁, 3⇁. This approximation is also called ’extended mean field’ in the literature. It is very close to the mean
field approximation with V e!(2) = V (2), where we also drop !Vq.

(1) As !Vq already is a one loop expression we drop it in the computation of (III.95). This leads us to a consistent
one-loop computation. This amounts to dropping some quantum contributions in comparison to (1). However,
as in (1) we have to fix the parameters h, m⇁, 3⇁ in the e!ective potential with the low energy observables. This
implicitly absorbes (part of the) dropped contributions in these couplings. Di!erences between (1) and (2) only
occur due to missing contributions in (2) in the couplings 3⇁,n of the 2n-terms in Ve! with n ̸ 3.

(2) For the evaluation of (III.90) with V + !Vq in (III.89) and !Vϱ in (III.95) we have to take into account that
already the e!ective potential V + !Vq may not be convex. In non-convex regimes its second derivatives are
not positive definite: m3 < 0 for 2 < 23, where 23 is the solution of the reduced EoM: V ↔

cl(23) + !V ↔
q
(23) = 0.

The σ mass also gets negative for even smaller 2.
A simple resolution of this artefact of the approximation is to continue the result from larger 2 ̸ 23. The more
consistent way is to resolve the related renormalisation group (RG) equation for the e!ective potential. The RG
approach is able to deal consistently with the regimes with negative curvature which are indeed flattened out
by quantum fluctuations. This e!ect cannot be seen in perturbation theory.
In any case the result of this computation is an e!ective potential V e!(2) which depends on the couplings
h, m⇁, 3⇁. We either compute these couplings from QCD or we fix them with low energy observables such as
the meson mass, the pion decay constant and the constituent quark mass. Here we use the latter way which is
described in details below.

(3) We solve the full renormalisation group equation, (III.83), for the e!ective potential, that governs its scale-
dependence, see (III.97) below. Integrating the RG equation provides an iterative and fully consistent inclusion
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of the fluctuation e!ects. The RG is described in the chapter Section III G 3 below, where it is also detailed how
it boils down to the procedures (0)-(2) described above.

In the following we will consider all of these approximations, in particular at finite temperature and density. This
allows us to evaluate the importance of the quantum (and later thermal) fluctuations as well as the stability of the
results.

3. RG equation for the e!ective potential
→

The present considerations are but one step away from a consistent treatment of the low energy e!ective theory
with functional renormalisation group methods. For that purpose let us reconsider the RG equation for the ultraviolet
potential VUV derived from (III.83). Below (III.83) we have discussed the renormalisation group scaling that originates
in the quark quantum fluctuations. In the general case the RG-scaling of the potential comes from both quark and
meson fluctuations. This leads us to

”ω#VUV = ↔”ω# (!Vq + !Vϱ) . (III.97)

Equation (III.97) entails how the UV e!ective potential VUV at a large cuto! scale ” changes with lowering or increasing
the cuto! scale. In the discussion so far we have concentrated on the UV relevant terms that scale with positive powers
of the cuto! ”. Then we ensured the cuto! independence of the full e!ective potential Ve! = VUV + !Vq + !Vϱ by
an appropriate renormalisation procedure. The low energy quark and meson fluctuation are encoded in the terms
!Vq + !Vϱ. Such a treatment assumes an asymptotically large cuto! scale.

Here we take a di!erent point of view: iteratively lowering to cuto! scale ” from large values (w.r.t. the non-
perturbative infrared pyhsics) leads to shifting more and more infrared fluctuations from !Vq + !Vϱ to VUV. Indeed,
at ” = 0 we have

Ve! = V#=0 , with V# = VUV,# , (III.98)

the former ’UV’ e!ective potential is the full quantum e!ective potential. Evidently, if the cuto! scale is not asymp-
totically large, also the UV-irrelevant terms cannot be neglected in (III.97). Note also that its right hand side has to
be seen as a function of V#, the one-loop computations done before indeed used V# a a classical potential. Hence, it
is only left to bring (III.97) in a form that only depends on V# on both sides.

To that end we consider an infinitesimal RG step with ”2
↓ ”2(1 ↔ ϖ). This is governed by the path integral

Z ⇑

∫ #2

#2(1↑ς)
[d1 d↼d↼̄]e↑Se!,”[ϖ,ϖ̄,ϱ] with e↑Se!,” ∞ Z# . (III.99)

Now we exploit that each loop in a loop expansion of (III.99) is proportional to ϖ as it only takes into account momenta
with ”2(1↔ϖ) ▽ p2

▽ ”2. Hence, for ϖ ↓ 0 the one-loop contribution is leading, and the ϖ-derivative can be converted
in the ”-derivative of the momentum integration boundary of the one-loop expressions for !Vq and !Vϱ, (III.79) and
(III.90) respectively. This leads us to

”ω#V# = ↔
1

4ς2 ”4
[
3 ln

(
1 + m2

3
(2)

”2

)
+ ln

(
1 + m2

↽
(2)

”2

)]
+ 6

ς2 ”4 ln
(

1 + h2

2
2

”2

)
, (III.100)

where

m2
3/↽

(2) = $(2)
#,33/↽↽

(2, p = 0) = V (2)
#,33/↽↽

(2) ,
h2

2 2 = $(2)
#,ϖϖ̄

(2, p = 0) , with $(2)
# = $UV,# , (III.101)

are the second derivatives of the scale-dependent ’UV’ e!ective action $#. We emphasise that the implicit ”-
dependence in $(2) is not hit by the ϖ-derivative.

The approximations (0)-(2) now follow from respective approximations of (III.100): For (0) we drop the meson
fluctuations, for (1) we do not feed back the RG-running of VUV on the right hand side of (III.100), for (2) we
integrate out the quarks first. This is done with introducing separate cuto!s for quarks, ”q and mesons, ”ϱ and take
the limit ”q/”ϱ ↓ 0.

Equation (III.100) is the Wegner-Houghton equation [11] for the e!ective potential of the current Quark-Meson
Model. For the sake of completeness we also quote the full Wegner-Houghton equation for the e!ective action: as the
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derivation of (III.100) simply follows from the RG-invariance of the generating functional Z, it also applies to the full
e!ective action. Hence we conclude

”ω#$#[↼, ↼̄, 1] = ↔
1
2Trp2=#2 ln

$(2)
ϱϱ

”2 + Trp2=#2 ln
$(2)

ϖϖ̄

”2 , (III.102)

where the trace Trp2=#2 = Tr ε(


p2 ↔ ”) only sums over the momentum shell with p2 = ”2. Equation (VII.34) is,
together with the Callan-Symanzik equation [12, 13], the first of many functional renormalisation group equations
for the e!ective action. These continuum RG equations are based on continuum version [14, 15] of the Kadano!
block spinning procedure on the lattice, [16], for the first seminal work on the RG see [17, 18]. In particular the
pioneering work [17] already emphasises and details the full power of the renormalisation group, and is still very much
under-appreciated by the community.

4. EFT couplings and QCD

It is left to fix the couplings parameters in our low energy e!ective theory with the classical action Se! defined
(III.62). After integrating out the quarks and mesons we are led to the full low energy e!ective action $lowE with

$lowE[↼, ↼̄, 1] =
∫

x

↼̄ · (D/ + mϖ) · ↼ +
∫

x

[
(ωµσ)2 + ωµϱς)2]

+
∫

x

h

2 ↼̄ [σ + i↽5ϱ◁ϱς] ↼ +
∫

x

Ve!(2) , (III.103)

with the e!ective potential Ve! = Vϱ,e!+!Vϱ+cσ defined in (III.90) with Vϱ,e! = VUV+!Vq. In the best approximation
discussed here, Vϱ,e! is given by (III.89) and !Vϱ by (III.95). We have the fermion mass mϖ or mesonic shift parameter
c, the Yukawa coupling h, the mesonic mass parameter m2

ϱ
and the mesonic self-coupling 3ϱ. The fermion mass can

be traded for the shift parameter c as argued before. The value of the latter determines the expectation value of the
σ-field which is, in the present approximation, simply is the pion decay constant,

σ0 = ↘σ≃ = f3 , f3 ⇑ 93 MeV . (III.104)

The latter value related to the physical f3’s (f±
3

, f0
3
) measured in the experiment. Consequently c could be dropped,

we simply evaluate the theory on this expectation value. Accordingly, h is determined by the constituent quark mass,

mϖ,con = 1
2h↘σ≃ = 1

2h f3 ↔↓ h ⇑ 6.45 with mϖ,con ⇑ 300 MeV . (III.105)

Note that the constituent quark masses of the quarks depend on the model and approximation used, typical values
for up and down quark constituent masses are mϖ,con ⇑ 350 MeV in full QCD. A reduced value in (III.105) for two
flavour QCD is common place in the Nf = 2 quark-meson model. The related observable is the chiral condensate,

↘↼̄(x)↼(x)≃ = ↔

∫
d4p

(2ς)4 tr ↘↼(p)↼̄(↔p)≃ , (III.106)

where the trace sums over Dirac and flavour indices.
Finally we have to fix 3ϱ and mϱ with the Yukawa coupling and σ-expectation value σ0 deduced above, see also

Table II. Note also, that a potential further input is the value of the pion decay constant in the chiral limit,

f3,4 = f3(m3 = 0) ⇑ 88 MeV , (III.107)

which can be determined with chiral perturbation theory, functional continuum methods or from chiral extrapolations
of lattice results at di!erent finite pion masses. This leaves us with a triple of ’observables’ (m3, m↽, f3,4), see
Table II, and a triple of EFT couplings (mϱ, 3ϱ, c↽). Note that the inclusion of f3,4 as an ’observable’ relates to
the correct chiral dynamics reflected in the curvature and four-meson interaction in the chiral limit. The pion and
sigma masses are related to those found in the Particle Data Booklet (2016), [19] of the Particle Data Group (PDG).
Here, the pion mass is taken between that of the charged pions ς± with m3± ⇑ 139.57 MeV and the neutral pion
ς0 with m30 ⇑ 134.98 MeV, and the mass of the sigma meson is taken to be that of the f0(500), see [20], that is
m↽ ⇑ 450 MeV, despite the f0 certainly not being a simple qq̄ state. The unclear nature of the value of m↽ is one of
the biggest uncertainties for low energy EFTs. Typically, its values range from 400–550 MeV, see PDG, [19].

Seemingly, this leaves us with as many unknowns as physics input. However, c can be determined from the pion
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Observables Value [MeV] EFT couplings Value
f3 93 σ0 = f3 93 MeV

mcon 300 h = 2mcon

f3

6.45
m3 138 mϱ mϱ(m3, m↽)
m↽ 450 3ϱ 3ϱ(m3, m↽)
f3,4 88 c↽ = f3m2

3
1.77 → 106MeV3

TABLE II: Low energy observables and related EFT couplings as used for the Nf = 2 computations. While the
σ-expectation value σ0 and the Yukawa coupling are directly related to pion decay constant and constituent quark
masses in the present approximations, the other EFT couplings depend on the approximations (0)–(3) described below
(III.96).

mass and the pion decay constant with m2
3

= ωφVe!(20) and 20 = σ2
0/2 = f2

3
/2. This follows from the EoM for σ,

ω↽Ve!(20) = σ0m2
3

= c↽ ↔↓ c↽ = f3m2
3

⇑ 1.77 → 106 MeV3 . (III.108)

We conclude that in the current approximation to the UV e!ective action, the pion decay constant in the chiral limit,
f3,4, is a prediction.

Here we present a crude (mean-field) estimate of its value based on the assumption of being close to the chiral limit.
It is based on the expansion of the full e!ective potential about the unperturbed minimum in the broken phase,

Ve! =
↓

n=2

3n

n! (2 ↔ 6)n + c↽σ , with 6 =
f2

3,4

2 , 32 = 3ϱ,e! . (III.109)

Close to the chiral limit the di!erence (f3 ↔ f3,4)/f3 ′ 1 is small. In the vicinity of the unperturbed minimum 6 the
full e!ective potential can be written as

Ve! = 3ϱ,e!

2 (2 ↔ 6)2 + c↽σ + O
(

(2 ↔ 6)2
)

. (III.110)

Dropping the higher terms leads us to

m2
3

= 3ϱ,e!
f2

3
↔ f2

3,4

2 , m2
↽

= 3ϱ,e!
3f2

3
↔ f2

3,4

2 . (III.111)

In this leading order, the mesonic self-coupling drops out of the ratio of m2
3
/m2

↽
which can be used for determining

the pion decay constant in the chiral limit. We get

f3,4 = f3

√√√√
1 ↔ 3 m2

⇀
m2

⇁

1 ↔
m2

⇀
m2

⇁

⇑ 83 MeV , and 3ϱ,e! = m2
↽

↔ m2
3

f2
3

⇑ 21.2 . (III.112)

This is a very good agreement with the theoretical prediction of f3,4 ⇑ 88 MeV, in particular given the crude nature
of the present estimate, which can be improved if going beyond the current mean field level.

The above analysis elucidates that the current EFT provides a prediction for either f3,4 or m↽, and the question
arises which of them should be taken as a physics input: we first note that f3,4 ⇑ 88 MeV is under far better
theoretical control than the mass of the σ-meson. Apart from the di"culties of identifying directly the σ-mesons in
the EFT’s at hand with a resonance in the particle spectrum, it has a large width. Hence it cannot be assumed that
the curvature mass m↽,curv we use here is in good agreement with the pole mass m↽,pol, see the discussion at the end
of chapter Section III B. This is in stark contradistinction to the pion masses where the (non-trivial) identification
m3,curv ⇑ m3,pol holds true on the percent level. This suggests to adjust m↽ such that f3,4 ⇑ 88 MeV. In the mean
field discussion done here this leads to m2

↽
⇑ 600 ↔ 650 MeV. Note that with a future better determination of the

curvature mass m↽,curv a semi-quantitative EFT might require higher oder mesonic UV-couplings such as 33,UV △= 0
in (III.110). This is related to the fact that the physical UV cuto! ”UV ⇑ 1 GeV, at which the low energy EFT is
initiated, is less than one order of magnitude larger than the physical scales.

This discussion completes our EFT picture of chiral symmetry breaking in QCD. In essence it also extends to the
Nf = 2 + 1 flavour case and beyond, then, however, a consistent determination of the low energy couplings including
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the correct chiral dynamics, e.g. f3,4 is far more intricate.

IV. PARTON DENSITIES

At the end of Section II B the discussion of di!erent energy regimes for R experimentally makes sense — at an e+e↑

collider we can tune the energy of the initial state. At hadron colliders the situation is very di!erent. The energy
distribution of incoming quarks as parts of the colliding protons has to be taken into account. We first assume that
quarks move collinearly with the surrounding proton such that at the LHC incoming partons have zero pT . Under
that condition we can define a probability distribution fi(x) for finding a parton i with a given fraction x = 0 · · · 1 of
the proton’s longitudinal momentum, the so-called parton density function (pdf). In this section we will see how it is
related to the splitting kernels describing the collinear and soft divergences of QCD parton splitting.

A pdf is not an observable, only a distribution in the mathematical sense: it has to produce reasonable results when
we integrate it together with a test function. Di!erent parton densities have very di!erent behavior — for the valence
quarks (uud) they peak somewhere around x ↭ 1/3, while the gluon pdf is small at x ↙ 1 and grows very rapidly
towards small x. For some typical part of the relevant parameter space (x = 10↑3

· · · 10↑1) the gluon density roughly
scales like fg(x) ↖ x↑2. Towards smaller x values it becomes even steeper. This steep gluon distribution was initially
not expected and means that for small enough x LHC processes will dominantly be gluon fusion processes.

While we cannot actually compute parton distribution functions fi(x) as a function of the momentum fraction x
there are a few predictions we can make based on symmetries and properties of the hadrons, leading to to sum rules:

1. The parton distributions inside an antiproton are linked to those inside a proton through the CP symmetry,
which is an exact symmetry of QCD. Therefore, we know that

f p̄

q
(x) = fq̄(x) f p̄

q̄
(x) = fq(x) f p̄

g
(x) = fg(x) (IV.1)

for all values of x.

2. If the proton consists of three valence quarks uud, plus quantum fluctuations from the vacuum which can either
involve gluons or quark–antiquark pairs, the contribution from the sea quarks has to be symmetric in quarks
and antiquarks. The expectation values for the signed numbers of up and down quarks inside a proton have to
fulfill

↘Nu≃ =
∫ 1

0
dx (fu(x) ↔ fū(x)) = 2 ↘Nd≃ =

∫ 1

0
dx (fd(x) ↔ f

d̄
(x)) = 1 . (IV.2)

3. The total momentum of the proton has to consist of sum of all parton momenta. We can write this as the
expectation value of

∑
xi

〈
xi

〉
=

∫ 1

0
dx x




q

fq(x) +


q̄

fq̄(x) + fg(x)


= 1 (IV.3)

What makes this prediction interesting is that we can compute the same sum only taking into account the
measured quark and antiquark parton densities. We find

∫ 1

0
dx x




q

fq(x) +


q̄

fq̄(x)


⇑
1
2 . (IV.4)

Half of the proton momentum is then carried by gluons.

Given the correct definition and normalization of the pdf we can now compute the hadronic cross section from its
partonic counterpart,

σtot =
∫ 1

0
dx1

∫ 1

0
dx2



ij

fi(x1) fj(x2) σ̂ij(x1x2S) , (IV.5)

where i, j are the incoming partons with the momentum factions xi,j . The partonic energy of the scattering process
is s = x1x2S with the LHC proton energy of

⇒
S = 13.6 TeV. The partonic cross section σ̂ includes all the necessary 0
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and ε functions for energy–momentum conservation. When we express a general n–particle cross section σ̂ including
the phase space integration, the xi integrations and the phase space integrations can of course be interchanged, but
Jacobians will make life hard.

A. DGLAP equation

We know that collinear parton splitting a!ects the incoming partons at hadron colliders. For example in pp ↓ Z
production incoming partons inside the protons transform into each other until they enter the Z production process
as quarks. According to Eq.(II.62), the factorized phase space and splittings depend on the energy fraction z and the
so-called virtuality t. The same has to be true for the parton densities, f(xn, ↔tn). The additional parameter t is
new compared to the purely probabilistic picture in Eq.(IV.5).

More quantitatively, we start with a quark inside the proton with an energy fraction x0, as it enters the hadronic
phase space integral. As this quark is confined inside the proton, it can only have small transverse momentum, which
means its four-momentum squared t0 is negative and its absolute value |t0| is small. For the incoming partons which if
on–shell have p2 = 0 it gives the distance to the mass shell. Let us simplify our kinematic argument by assuming that
there exists only one splitting, namely successive gluon radiation o! an incoming quark, where the outgoing gluons
are not relevant

In that case each collinear gluon radiation will decrease the quark energy and increase its virtuality through recoil,

xj+1 < xj and |tj+1| = ↔tj+1 > ↔tj = |tj | . (IV.6)

We know what the successive splitting means in terms of splitting probabilities and can describe how the parton
density f(x, ↔t) evolves in the (x ↔ t) plane as depicted in Figure 12. The starting point (x0, t0) is, probabilistically,
given by the energy and kinds of parton and hadron. We then interpret each branching as a step downward in
xj ↓ xj+1 and assign to a increased virtuality |tj+1| after the branching. The actual splitting path in the (x ↔ t)
plane is made of discrete points. The probability of a splitting to occur is given by Eq.(II.62),

⇀s

2ς
P̂ (z) dt

t
dz ⇐

⇀s

2ς
P̂q↗q(z) dt

t
dz . (IV.7)

At the end of the path we will probe the evolved parton density at (xn, tn), entering the hard scattering process and
its energy–momentum conservation.

To convert a partonic into a hadronic cross section, we probe the probability or the parton density f(x, ↔t) over
an infinitesimal square,

[xj , xj + εx] and [|tj |, |tj | + εt] . (IV.8)

Using our (x, t) plane we can compute the flows into this square and out of this square, which together define the net
shift in f in the sense of a di!erential equation,

εfin ↔ εfout = εf(x, ↔t) . (IV.9)

We compute the incoming and outgoing flows from the history of the (x, t) evolution. At this stage our picture
becomes a little subtle; the way we define the path between two splittings in Figure 12 it can enter and leave the
square either vertically or horizontally. Because we want to arrive at a di!erential equation in t we choose the vertical
drop, such that the area the incoming and outgoing flows see is given by εt. If we define a splitting as a vertical drop
in x at the target value tj+1, an incoming path hitting the square can come from any x-value above the square. Using
this convention and following the fat solid lines in Figure 12 the vertical flow into (and out of) the square (x, t) square
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0

1

x0

δx

|t0| δt |t|

FIG. 12: Path of an incoming parton in the (x↔ t) plane. Because we define t as a negative number its axis is labelled
|t|.

is proportional to εt as the size of the covered interval

εfin(↔t) = εt


⇀sP̂

2ςt
⊗ f


(x, ↔t)

= εt

t

∫ 1

x

dz

z

⇀s

2ς
P̂ (z)f

(x

z
, ↔t

)

⇐
εt

t

∫ 1

0

dz

z

⇀s

2ς
P̂ (z)f

(x

z
, ↔t

)
assuming f(x↔, ↔t) = 0 for x↔ > 1 . (IV.10)

We use the definition of a convolution

(f ⊗ g)(x) =
∫ 1

0
dx1dx2f(x1)g(x2) ε(x ↔ x1x2) =

∫ 1

0

dx1
x1

f(x1)g
(

x

x1

)
=

∫ 1

0

dx2
x2

f

(
x

x2

)
g(x2) . (IV.11)

The outgoing flow we define as leaving the infinitesimal square vertically. Following the fat solid line in Figure 12 it
is also proportional to εt

εfout(↔t) = εt

∫ 1

0
dy

⇀sP̂ (y)
2ςt

f(x, ↔t) = εt

t
f(x, ↔t)

∫ 1

0
dy

⇀s

2ς
P̂ (y) . (IV.12)

The y-integration is not a convolution, because we know the starting condition and integrate over all final configura-
tions. Combining Eq.(IV.10) and Eq.(IV.12) we can compute the change in the quark pdf as

εf(x, ↔t) = εt

t

[∫ 1

0

dz

z

⇀s

2ς
P̂ (z) f

(x

z
, ↔t

)
↔

∫ 1

0
dy

⇀s

2ς
P̂ (y) f(x, ↔t)

]

= εt

t

∫ 1

0

dz

z

⇀s

2ς

[
P̂ (z) ↔ ε(1 ↔ z)

∫ 1

0
dyP̂ (y)

]
f

(x

z
, ↔t

)

⇐
εt

t

∫ 1

x

dz

z

⇀s

2ς
P̂ (z)+ f

(x

z
, ↔t

)

↗
εf(x, ↔t)

ε(↔t) = 1
(↔t)

∫ 1

x

dz

z

⇀s

2ς
P̂ (z)+ f

(x

z
, ↔t

)
(IV.13)
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Strictly speaking, we require ⇀s to only depend on t and introduce the so-defined plus subtraction

F (z)+ ⇐ F (z) ↔ ε(1 ↔ z)
∫ 1

0
dy F (y) or

∫ 1

0
dz

f(z)
(1 ↔ z)+

=
∫ 1

0
dz

(
f(z)
1 ↔ z

↔
f(1)
1 ↔ z

)
. (IV.14)

For the second definition we choose F (z) = 1/(1 ↔ z), multiply it with an arbitrary test function f(z) and integrate
over z.

The plus–subtracted integral is by definition finite in the limit z ↓ 1, where some of the splitting kernels diverge.
At this stage the plus prescription is simply a convenient way of writing a complicated combination of splitting
kernels, but we will see that it also has a physics meaning. We can check that the plus prescription indeed acts as
a regularization. Obviously, the integral over f(z)/(1 ↔ z) is divergent at the boundary z ↓ 1, which we know we
can cure using dimensional regularization. For f(z) = 1 we illustrates the relation between the two regularization
techniques,

∫ 1

0
dz

1
(1 ↔ z)1↑ς

=
∫ 1

0
dz

1
z1↑ς

= zς

ϖ

∣∣∣∣∣

1

0

= 1
ϖ

with ϖ > 0 , (IV.15)

corresponding to 4 + 2ϖ dimensions. This change in sign avoids the analytic continuation of the usual value n = 4 ↔ 2ϖ
to ϖ < 0. We can relate the dimensionally regularized integral to the plus subtraction as

∫ 1

0
dz

f(z)
(1 ↔ z)1↑ς

=
∫ 1

0
dz

f(z) ↔ f(1)
(1 ↔ z)1↑ς

+ f(1)
∫ 1

0
dz

1
(1 ↔ z)1↑ς

=
∫ 1

0
dz

f(z) ↔ f(1)
1 ↔ z

(1 + O(ϖ)) + f(1)
ϖ

=
∫ 1

0
dz

f(z)
(1 ↔ z)+

(1 + O(ϖ)) + f(1)
ϖ

by definition

↗

∫ 1

0
dz

f(z)
(1 ↔ z)1↑ς

↔
f(1)

ϖ
=

∫ 1

0
dz

f(z)
(1 ↔ z)+

(1 + O(ϖ)) . (IV.16)

The dimensionally regularized integral minus the pole, i.e. the finite part of the dimensionally regularized integral, is
the same as the plus–subtracted integral modulo terms of the order ϖ. The third line in Eq.(IV.16) shows that the
di!erence between a dimensionally regularized splitting kernel and a plus–subtracted splitting kernel manifests itself
as terms proportional to ε(1 ↔ z). Physically, they represent contributions to a soft–radiation phase space integral.

Finally, we turn to our splitting kernel P̂q↗q in Eq.(II.59). If the plus prescription regularizes the pole at z ↓ 1,
what is the e!ect of the numerator of the regularized quark splitting kernel? The finite di!erence between the two
subtracted kernels is

(
1 + z2

1 ↔ z

)

+
↔ (1 + z2)

(
1

1 ↔ z

)

+
= 1 + z2

1 ↔ z
↔ ε(1 ↔ z)

∫ 1

0
dy

1 + y2

1 ↔ y
↔

1 + z2

1 ↔ z
+ ε(1 ↔ z)

∫ 1

0
dy

1 + z2

1 ↔ y

= ↔ε(1 ↔ z)
∫ 1

0
dy

(
1 + y2

1 ↔ y
↔

2
1 ↔ y

)

= ε(1 ↔ z)
∫ 1

0
dy

y2
↔ 1

y ↔ 1 = ε(1 ↔ z)
∫ 1

0
dy (y + 1) = 3

2ε(1 ↔ z) . (IV.17)

This means we can write the quark splitting kernel in two equivalent ways

Pq↗q(z) ⇐ CF

(
1 + z2

1 ↔ z

)

+
= CF

[
1 + z2

(1 ↔ z)+
+ 3

2ε(1 ↔ z)
]

. (IV.18)

Going back to our di!erential equation, the infinitesimal Eq.(IV.13) is the Dokshitzer–Gribov–Lipatov–Altarelli–
Parisi or DGLAP equation. It describes the virtuality or scale dependence of the quark parton density. Quarks do
not only appear in q ↓ q splitting, but also in gluon splitting. Therefore, we generalize Eq.(IV.13) to include quarks
and gluons. This generalization implies a sum over all allowed splittings and the plus–subtracted splitting kernels.
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For the quark density on the left hand side it is

dfq(x, ↔t)
d log(↔t) = ↔t

dfq(x, ↔t)
d(↔t) =



j=q,g

∫ 1

x

dz

z

⇀s

2ς
Pq↗j(z) fj

(x

z
, ↔t

)
with Pq↗j(z) ⇐ P̂q↗j(z)+ . (IV.19)

Going back to Eq.(IV.13) the relevant splittings in that form give us

εfq(x, ↔t) = εt

t

[∫ 1

0

dz

z

⇀s

2ς
P̂q↗q(z) fq

(x

z
, ↔t

)
+

∫ 1

0

dz

z

⇀s

2ς
P̂q↗g(z) fg

(x

z
, ↔t

)

↔

∫ 1

0
dy

⇀s

2ς
P̂q↗q(y) fq(x, ↔t)

]
. (IV.20)

Of the three terms on the right hand side the first and the third together define the plus–subtracted splitting kernel
Pq↗q(z), just following the argument above. The second term is a convolution proportional to the gluon pdf. Quarks
can be produced in gluon splitting but cannot vanish into it. Therefore, the second term in Eq.(IV.20) includes Pq↗g,
without a plus–regulator

Pq↗g(z) ⇐ P̂q↗g(z) = TR

[
z2 + (1 ↔ z)2]

. (IV.21)

In the functional form of this kernel we are indeed missing the soft-radiation divergence for z ↓ 1 from Pq↗q(z).
The second QCD parton density we have to study is the gluon density. The incoming contribution to the infinites-

imal square is given by the sum of four splitting scenarios each leading to a gluon with virtuality ↔tj+1

εfin(↔t) = εt

t

∫ 1

0

dz

z

⇀s

2ς

[
P̂g↗g(z)

(
fg

(x

z
, ↔t

)
+ fg

(
x

1 ↔ z
, ↔t

))
+ P̂g↗q(z)

(
fq

(x

z
, ↔t

)
+ fq̄

(x

z
, ↔t

))]

= εt

t

∫ 1

0

dz

z

⇀s

2ς


2P̂g↗g(z)fg

(x

z
, ↔t

)
+ P̂g↗q(z)

(
fq

(x

z
, ↔t

)
+ fq̄

(x

z
, ↔t

))
, (IV.22)

using Pg↗q̄ = Pg↗q in the first line and Pg↗g(1 ↔ z) = Pg↗g(z) in the second. To leave the volume element in
(x, t)-space a gluon can either split into two gluons or radiate one of nf light-quark flavors. Combining the incoming
and outgoing flows we find

εfg(x, ↔t) =εt

t

∫ 1

0

dz

z

⇀s

2ς


2P̂g↗g(z)fg

(x

z
, ↔t

)
+ P̂g↗q(z)

(
fq

(x

z
, ↔t

)
+ fq̄

(x

z
, ↔t

))

↔
εt

t

∫ 1

0
dy

⇀s

2ς


P̂g↗g(y) + nf P̂q↗g(y)


fg(x, ↔t) (IV.23)

Unlike in the quark case these terms do not immediately correspond to regularizing the diagonal splitting kernel using
the plus prescription.

First, the contribution to εfin proportional to fq or fq̄ which is not matched by the outgoing flow. From the quark
case we already know how to deal with it. The corresponding splitting kernel does not need any regularization, so we
define

Pg↗q(z) ⇐ P̂g↗q(z) = CF

1 + (1 ↔ z)2

z
. (IV.24)

We see that the structure of the DGLAP equation implies that the two o!-diagonal splitting kernels do not include
any plus prescription P̂i↗j = Pi↗j . We could have expected these kernels are finite in the soft limit, z ↓ 1.

Next, we can compute the y-integral describing the gluon splitting into a quark pair directly,

↔

∫ 1

0
dy

⇀s

2ς
nf P̂q↗g(y) = ↔

⇀s

2ς
nf TR

∫ 1

0
dy

[
1 ↔ 2y + 2y2]

using Eq.(IV.21)

= ↔
⇀s

2ς
nf TR

[
y ↔ y2 + 2y3

3

]1

0

= ↔
2
3

⇀s

2ς
nf TR . (IV.25)
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Finally, the two terms proportional to the pure gluon splitting Pg↗g in Eq.(IV.23) require some work. The y-integral
from the outgoing flow has to consist of a finite term and a term we can use to define the plus prescription for P̂g↗g.
The integral gives

↔

∫ 1

0
dy

⇀s

2ς
P̂g↗g(y) = ↔

⇀s

2ς
CA

∫ 1

0
dy

[
y

1 ↔ y
+ 1 ↔ y

y
+ y(1 ↔ y)

]
using Eq.(II.55)

= ↔
⇀s

2ς
CA

∫ 1

0
dy

[
2y

1 ↔ y
+ y(1 ↔ y)

]

= ↔
⇀s

2ς
CA

∫ 1

0
dy

[
2(y ↔ 1)

1 ↔ y
+ y(1 ↔ y)

]
↔

⇀s

2ς
CA

∫ 1

0
dy

2
1 ↔ y

= ↔
⇀s

2ς
CA

∫ 1

0
dy

[
↔2 + y ↔ y2]

↔
⇀s

2ς
2CA

∫ 1

0
dz

1
1 ↔ z

= ↔
⇀s

2ς
CA

[
↔2 + 1

2 ↔
1
3

]
↔

⇀s

2ς
2CA

∫ 1

0
dz

1
1 ↔ z

= ⇀s

2ς

11
6 CA ↔

⇀s

2ς
2CA

∫ 1

0
dz

1
1 ↔ z

. (IV.26)

The second term in this result is what we need to replace the first term in the splitting kernel of Eq.(II.55) proportional
to 1/(1↔z) by 1/(1↔z)+. We can see this using f(z) = z and correspondingly f(1) = 1 in Eq.(IV.14). The two finite
terms in Eq.(IV.25) and Eq.(IV.26) are included in the definition of P̂g↗g ad hoc. Because the regularized splitting
kernel appears in a convolution, the two finite terms require an explicit factor ε(1 ↔ z). Collecting all of them we
arrive at

Pg↗g(z) = 2CA

(
z

(1 ↔ z)+
+ 1 ↔ z

z
+ z(1 ↔ z)

)
+ 11

6 CA ε(1 ↔ z) ↔
2
3 nf TR ε(1 ↔ z) . (IV.27)

This result concludes our computation of all four regularized splitting functions which appear in the DGLAP equation
Eq.(IV.19).

Before discussing and solving the DGLAP equation, let us briefly recapitulate: for the full quark and gluon particle
content of QCD we have derived the DGLAP equation which describes a factorization scale dependence of the quark
and gluon parton densities. The universality of the splitting kernels is obvious from the way we derive them — no
information on the n-particle process ever enters the derivation.

The DGLAP equation is formulated in terms of four splitting kernels of gluons and quarks which are linked to the
splitting probabilities, but which for the DGLAP equation have to be regularized. With the help of a plus–subtraction
all kernels Pi↗j(z) become finite, including in the soft limit z ↓ 1. However, splitting kernels are only regularized
when needed, so the finite o!-diagonal quark–gluon and gluon–quark splittings are unchanged. This means the plus
prescription really acts as an infrared renormalization, moving universal infrared divergences into the definition of the
parton densities. The original collinear divergence has vanished as well.

The only approximation we make in the computation of the splitting kernels is that in the y-integrals the running
coupling ⇀s does not depend on the momentum fraction. In its standard form and in terms of the factorization scale
µ2

F
⇐ ↔t the DGLAP equation reads

dfi(x, µF )
d log µ2

F

=


j

∫ 1

x

dz

z

⇀s

2ς
Pi↗j(z) fj

(x

z
, µF

)
= ⇀s

2ς



j

(Pi↗j ⊗ fj) (x, µF ) . (IV.28)

B. Solving the DGLAP equation

Solving the integro-di!erential DGLAP equation Eq.(IV.28) for the parton densities is clearly beyond the scope of
this writeup. Nevertheless, we will sketch how we would approach this. This will give us some information on the
structure of its solutions which we need to understand the physics of the DGLAP equation.

One simplification we can make is to postulate eigenvalues in parton space and solve the equation for them. This
gets rid of the sum over partons on the right hand side. One such parton density is the non–singlet parton density,
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defined as the di!erence of two parton densities

fNS
q

= (fq ↔ fq̄) . (IV.29)

Since gluons cannot distinguish between quarks and antiquarks, the gluon contribution to their evolution cancels, at
least in the massless limit, at arbitrary loop order. The corresponding DGLAP equation with leading order splitting
kernels is

dfNS
q

(x, µF )
d log µ2

F

=
∫ 1

x

dz

z

⇀s

2ς
Pq↗q(z) fNS

q

(x

z
, µF

)
. (IV.30)

To solve it we need a transformation which simplifies a convolution, leading us to the Mellin transform. Starting from
a function f(x) of a real variable x we define the Mellin transform into moment space m

M[f ](m) ⇐

∫ 1

0
dx xm↑1f(x) f(x) = 1

2ςi

∫
c+i↓

c↑i↓

dm
M[f ](m)

xm
, (IV.31)

where for the back transformation we choose an arbitrary appropriate constant c > 0, such that the integration
contour for the inverse transformation lies to the right of all singularities of the analytic continuation of M[f ](m).
The important property for us is that the Mellin transform of a convolution is the product of the two Mellin transforms,
which gives us the transformed DGLAP equation

dM[fNS
q

](m, µF )
d log µ2

F

= ⇀s

2ς
M

[∫ 1

0

dz

z
Pq↗q

(x

z

)
fNS

q
(z)

]
(m)

= ⇀s

2ς
M[Pq↗q ⊗ fNS

q
](m)

= ⇀s

2ς
M[Pq↗q](m) M[fNS

q
](m, µF ) , (IV.32)

with the simple solution

M[fNS
q

](m, µF ) = M[fNS
q

](m, µF,0) exp


⇀s

2ς
M[Pq↗q](m) log µ2

F

µ2
F,0



= M[fNS
q

](m, µF,0)


µ2
F

µ2
F,0

 εs
2⇀ M[Pq↓q ](m)

⇐ M[fNS
q

](m, µF,0)


µ2
F

µ2
F,0

 εs
2⇀ 2(m)

, (IV.33)

defining ↽(m) = M[P ](m).

This solution still includes µF and ⇀s as two free parameters. To simplify this form we can include ⇀s(µ2
R

) in the
running of the DGLAP equation and identify the renormalization scale µR of the strong coupling with the factorization
scale

µF ⇐ µR ⇐ µ . (IV.34)

Physically, this identification is clearly correct for all one-scale problems where we have no freedom to choose either
of the two scales. In the DGLAP equation it allows us to replace log µ2 by ⇀s as

d

d log µ2 = d log ⇀s

d log µ2
d

d log ⇀s

= 1
⇀s

d⇀s

d log µ2
d

d log ⇀s

= ↔⇀sb0
d

d log ⇀s

. (IV.35)
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The additional factor of ⇀s will cancel the factor ⇀s on the right hand side of the DGLAP equation Eq.(IV.32)

dM[fNS
q

](m, µ)
d log ⇀s

= ↔
1

2ςb0
↽(m) M[fNS

q
](m, µ)

M[fNS
q

](m, µ) = M[fNS
q

](m, µ0) exp
(

↔
1

2ςb0
↽(m) log ⇀s(µ2)

⇀s(µ2
0)

)

= M[fNS
q

](m, µF,0)
(

⇀s(µ2
0)

⇀s(µ2)

) φ(m)
2⇀b0

. (IV.36)

Among other things, in this derivation we neglect that some splitting functions have singularities and therefore the
Mellin transform is not obviously well defined. Our convolution is not really a convolution either, because we cut it
o! at Q2

0 etc; but the final structure in Eq.(IV.36) really holds.
Instead of the non-singlet parton densities we find the same kind of solution in pure Yang–Mills theory, i.e. in QCD

without quarks. Looking at the di!erent color factors in QCD this limit can also be derived as the leading terms in
Nc. In that case there also exists only one splitting kernel defining an anomalous dimension ↽. We find in complete
analogy to Eq.(IV.36)

M[fg](m, µ) = M[fg](m, µ0)
(

⇀s(µ2
0)

⇀s(µ2)

) φ(m)
2⇀b0

. (IV.37)

The solutions to the DGLAP equation are not completely determined, because it an integration constant in terms of
µ0. The DGLAP equation does not determine parton densities, it only describes their evolution from one scale µF to
another, just like a renormalization group equation for the strong coupling.

Remembering how we arrive at the DGLAP equation we notice an analogy to the case of ultraviolet divergences
and the running coupling. We start from universal infrared divergences. We describe them in terms of splitting
functions which we regularize using the plus prescription. The DGLAP equation plays the role of a renormalization
group equation for example for the running coupling. It links parton densities evaluated at di!erent scales µF . In
analogy to the scaling logarithms considered in Section II A 3 we should test if we can point to a type of logarithm
the DGLAP equation resums by reorganizing our perturbative series of parton splitting.

C. Resumming collinear logarithms

In our discussion of the DGLAP equation and its solution we for instance encounter the splitting probability in the
exponent. To make sense of such a structure we remind ourselves that such ratios of ⇀s values to some power can
appear as a result of a resummed series. Such a series would need to include powers of (M[P̂ ])n summed over n which
corresponds to a sum over splittings with a varying number of partons in the final state. Parton densities cannot be
formulated in terms of a fixed final state because they include e!ects from any number of collinear partons summed
over the number of such partons. For the processes we can evaluate using parton densities fulfilling the DGLAP
equation this means that they always have the form

pp ↓ µ+µ↑ + X where X includes any number of collinear jets. (IV.38)

The same argument leads us towards the logarithms the running parton densities re-sum. To identify them we
build a physical model based on collinear splitting, but without using the DGLAP equation. We then solve it to see
the resulting structure of the solutions and compare it to the structure of the DGLAP solutions in Eq.(IV.37).

We start from the basic equation defining the physical picture of parton splitting in Eq.(II.54). Only taking into
account gluons in pure Yang–Mills theory the starting point of our discussion was a factorization, schematically
written as

σn+1 =
∫

dz
dt

t

⇀s

2ς
P̂g↗g(z)σn . (IV.39)

For a moment, we forget about the parton densities and assume that they are part of the hadronic cross section σn.
To treat initial state splittings, we need a definition of the virtuality t. If we remember that t = p2

b
< 0 we can

follow Eq.(II.61) and introduce a positive transverse momentum variable ϱp2
T

in the usual Sudakov decomposition,
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such that

↔t = ↔
p2

T

1 ↔ z
= ϱp2

T

1 ↔ z
> 0 ∝

dt

t
= dp2

T

p2
T

= dϱp2
T

ϱp2
T

. (IV.40)

From the definition of pT in Eq.(II.44) we see that ϱp2
T

is really the transverse three-momentum of of the parton pair
after splitting. The factorized form in Eq.(IV.39) becomes a convolution in the collinear limit,

σn+1(x, µF ) =
∫ 1

x0

dxn

xn

Pg↗g

(
x

xn

)
σn(xn, µ0)

∫
µ

2
F

µ
2
0

dϱp2
T,n

ϱp2
T,n

⇀s(µ2
R

)
2ς

. (IV.41)

Because the splitting kernel is infrared divergent we cut o! the convolution integral at x0. Similarly, the transverse
momentum integral is bounded by an infrared cuto! µ0 and the physical external scale µF . This is the range in which
an additional collinear radiation is included in σn+1.

For splitting the two integrals in Eq.(IV.41) it is crucial that µ0 is the only scale the matrix element σn depends
on. The other integration variable, the transverse momentum, does not feature in σn because collinear factorization is
defined in the limit ϱp2

T
↓ 0. All through the argument of this subsection we should keep in mind that we are looking

for assumptions which allow us to solve Eq.(IV.41) and compare the result to the solution of the DGLAP equation.
To develop this physics picture of the DGLAP equation we make three assumptions:

1. If µF is the global upper boundary of the transverse momentum integration for collinear splitting, we can apply
the recursion formula in Eq.(IV.41) iteratively

σn+1(x, µF ) ↙

∫ 1

x0

dxn

xn

Pg↗g

(
x

xn

)
· · ·

∫ 1

x0

dx1
x1

Pg↗g

(
x2
x1

)
σ1(x1, µ0)

⇓

∫
µF

µ0

dϱp2
T,n

ϱp2
T,n

⇀s(µ2
R

)
2ς

· · ·

∫

µ0

dϱp2
T,1

ϱp2
T,1

⇀s(µ2
R

)
2ς

. (IV.42)

2. We identify the scale of the strong coupling ⇀s with the transverse momentum scale of the splitting,

µ2
R

= ϱp2
T

. (IV.43)

This way we can fully integrate ⇀s/(2ς) and link the final result to the global boundary µF .

3. Finally, we assume strongly ordered splittings in the transverse momentum. If the ordering of the splitting is
fixed externally by the chain of momentum fractions xj , this means

µ2
0 < ϱp2

T,1 < ϱp2
T,2 < · · · < µ2

F
(IV.44)

We will study motivations for this ad hoc assumptions in Section V B.

Under these three assumptions the transverse momentum integrals in Eq.(IV.42) become
∫

µF

µ0

dϱp2
T,n

ϱp2
T,n

⇀s(ϱp2
T,n

)
2ς

· · ·

∫
pT,3

µ0

dϱp2
T,2

ϱp2
T,2

⇀s(ϱp2
T,2)

2ς

∫
pT,2

µ0

dϱp2
T,1

ϱp2
T,1

⇀s(ϱp2
T,1)

2ς

=
∫

µF

µ0

dϱp2
T,n

ϱp2
T,n

1

2ςb0 log
ϱp2

T,n

”2
QCD

· · ·

∫
pT,3

µ0

dϱp2
T,2

ϱp2
T,2

1

2ςb0 log
ϱp2

T,2
”2

QCD

∫
pT,2

µ0

dϱp2
T,1

ϱp2
T,1

1

2ςb0 log
ϱp2

T,1
”2

QCD

= 1
(2ςb0)n

∫
µF

µ0

dϱp2
T,n

ϱp2
T,n

1

log
ϱp2

T,n

”2
QCD

· · ·

∫
pT,3

µ0

dϱp2
T,2

ϱp2
T,2

1

log
ϱp2

T,2
”2

QCD

∫
pT,2

µ0

dϱp2
T,1

ϱp2
T,1

1

log
ϱp2

T,1
”2

QCD

. (IV.45)
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We can solve the individual integrals by switching variables, for example in the last integral
∫

pT,2

µ0

dϱp2
T,1

ϱp2
T,1

1

log
ϱp2

T,1
”2

QCD

=
∫ log log p

2
T,2/#2

log log µ
2
0/#2

d log log
ϱp2

T,1
”2

QCD
with d(ax)

(ax) log x
= d log log x

= log
log ϱp2

T,2/”2
QCD

log µ2
0/”2

QCD
. (IV.46)

This gives us for the chain of transverse momentum integrals, shifted to get rid of the lower boundaries,
∫

pT,n⇓µF

d log
log ϱp2

T,n
/”2

QCD
log µ2

0/”2
QCD

· · ·

∫
pT,2⇓pT,3

d log
log ϱp2

T,2/”2
QCD

log µ2
0/”2

QCD

∫
pT,1⇓pT,2

d log
log ϱp2

T,1/”2
QCD

log µ2
0/”2

QCD

=
∫

pT,n⇓µF

d log
log ϱp2

T,n
/”2

QCD
log µ2

0/”2
QCD

· · ·

∫
pT,2⇓pT,3

d log
log ϱp2

T,2/”2
QCD

log µ2
0/”2

QCD


log

log ϱp2
T,2/”2

QCD
log µ2

0/”2
QCD



=
∫

pT,n⇓µF

d log
log ϱp2

T,n
/”2

QCD
log µ2

0/”2
QCD

· · ·
1
2


log

log ϱp2
T,3/”2

QCD
log µ2

0/”2
QCD

2

=
∫

pT,n⇓µF

d log
log ϱp2

T,n
/”2

QCD
log µ2

0/”2
QCD

(
1
2 · · ·

1
n ↔ 1

) 
log

log ϱp2
T,n

/”2
QCD

log µ2
0/”2

QCD

n↑1

= 1
n!


log

log µ2
F

/”2
QCD

log µ2
0/”2

QCD

n

= 1
n!

(
log ⇀s(µ2

0)
⇀s(µ2

F
)

)n

. (IV.47)

This is the final result for the chain of transverse momentum integrals in Eq.(IV.42). After integrating over the
transverse momenta, the strong coupling is evaluated at µR ⇐ µF . This leaves us with the convolution integrals from
Eq.(IV.41),

σn+1(x, µ) ↙
1
n!

(
1

2ςb0
log ⇀s(µ2

0)
⇀s(µ2)

)n ∫ 1

x0

dxn

xn

Pg↗g

(
x

xn

)
· · ·

∫ 1

x0

dx1
x1

Pg↗g

(
x2
x1

)
σ1(x1, µ0) . (IV.48)

As before, we Mellin-transform the equation into moment space

M[σn+1](m, µ) ↙
1
n!

(
1

2ςb0
log ⇀s(µ2

0)
⇀s(µ2)

)n

M

[∫ 1

x0

dxn

xn

Pg↗g

(
x

xn

)
· · ·

∫ 1

x0

dx1
x1

Pg↗g

(
x2
x1

)
σ1(x1, µ0)

]
(m)

= 1
n!

(
1

2ςb0
log ⇀s(µ2

0)
⇀s(µ2)

)n

↽(m)n
M[σ1](m, µ0) using ↽(m) ⇐ M[P ](m)

= 1
n!

(
1

2ςb0
log ⇀s(µ2

0)
⇀s(µ2) ↽(m)

)n

M[σ1](m, µ0) . (IV.49)

Finally, we sum the production cross sections for up to n collinear jets,
↓

n=0
M[σn+1](m, µ) =M[σ1](m, µ0)



n

1
n!

(
1

2ςb0
log ⇀s(µ2

0)
⇀s(µ2) ↽(m)

)n

=M[σ1](m, µ0) exp
(

↽(m)
2ςb0

log ⇀s(µ2
0)

⇀s(µ2)

)

=M[σ1](m, µ0)
(

⇀s(µ2
0)

⇀s(µ2)

) φ(m)
2⇀b0

. (IV.50)

This is the same structure as the DGLAP equation’s solution in Eq.(IV.37). It means that we can understand the
physics of the DGLAP equation using our model calculation of a successive gluon emission, including the generically
variable number of collinear jets in the form of pp ↓ µ+µ↑ + X, as shown in Eq.(IV.38). On the left hand side of
Eq.(IV.50) we have the sum over any number of additional collinear partons; on the right hand side we see fixed order
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Drell–Yan production without any additional partons, but with an exponentiated correction factor. Comparing this
to the running parton densities we can draw the analogy that any process computed with a scale dependent parton
density where the scale dependence is governed by the DGLAP equation includes any number of collinear partons.

We can also identify the logarithms which are resummed by scale dependent parton densities. Going back to
Eq.(II.41) reminds us that we start from the divergent collinear logarithms log pmax

T
/pmin

T
arising from the collinear

phase space integration. In our model for successive splitting we replace the upper boundary by µF . The collinear
logarithm of successive initial–state parton splitting diverges for µ0 ↓ 0, but it gets absorbed into the parton densities
and determines the structure of the DGLAP equation and its solutions. The upper boundary µF tells us to what
extent we assume incoming quarks and gluons to be a coupled system of splitting partons and what the maximum
momentum scale of these splittings is. Transverse momenta pT > µF generated by hard parton splitting are not
covered by the DGLAP equation and hence not a feature of the incoming partons anymore. They belong to the hard
process and have to be consistently simulated. While this scale can be chosen freely we have to make sure that it does
not become too large, because at some point the collinear approximation C ∞ constant in Eq.(II.41) ceases to hold.

V. JET RADIATION

Jet vetos play a crucial role at the LHC, for instance when looking for Higgs production in weak boson fusion. If
we add a virtual gluon exchange between the two quark lines in the leading order diagram, we find a vanishing color
factor

trT a trT b εab = 0 . (V.1)

We also know that virtual gluon exchange and real gluon emission are very closely related. Radiating a gluon o!
any of the quarks in the weak boson fusion process will lead to a double infrared divergence, one because the gluon
can be radiated at small angles and one because the gluon can be radiated with vanishing energy. The divergence
at small angles is removed by redefining the quark densities in the proton. The soft, non–collinear divergence has to
cancel between real gluon emission and virtual gluon exchange. However, if virtual gluon exchange does not appear,
non–collinear soft gluon radiation cannot appear either. This means that additional QCD jet activity as part of the
weak boson fusion process is limited to collinear radiation, i.e. radiation along the beam line or at least in the same
direction as the far forward tagging jets. Gluon radiation into the central detector is suppressed by the color structure
of the weak boson fusion process.

While it is not immediately clear how to quantify such a statement it is a very useful feature, for example looking
at the top pair backgrounds. The WWbb̄ final state as a background to qqH, H ↓ WW searches includes two bottom
jets which can mimic the signal’s tagging jets. At the end, it turns out that it is much more likely that we will produce
another jet through QCD jet radiation, i.e. pp ↓ tt̄+jet, so only one of the two bottom jets from the top decays
needs to be forward. One way to isolate the Higgs signal is to look at additional central jets. This strategy is referred
to as central jet veto. Note that it has nothing to do with rapidity gaps at HERA or pomeron exchange, it is a QCD
feature completely accounted for by standard perturbative QCD.

renormalization scale µR factorization scale µF

source ultraviolet divergence collinear (infrared) divergence

poles cancelled counter terms parton densities
(renormalization) (mass factorization)

summation resum self energy bubbles resum parton splittings
parameter running coupling ωs(µ2

R) running parton density fj(x, µF )
evolution RGE for ωs DGLAP equation

large scales decrease of εtot increase of εtot for gluons/sea quarks

theory background renormalizability factorization
proven for gauge theories proven all orders for DIS

proven order-by-order DY...

TABLE III: Comparison of renormalization and factorization scales appearing in LHC cross sections.
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A. Jet ratios

If we assign a probability pattern to the radiation of jets from the core process we can compute the survival probability
Ppass of such a jet veto. As an example we assume NNLO or two-loop precision for the Higgs production rate

σ = σ0 + ⇀sσ1 + ⇀2
s
σ2 , (V.2)

where we omit the over–all factor ⇀2
s

in σ0. Consequently, we define the cross section passing the jet veto

σ(pass) = Ppass σ =


j

⇀j

s
σ(pass)

j
. (V.3)

Because the leading order prediction only includes a Higgs in the final state we know that σ(pass)
0 = σ0. Solving this

definition for the veto survival probability we can compute

Ppass = σ(pass)

σ
= σ0 + ⇀sσ(pass)

1 + ⇀2
s
σ(pass)

2
σ0 + ⇀sσ1 + ⇀2

s
σ2

. (V.4)

One ansatz for the distribution of any number of radiated jets is motivated by soft photon emission o! a hard
electron. From quantum field theory we know that it gives us a Poisson distribution in the numbers of jet in the soft
limit. In that case, the probability of observing exactly n jets given an expected n̄ jets is

f(n; n̄) = n̄ne↑n̄

n! ∝ Ppass ⇐ f(0; n̄) = e↑n̄ . (V.5)

Note that this probability links rates for exactly n jets, no at least n jets, i.e. it described the exclusive number of
jets. The Poisson distribution defines the so-called exponentiation model when we fix the expectation value in terms
of the inclusive cross sections producing at least zero or at least one jet,

n̄ = σ1(pmin
T

)
σ0

∝ Ppass = e↑↽1/↽0 . (V.6)

Using this expectation value n̄ in Eq.(V.5) returns a veto survival probability of around 88% for the weak boson fusion
signal and as 24% for the tt̄ background.

An alternative model starts from a constant probability of radiating a jet, which in terms of the inclusive cross
sections σn, i.e. the production rate for the radiation of at least n jets, reads

σn+1(pmin
T

)
σn(pmin

T
) = R(incl)

(n+1)/n
(pmin

T
) = const . (V.7)

The expectation value for the number of jets, weighted with the respective cross sections, is then

n̄ = 1
σ0



j=1
j(σj ↔ σj+1) = 1

σ0






j=1
jσj ↔



j=2
(j ↔ 1)σj



 = 1
σ0



σ1 +


j=2
σj





= σ1
σ0



j=0
(R(incl)

(n+1)/n
)j =

R(incl)
(n+1)/n

1 ↔ R(incl)
(n+1)/n

, (V.8)

Radiating jets with such a constant probability has been observed at many experiments, including most recently the
LHC, and is in the context of W+jets referred to as staircase scaling. Both, Poisson and staircase scaling can be
derived from generating functionals. The former appears for large splitting probabilities and large scale ratios, while
the latter is generated for democratic scales and smaller splitting probabilities. We can summarize the main properties
of the n-jet rates in terms of the upper incomplete gamma function $(n, n̄):
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staircase scaling Poisson scaling

σ(excl)
n σ(excl)

0 e↑bn σ0
e↑n̄n̄n

n!

R(n+1)/n =
σ(excl)

n+1

σ(excl)
n

e↑b
n̄

n + 1

R(incl)
(n+1)/n

= σn+1
σn

e↑b

(
(n + 1) e↑n̄ n̄↑(n+1)

$(n + 1) ↔ n$(n, n̄) + 1
)↑1

↘n≃
1
2

1
cosh b ↔ 1 n̄

Ppass 1 ↔ e↑b e↑n̄

B. Ordered emission

An interesting theory aspect is the postulated ordering of the splittings in Eq.(IV.44). Our argument follows from
the leading collinear approximation introduced in Section II B 1, so the strong pT -ordering can in practice mean
angular ordering or rapidity ordering, just applying a linear transformation.

For example the emission of a gluon o! a hard quark line is governed by distinctive soft and collinear phase space
regimes. When we exponentiate this gluon radiation we need to require multiple emission to be ordered by some
parameter. In that case we can neglect interference terms when squaring the multiple-emission matrix element.
These interference diagrams are called non–planar diagrams. The question is if we can justify to neglect them from
first principles field theory and QCD. There are three reasons to do this.

First, an arguments for a strongly ordered gluon emission comes from the divergence structure of soft and collinear
gluon emission. Two successively radiated gluons look like

Single gluon radiation with momentum k o! a hard quark with momentum p is described by the combination of
a propatator and the polarization sum (ϖp)(pk). For successive radiation the two Feynman diagrams give us the
combined kinetic terms

(ϖ1p)
(p + k1 + k2)2 ↔ m2

(ϖ2p)
(p + k2)2 ↔ m2 + (ϖ2p)

(p + k1 + k2)2 ↔ m2
(ϖ1p)

(p + k1)2 ↔ m2

= (ϖ1p)
2(pk1) + 2(pk2) + (k1 + k2)2

(ϖ2p)
2(pk2) + (ϖ2p)

2(pk1) + 2(pk2) + (k1 + k2)2
(ϖ1p)

2(pk1) k2
1 = 0 = k2

2

∞
(ϖ1p)

2 maxj(pkj)
(ϖ2p)

2(pk2) + (ϖ2p)
2 maxj(pkj)

(ϖ1p)
2(pk1) (pkj) ∋ (k1k2) strongly ordered

∞






(ϖ1p)(ϖ2p)
2 maxj(pkj)

1
2(pk2) (pk2) ′ (pk1) k2 softer

(ϖ1p)(ϖ2p)
2 maxj(pkj)

1
2(pk1) (pk1) ′ (pk2) k1 softer .

(V.9)

Once one of the gluons is significantly softer, the Feynman diagram with the later soft emission dominates. After
squaring the amplitude there will be no phase space regime where interference terms between the two diagrams are
numerically relevant. The coherent sum over gluon radiation channels reduces to a incoherent sum, ordered by the
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softness of the gluon. Note that this argument is based on an ordering of the (pkj). A small value of (pkj) can as well
point to a collinear divergence; every step of our argument still applies.

Second, we can derive ordered soft-gluon emission from the phase space integration in the eikonal approximation.
There, gluon radiation is governed by the so-called radiation dipoles. For successive gluon radiation o! a quark leg the
question we are interested in is where the soft gluon k is radiated, for example in relation to the hard quark p1 and the
harder gluon p2. The kinematics of this process is the same as the simpler soft gluon radiation o! a quark–antiquark
pair produced in an electroweak process. A well–defined process with all momenta defined as outgoing is

We start by symmetrizing the leading soft radiation dipole for zero masses with respect to the two hard momenta in
a particular way,

(p1p2)
(p1k)(p2k) = 1

k2
0

1 ↔ cos 012
(1 ↔ cos 01k)(1 ↔ cos 02k) in terms of opening angles 0

= 1
2k2

0

(
1 ↔ cos 012

(1 ↔ cos 01k)(1 ↔ cos 02k) + 1
1 ↔ cos 01k

↔
1

1 ↔ cos 02k

)
+ (1 ∈ 2)

⇐
W [1]

12 + W [2]
12

k2
0

. (V.10)

The last term is an implicit definition of the two terms W [1]
12 . The pre-factor 1/k2

0 is given by the leading soft
divergence. In each of the two terms we need to integrate over the gluon’s phase space, including the azimuthal angle
11k.

To compute the actual integral we express the three parton vectors in polar coordinates where the initial parton
p1 propagates into the x direction, the interference partner p2 in the (x ↔ y) plane, and the soft gluon in the full
three-dimensional space described by polar coordinates,

p̂1 = (1, 0, 0) hard parton
p̂2 = (cos 012, sin 012, 0) interference partner
k̂ = (cos 01k, sin 01k cos 11k, sin 01k sin 11k) soft gluon

∝ cos 02k ⇐ (p̂2k̂) = cos 012 cos 01k + sin 012 sin 01k cos 11k . (V.11)

From the scalar product between these four-vectors we see that of the terms appearing in Eq.(V.10) only the opening
angle 02k includes 11k, which for the azimuthal angle integration means

∫ 23

0
d11k W [1]

12 = 1
2

∫ 23

0
d11k

(
1 ↔ cos 012

(1 ↔ cos 01k)(1 ↔ cos 02k) + 1
1 ↔ cos 01k

↔
1

1 ↔ cos 02k

)
.

= 1
2

1
1 ↔ cos 01k

∫ 23

0
d11k

(
1 ↔ cos 012
1 ↔ cos 02k

+ 1 ↔
1 ↔ cos 01k

1 ↔ cos 02k

)

= 1
2

1
1 ↔ cos 01k

(
2ς + (cos 01k ↔ cos 012)

∫ 23

0
d11k

1
1 ↔ cos 02k

)
. (V.12)
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We can solve the azimuthal angle integral in this expression for W [i]
12 ,

∫ 23

0
d11k

1
1 ↔ cos 02k

=
∫ 23

0
d11k

1
1 ↔ cos 012 cos 01k ↔ sin 012 sin 01k cos 11k

⇐

∫ 23

0
d11k

1
a ↔ b cos 11k

=
∮

unit circle
dz

1
iz

1

a ↔ b
z + 1/z

2

with z = eiϱ1k , cos 11k = z + 1/z

2

= 2
i

∮
dz

1
2az ↔ b ↔ bz2

= 2i

b

∮
dz

(z ↔ z↑)(z ↔ z+) with z± = a

b
±

√
a2

b2 ↔ 1 . (V.13)

This integral is related to the sum of all residues of poles inside the closed integration contour. Of the two poles z↑

is the one which typically lies within the unit circle, so we find
∫ 23

0
d11k

1
1 ↔ cos 02k

= 2i

b
2ςi

1
z↑ ↔ z+

= 2ς
⇒

a2 ↔ b2
(V.14)

We can use the above definitions of a and b to compute

a2
↔ b2 = (1 ↔ cos 012 cos 01k)2

↔ sin 02
12 sin 02

1k

= 1 ↔ 2 cos 012 cos 01k + cos2 012 cos2 01k ↔ (1 ↔ cos2 01k ↔ cos2 012 + cos2 012 cos2 01k)
= (cos 01k + cos 012)2 , (V.15)

and find for the azimuthal angle integral
∫ 23

0
d11k

1
1 ↔ cos 02k

= 2ς
(cos 01k ↔ cos 012)2

= 2ς

| cos 01k ↔ cos 012|
. (V.16)

The entire integral in Eq.(V.12) then becomes
∫ 23

0
d11k W [1]

12 = 1
2

1
1 ↔ cos 01k

(
2ς + (cos 01k ↔ cos 012) 2ς

| cos 01k ↔ cos 012|

)

= ς

1 ↔ cos 01k

(1 + sign(cos 01k ↔ cos 012)

=






2ς

1 ↔ cos 01k

if 01k < 012

0 else .
(V.17)

The soft gluon is only radiated at angles between zero and the opening angle of the initial parton p1 and its hard
interference partner or spectator p2. The same integral over W [2]

12 gives the same result, with switched roles of p1 and
p2. The soft gluon is always radiated within a cone centered around one of the hard partons and with a radius given
by the distance between the two hard partons. Again, the coherent sum of diagrams reduces to an incoherent sum.
This derivation angular ordering is exact in the soft limit.

The third argument for ordered emission comes from color factors. Crossed successive splittings or interference
terms between di!erent orderings are color suppressed. For example in the squared diagram for three jet production
in e+e↑ collisions the additional gluon contributes a color factor

tr(T aT a) = N2
c

↔ 1
2 = NcCF (V.18)

When we consider the successive radiation of two gluons the ordering matters. As long as the gluon legs do not cross
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each other we find the color factor

tr(T aT aT bT b) = (T aT a)il(T bT b)li

= 1
4

(
εilεjj ↔

εijεjl

Nc

) (
εilεjj ↔

εijεjl

Nc

)
using T a

ij
T a

kl
= 1

2

(
εilεjk ↔

εijεkl

Nc

)

= 1
4

(
εilNc ↔

εil

Nc

) (
εilNc ↔

εil

Nc

)

= Nc

(
N2

c
↔ 1

2Nc

)2

= NcC2
F

= 16
3 (V.19)

Similarly, we can compute the color factor when the two gluon lines cross. We find

tr(T aT bT aT b) = ↔
N2

c
↔ 1

4Nc

= ↔
CF

2 = ↔
2
3 . (V.20)

Numerically, this color factor is suppressed compared to 16/3. This kind of behavior is usually quoted in powers of
Nc where we assume Nc to be large. In those terms non–planar diagrams are suppressed by a factor 1/N2

c
compared

to the planar diagrams.
We can also try the argument for a purely gluonic theory. The color factor for single gluon emission after squaring

is

fabcfabc = Ncεaa = Nc(N2
c

↔ 1) ↙ N3
c

, (V.21)

using the large-Nc limit in the last step. For planar double gluon emission with the exchanged gluon indices b and f
we find

fabdfabefdfgfefg = Ncεde Ncεde = N3
c

. (V.22)

Splitting one radiated gluon into two gives

fabc fcef fdef fabd = Ncεcd Ncεcd = N3
c

. (V.23)

This means that planar emission and successive splittings cannot be separated based on the color factor. We can use
the color factor argument only for abelian splittings to justify ordered gluon emission.

VI. LATTICE QCD AND CONFINEMENT IN A NUTSHELL

In this chapter we pick up the analysis of the strongly correlated infrared regime in QCD. In Section III we have
evaluated the dynamics of strong chiral symmetry breaking with the help of diagrammatic QCD approaches and in
particular low energy e!ective theories. Now we discuss the second challenging phenomenon in QCD, the confinement
of quarks. To that end we introduce a fully non-perturbative approach for solving QCD numerically, lattice QCD. One
of the chief advantages of lattice QCD is the property, that it allows for a numerical full solution of QCD (and other
statistical and quantum field theories) in terms of the full generating functional or rather its correlation functions. For
that purpose the infinite-dimensional statistical integral is approximated by a finite dimensional one on a space-time
or spatial lattice. This allows us to study confinement analytically, see Section VI D. While this analytical solution
holds true only on the lattice, it provides a very valuable insight into confinement.

We shall use the scalar 14 theory with a real scalar field 1(t, ϱx) as a simple example theory for introducing the lattice
formulation. We consider a three-dimensional spatial cube B with length L in all directions. This cube has the volume
V = L3, and we now approximate the box with a regular rectangular grid of points with a (lattice) distance a = L/N
and a (large) natural number N . Then, the field takes real values on the grid points, and the infinite-dimensional
path integral turns into a high- but finite-dimensional integral with N3 computations. Evidently, in the limit N ↓ ⇔

the full path integral is recovered if the limit exists. Moreover, for small enough N , the finite-dimensional integral
maybe solved numerically with Monte-Carlo methods, typically applied to high-dimensional integration problems.

This set-up leaves us with the exiting possibility to simply solve interacting quantum field theories numerically
within N ↓ ⇔ of the corresponding lattice field theory. An obvious and intriguing advantage of such a formulation
is, that it can be formulated for generic coupling strength and does not rely on a small coupling or other constraints,
that typically come with systematic expansion schemes. Put di!erently, lattice field theories are the method of choice
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for strongly correlated systems, if the N ↓ ⇔ can be taken.
This leaves us with the following general tasks, which we have to solve for QCD:

Task (i) Recast QCD in terms of lattice QCD, while trying to preserve as much of its symmetries. Evidently, for the
example above with a regular rectangular lattice spatial rotation invariance is broken, and is only recovered
in the limit N ↓ ⇔. This statement extends to full space-time symmetries, a fact that e.g. complicates
the construction of supersymmetric lattice theories. A further important symmetry that requires attention is
the chiral symmetry. This symmetry plays a very important rôle in QCD and beyond, and will be discussed
thoroughly, when discussing lattice fermions. Finally, the lattice formulations of gauge theories has great
advantages over corresponding (diagrammatic) formulations in the vacuum: lattice gauge theories are explicitly
gauge invariant while most continuum approaches are based on gauge fixed formulations.

Task (ii) Control of the limit N ↓ ⇔. Here we have to distinguish the thermodynamic limit, V ↓ ⇔ and the continuum
limit, a ↓ 0. While these limits both require N ↓ ⇔, they are di!erent. In any case they are signalled by
the respective scaling behaviour (with either a or V), and its evaluation is one of the largest systematic error
sources in lattice QCD.

Task (iii) Complex action as occurs in QCD at finite density and in the context of its Lee-Yang zeros, require the com-
putation of high dimensional integrals with complex (or at least non-positive) measure factors. The respective
numerics may be NP-hard.

We close this introduction with the cautionary remark that a full introduction in lattice QCD can only be provided
within fully dedicated lecture courses on lattice field theories, see Lattice field theories and Advanced lattice field
theories, also containing links to lattice codes. Accordingly, the purpose of the present Chapter is that of o!ering a
non-technical introduction of the main concepts of lattice QCD and o!ering a glimpse at confinement.

A. Scalar quantum field theory on the Lattice

Our starting point is the Euclidean generating functional for a real scalar field 1 ↑ . While 1 ↑ described a
neutral spin 0 field, a complex scalar field 1 ↑ describes a charged spin 0 field. For the latter field we have the
Euclidean path integral

Z[J ] = 1
N

∫
D1 exp

{
↔S[1] +

∫

x

J(x)1(x)
}

, (VI.1a)

with the path integral measure

D1(x) =
∏

x

d1x , (VI.1b)

where 1(x) is the integration measure of the complex variable 1x = 1(x). The classical action in (VI.1a) is given by

S[1] =
∫

ddx


1†(x) (↔!) 1(x) + V (1†1)


, with ! = ω2

µ
. (VI.1c)

The potential in (VI.1c) is a 14-potential with

V (2) = m2
ϱ

2 + 3ϱ

2 22 where 1 = 1
⇒

2
(11 + i12) , and 2 = 1†1 = 1

2(12
1 + 12

2) . (VI.1d)

The scalar theory shows a su"ciently rich phase structure and strongly correlated regimes to be of interest in its
own, one example being the fluctuation induced Coleman-Weinberg phase transition. As already mentioned above,
we shall use it here for introducing both conceptual particularities on the lattice as well as numerical techniques.

1. Lattice action of scalar field theories

Now we put the scalar theory defined in (VI.1) on a space-time grid, a depiction of such a lattice in d = 1 + 1
dimensions with the lattice sites (n0 a, n1 a) ↑

2 is found in Figure 13. While we still note the x-axis with n0, it is

https://www.thphys.uni-heidelberg.de/~pawlowski/Lattice21-22.php
https://www.thphys.uni-heidelberg.de/~pawlowski/AdvancedLattice22.php
https://www.thphys.uni-heidelberg.de/~pawlowski/AdvancedLattice22.php
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FIG. 13: Depiction of a finite 2-dimensional lattice with a lattice size L and a lattice distance a. The space-time
vector takes values x = n0ê0 + n1ê1, and L/a = 8.

simply another Euclidean direction.
This lattice is defined by the box Ba,L with periodic boundary conditions.

Ba,L =
{

x = a n , with n = nµ êµ , µ = 1, ..., d with nµ ↑ and |nµ| ▽ L/a = N
}

. (VI.2)

with the Cartesian orthonormal basis

(êµ)ε = εµε , with êµêε = εµε . (VI.3)

At the time being we consider a hyper cubic lattice, lattices with di!erent spatial and temporal extend are used for
finite temperature applications, L = Li = Lj △= L0 with i, j = 1, ..., d ↔ 1. This typically also leads to a di!erent
number of points in spatial and temporal directions, with N1 = L0/a △= N = Ni = Li/a. Note that it is indeed N1 , N
which defines the lattice scales together with the dimensionless parameters of the action. This will be discussed later.

The periodic boundary conditions are either implemented directly on the box by identifying opposite faces or simply
considering only fields 1 with

1(x + Lµ̂) = 1(x) , for µ = 0, 1, ..., d ↔ 1 , and µ̂ = êµ , (VI.4)

that live on the lattice sites x = nµa. With the lattice fields in (VI.4), we have to define the lattice version of the
classical action (VI.1c), as well as the lattice analogue of the path integral measure D1 in (VI.1a), already indicated
in (VI.1b) To begin with, the space-time integration in the action turns into finite sums,

∫

BL

ddx ↓ ad


x⇔Ba,L

, (VI.5)

where BL = B0,L = Ld, and the sum sums over the (L/a)d = Nd lattice points, or, more generally, N1 ⇓ Nd↑1 lattice
points. Quantum field theories on such a lattice are both, ultraviolet finite and infrared finite. The latter property
is evident as the theory is defined on a finite volume, and the maximal correlation length on such a lattice is given
by the lattice extend L. In turn, ultraviolet divergences occur for infinitely small distances, and the minimal distance
on the lattice is the lattice distance a. Therefore we do not expect any divergences to occur for finite a and L, both
are controlled on a finite lattice. However, this also entails that in particular the ultraviolet divergences resurface in
the limit a ↓ 0, which has to be carefully studied, invoking renormalisation group techniques. This will be discussed
later.

As already indicated above, it is convenient to express everything in dimensionless quantities in units of the lattice
distance. For example, the field can now be written in terms of the dimensionless field 1̂ with

1(na) = a1↑
d
2 1̂n , 2(n a) = a2↑d2̂n , (VI.6a)

where the prefactor a1↑d/2 takes care of the canonical dimension of the scalar field 1. In particular, in d = 4 we have
1 = 1/a 1̂. Moreover, the dimensionless field 1̂n can only depend on n and not on the lattice distance a. Similarly
we can write the mass m and the coupling 3 in (VI.1d) in terms of a scaling prefactor in terms of the lattice distance
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and the dimensionless lattice mass and coupling,

mϱ = 1
a

m̂ϱ , 3ϱ = ad↑43̂ϱ , (VI.6b)

reflecting the standard canonical momentum dimensions of couplings and fields in QFT. For example, the momentum
dimension of the coupling is 4 ↔ d ̸ 0 for d ▽ 4. This indicates that 14-theories are renormalisable for dimensions
d ▽ 4. The upper limit, d = 4 is the critical dimension, and there 14-theory faces the triviality problem: for all we
know it has no UV closure.

With the dimensionless fields, couplings and masses the potential term (VI.1d) is readily cast into its lattice form,

∫

BL

V (2) = ad


|nµ|⇑N


a↑d m̂2

ϱ
2̂n + a↑d

3̂ϱ

2 2̂2
n


=



|nµ|⇑N


m̂2

ϱ
2̂n + 3̂ϱ

2 2̂2
n


. (VI.7)

Note, that the lattice distance a has disappeared from (VI.7), and the continuum limit a ↓ 0 has to be taken
as the respective limit of the dimensionless mass and coupling m̂ϱ and 3̂ϱ. This already indicates the property of
lattice field theories, that the continuum limit is achieved within a scaling limit of the dimensionless parameters of
the theory. Moreover, the exponential of the potential term factorises in a product of exponentials of the potential
V̂ (2̂(n)) = m̂2

ϱ
2̂(n) + 3̂ϱ/22̂2(n) on the single lattice points,

exp




↔



|nµ|⇑N


m̂2

ϱ
2̂(n) + 3̂ϱ

2 2̂2(n)




 =
∏

|nµ|⇑N

e
↑


m̂

2
ςφ̂(n)+

λ̂ς
2 φ̂

2(n)


=
∏

|nµ|⇑N

e↑V̂ (φ̂(n)) . (VI.8)

Clearly this factorisation takes place for all potentials V without derivative terms. This factorisation mirrors that in
the path integral measure see ??. On the lattice and in terms of the dimensionless field 1̂n, the path integral measure
(VI.1b) turns into

∫
D1 ↓

∏

|nµ|⇑N

∫
d1̂(n) ∞

∏

|nµ|⇑N

∫
d1̂1(n)

∫
d1̂2(n) , (VI.9)

with integrations over the amplitude of the real and imaginary part of the dimensionless scalar field, 1̂1 and 1̂2
respectively. This leads to an interesting intermediate result,

∫
D1 e

↑

∫
x

V (x)
↓

∏

|nµ|⇑N

∫
d1̂(n) e↑V̂ (φ̂(n)) , (VI.10)

in the absence of the kinetic term the path integral factorises in a product of single site models that can be solved
independently. We also remark that the above integral is manifestly finite as already argued above. The full lattice
theory tends towards (VI.10) in the strong coupling limit, 3̂ ↓ ⇔. Seemingly this entails that QFTs with strong
physical coupling can be solved trivially on the lattice. However, an inspection of (VI.6b) leads to the conclusion
that a strong but finite coupling 3 requires 3̂ ↓ 0 for d < 4 according to the canonical dimensional running. In the
presence of quantum e!ects this canonical running is augmented by an anomalous part as computed in Section II A.
This analysis is deferred to Section VI E 2, for the time being we just keep in mind that the continuum limit obviously
requires a scaling limit of the dimensionless lattice parameters.

It is left to put forward the lattice version of the kinetic term, ↔
∫

x
1†!1. This is done with a discretised version

of the Laplace operator ! in (VI.1c). To begin with, we define the left, right and symmetric lattice derivatives,

ωL

µ
1(x) = 1(x) ↔ 1(x ↔ µ̂a)

a
, ωR

µ
1(x) = 1(x + µ̂a) ↔ 1(x)

a
, ωS

µ
1(x) = 1(x + µ̂a) ↔ 1(x ↔ µ̂a)

2a
, (VI.11a)

whose continuum limits with a ↓ 0 define the standard left, right and symmetric derivatives. In terms of the
dimensionless lattice fields these derivatives turn into

ωL,R,S

µ
1(x) = a↑

d
2 ω̂L,R,S1̂n , (VI.11b)
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with the di!erence operators

ω̂L

µ
1̂n = 1̂n ↔ 1̂n↑µ̂ , ω̂R

µ
1̂n = 1̂n+µ̂ ↔ 1̂n , ω̂S

µ
1̂n = 1

2

(
1̂n+µ̂ ↔ 1̂n↑µ̂

)
. (VI.11c)

While all the finite di!erence operators in (VI.11) have the same continuum limit, the convergence of the path integral
for the di!erent choices may be quantitatively or even qualitatively di!erent. For example, the symmetric operator
ω̂S does not single out a direction, which may lead to a quicker convergence. In this context we also remark that the
di!erence operators in (VI.11) have a matrix form with ω̂nm1̂m = ω̂1̂n with

(ωL

µ
)nm = εn,m ↔ εn↑µ̂,m , (ωR

µ
)nm = εn+µ̂,m ↔ εn,m , (ωS

µ
)nm = 1

2 (εn+µ̂,m ↔ εn↑µ̂,m) . (VI.12)

With the matrix representation (VI.12) it follows straightforwardly, that the symmetric di!erence operator i(ωS

µ
)nm

is a hermitian matrix, while the two other di!erence operators are not. We close this discussion of lattice derivative
operators with the remark that (VI.11c) are by no means the only possible choices: Clearly, ωL,R are the only next
neighbour definitions and ω̂S already connects next-to-next lattice sites. If we allow for a large and larger amount
of lattice sites to be involved, this leads to a large number of possible lattice derivatives. Typically, for standard
applications in scalar theories one sticks to the ’canonical’ choices, but we shall pick up this discussion again in
Section VI B 1 on lattice fermions.

Finally, with the di!erence operators (VI.11c) we can define lattice Laplacians. As for the derivatives, also the
Laplacian is not unique. Here we take the symmetric choice,

!̂ = ω̂L

µ
ω̂R

µ
= ω̂R

µ
ω̂L

µ
, with !̂nm =



µ>0
[εn+µ̂,m + εn↑µ̂,m ↔ 2 εn,m] . (VI.13)

Evidently, this matrix is hermitian, while the choices (ω̂L,R

µ
)2 are not. With the lattice Laplacian (VI.13) we arrive

at the lattice version of the kinetic term,
∫

x

1†
(
↔! + m2)

1 ↓



n,m

1̂†

n
Knm 1̂m , (VI.14)

where we included the mass term from the potential and the restriction |nµ|, |mµ| ▽ N is implied in the sum. The
hermitian kinetic operator Knm in (VI.14) reads

Knm = ↔



µ>0
[εn+µ̂,m + εn↑µ̂,m ↔ 2 εn̂,m̂] + m̂2 εnm = ↔



µ>0
[εn+µ̂,m + εn↑µ̂,m] + (m̂2 + 2d) εnm . (VI.15)

This leads us to our final expression for the lattice path integral of a complex scalar field in a finite volume V = Ld

with the lattice distance a,

Z[Ĵ ] = 1
N

∫ ∏

n

d1̂n exp ↔S[1̂] + 2


n

Ĵn1̂n , (VI.16)

with 2Ĵn1̂n = Ĵ1,n1̂1,n + Ĵ2,n1̂2,n, the normalisation N and the lattice action

S[1̂] = ↔



n,m

1̂†

n
Knm1̂m + 3̂

2


n

2̂2
n

, with 2̂n = 1̂†

n
1̂n . (VI.17)

We have already considered this theory in the absence of a kinetic term, see (VI.10). Now we discuss the opposite
limit, we drop the interaction term (but keep the mass term). This leads us to the (Gaußian) free theory, which can
be integrated analytically. We get from (VI.16) for the generating functional of the free theory, Z0[J ],

Z0[J ] ∞
1

det Knm

e
1
2

∑
n,m

ĴnK
↔1
nmĴm . (VI.18)

where both the Gaußian integral over the real and imaginary part of the field lead to a factor 1/
⇒

det K. With
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derivatives w.r.t. the current we generate the correlation functions of this theory with

ωmZ0[J ]
ωĴn1 · · · Ĵnm

= ↘1̂n1 · · · 1̂nm≃ . (VI.19)

These correlation functions are either vanishing (m = 2i + 1) or are sums of products of the two-point function. The
latter is given by

1
Z0[J ]

ωmZ0[J ]
ωĴnωĴm

= ↘1̂n1̂m≃ = K↑1
nm

, (VI.20)

the standard result in QM and QFT: the second derivative of (the logarithm of) the generating functional is the
propagator. In the current free theory it is the classical propagator 1/K.

It is very instructive to transform fields and correlation functions to their momentum representation with a Fourier
transformation, i.e. the dispersion K(p) and the propagator 1/K(p). In momentum space we will see the ultraviolet
finiteness explicitly. In order to facilitate the access we use a lattice of infinite extent, L ↓ ⇔, related to the
thermodynamic limit of the theory. Not that this limit is di!erent from the continuum limit, a ↓ 0 (augmented with
an appropriate rescaling of the couplings), and they should not be confused.

In any case the Fourier transform on a lattice with infinite extent is defined by

1̂(p̂) =


n⇔ d

1̂n e↑ip̂µnµ , 1̂n =
∫

3

↑3

ddp̂

(2ς)d
1̂(p̂) eip̂µnµ , (VI.21)

with the dimensionless momentum p̂ = a p for the ’standard’ momentum p, defined similarly to x = a n. The
integration over the dimensionless momentum is restricted to the Brillouin zone

Bp̂ = [↔ς, ς]d , (VI.22)

originally introduced in condensed matter physics, see also Wigner-Seitz cells. A shift of the momentum p̂µ by 2ςmµ

with mµ ↑ leads to

ei(p̂µ+23 mµ)nµ = eip̂µnµ , (VI.23)

as eim̂µnµ = 1. Accordingly, physical momenta are restricted by ↔ς/a ▽ pµ ▽ ς/a, and while we will not do
lattice perturbation theory in this lecture course, all momentum loops in a loop expansion or any other diagrammatic
expansions are manifestly ultraviolet finite. Note also that this convenient property comes at the price of violating
Euclidean symmetry, instead the full Euclidean group O(d) in d dimensions the lattice only admits rotations by nς
with n ↑ .

We now perform a Fourier transform of the kinetic operator Knm in (VI.15) to K(p̂, q̂),

Knm =
∫

3

↑3

ddp̂

(2ς)d
K(p̂)eip̂(n↑m) , with K(p̂) = 4

d↑1

µ=0
sin2

(
p̂µ

2

)
+ m̂2 , (VI.24)

where we have used

εnm =
∫

3

↑3

ddp̂

(2ς)d
eip̂(n↑m) . (VI.25)

Note that the classical dispersion is obtained for p̂ ↓ 0, where K(p̂) ↓ p̂2 + m̂2. The physical dispersion is given
by 1/a2K(p̂) ↓ p2 + m2. This entails that in the continuum limit only the neighbourhood of the zeros of sin2(p̂µ/2)
survives, all other momenta are suppressed by 1/a2. This is clearly seen by re-instating all dimensions to the action.
Then we have for the kinetic term on the lattice,

∫
3

↑3

ddp̂

(2ς)d
1̂†(↔p̂) K(p̂) 1(p̂) =

∫ ⇀
a

↑
⇀
a

ddp

(2ς)d
1†(↔p) 1

a2 K(pa) 1(p) . (VI.26)

For momenta p̂ = pa with finite values of K(pa), the expression in (VI.26) diverges for a ↓ 0, as does the full action.
Accordingly, configurations 1(p) with support for these momenta are suppressed in the continuum limit. In turn,
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configurations with support in momentum regimes p̂ = pa ↖ a with K(pa) ↖ a2 survive. In the present case there
is only one such zero at p̂ = 0. Note that seemingly another definition for the dispersion with sin2(p̂µ) would work
as well, but with this definition there are also zeros of the dispersion at the corners of the Brillouin zone, leading to
additional fields in the continuum limit (doublers). This will be important in the case of fermions. In summary this
entails that discretisation details matters.

B. Fermions on the Lattice

In the last chapter we have discussed the lattice formulation of scalar field theories. As in standard quantum field
theory this includes the showcase example, the 14-theory, and also covers many interesting phenomena. However,
all matter fields in the Standard Model except the Higgs are fermionic, as are also the fundamental fields in many
interesting condensed matter and statistical systems. In this Chapter we discuss the lattice formulation of fermionic
theories. We shall see that the numerical implementation of these theories is not as straightforward as that of scalar
theories or that of gauge theories treated in the next Chapter. In relativistic theories, the respective problems are
related to the spin 1/2 nature of fermions which neither allows for a straightforward implementation of the importance
sampling due to the Grassmannian nature of the fermionic fields (and the linear dispersion), nor does it admit the
straightforward implementation of one Weyl fermion on the lattice due to the linear Dirac dispersion: the fermionic
doubling problem covered by the Nielsen-Ninomiya theorem. We note in passing that, while these properties obstruct
the numerical simulation of fermionic theories, they also carry some very interesting (and cool) mathematics and
physics.

We initiate this discussion with a short summary on the properties of fermionic continuum path integrals. In
Euclidean space-time the fermionic path integral of the free Dirac action in analogy of (VI.1),

Z[5, 5̄] = 1
N

∫
D↼̄ D↼ e

↑S↼[ϖ,ϖ̄]+
∫

x
(↼̄ ϖ↑ϖ̄ ↼) . (VI.27)

with the free Euclidean Dirac action

Sϖ

[
↼, ↼̄

]
=

∫

x

↼̄
(

/ω + mϖ

)
↼ , where /ω = ↽µωµ , (VI.28)

Grassmann fields ↼, ↼̄ with ↼2 = ↼̄2 = 0, and the Euclidean version of the Cli!ord algebra

{↽µ , ↽ε} = 2εµε , and {↽µ , ↽5} = 0 with ↽5 = i↽0↽1↽2↽3 , (VI.29)

with the 4 ⇓ 4 dimensional Dirac matrices in d = 4, and the hermitian ↽5 = ↽†

5. In general dimensions, the Cli!ord
algebra is 2 d

2 ⇓ 2 d
2 in even dimensions d = 2l with l ↑ , and 2 d↔1

2 ⇓ 2 d↔1
2 in odd dimensions d = 2l ↔ 1. While

the Euclidean anti-fermion ↼̄ is independent from the fermion ↼ as there is no Euclidean Dirac conjugation, one still
writes ↼̄ = ↼†↽0.

In any case we can expand the fermionic fields in a convenient set of basis functions, for example the eigenfunctions
of /ω with

↼(x) =


n

an4n(x) , ↼̄(x) =


n

b̄n4†

n
(x) , with i/ω4n = 3n4n , (VI.30)

with the Grassmann expansion coe"cients anam = ↔aman, b̄nb̄m = ↔b̄mb̄n and anb̄m = ↔b̄man. Within the basis
(VI.30) the Dirac action (VI.28) has the simple form

Sϖ

[
↼, ↼̄

]
=



n

3nb̄nan . (VI.31)

and the Grassmann measure in (VI.27) reads,
∫

D↼̄ D↼ ∞

∏

n

∫
db̄n dan . (VI.32)
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Using the above relations in the path integral, it yields
∫

D↼̄ D↼ e↑S↼[ϖ,ϖ̄]
∞

∫ 
∏

n

db̄n dan


e↑

∑
n

▷nb̄nan =
∏

n

[∫
db̄n dan 3nanb̄n

]
=

∏

n

3n = det
(

/ω + m
)

, (VI.33)

where we have used the rules for Grassmann integrations,
∫

da an = ε1n . (VI.34)

1. Lattice action of fermionic field theories

We now formulate the lattice version of the path integral (VI.27) in analogy of the scalar theory: To begin with,
we define our dimensionless lattice fields and parameters as in (VI.6). The dimensionless fermionic fields read,

( ↼(x), ↼̄(x) ) ↓
1

a
d↔1

2

(
↼̂n, ˆ̄↼n

)
, (VI.35a)

and the lattice derivative and mass,

ωµ↼(x) ↓
1

a
d+1

2
ω̂µ↼̂n , mϖ ↓

1
a

m̂ϖ , (VI.35b)

where we have chosen the symmetric lattice derivative, ω̂µ = ω̂S

µ
, see (VI.11c), with

ω̂µ↼̂(n) = 1
2

(
↼̂n+µ̂ ↔ ↼̂n↑µ̂

)
. (VI.36)

With the definitions (VI.35) the lattice version of the Dirac action is given by,

Sϖ


↼̂, ˆ̄↼


=



n,m
ε,ω

ˆ̄↼◁,nK◁5,nm↼̂5,m (VI.37a)

with the space-time points n, m and the Dirac indices ⇀, ⇁. The kinetic operator or matrix K reads,

K◁5,nm =


µ

(↽µ)
◁5

εm,n+µ̂ ↔ εm,n↑µ̂

2 + m̂ϖεmnε◁5 . (VI.37b)

The generating functional (VI.27) turns into,

Z[5, 5̄] ∞

∫ ∏

n,◁

d↼̂◁,n

∏

m,5

d ˆ̄↼
5,m

e
↑S↼

[
ϖ̂,

ˆ̄
ϖ

]
+

∑
n,ε

(
↼̄ε,nϖ̂ε,n↑

ˆ̄
ϖε,n↼ε,n

)
. (VI.38)

The Grassmann integrals in (VI.38) are easily performed as in (VI.33), and yield,

Z[5, 5̄] ∞ det K exp




↔



n,m
ε,ω

5̄◁,nK↑1
◁5,nm

55,m




 , (VI.39)

with the fermionic two-point function

↘↼̂◁

ˆ̄↼5≃ = K↑1
◁5,nm

. (VI.40)

Equation (VI.39) and (VI.40) are lookalikes of (VI.18) and (VI.20) respectively. Seemingly the only di!erence is the
di!erent power of the determinant. However, another surprise is buried in the kinetic operator. This is more clearly
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FIG. 14: Fermionic lattice dispersion in one dimension.

seen in momentum space. There we have

K◁5,nm =
∫

3

↑3

d4p̂

(2ς)4 K̃◁5(p̂)eip̂(n↑m) (VI.41)

with

K̃◁5(p̂) = i (↽µ)
◁5

sin p̂µ + m̂ϖ . (VI.42)

Now we proceed with the same argument as around (VI.26): only the zeros of the dispersion (VI.42) survive in the
continuum limit, as

∫
3

↑3

ddp̂

(2ς)d

ˆ̄↼◁(↔p̂)K(p̂)↼5(p̂) =
∫ ⇀

a

↑
⇀
a

ddp

(2ς)d
↼̄◁(↔p) 1

a
K(pa)↼(p) . (VI.43)

Accordingly, only configurations with support for momenta p̂ with K(pa) ↖ a lead to a finite action. Let us first look
at an oversimplified example, the dispersion in 1 + 0 dimensions,

K̃(p̂) ↙ sin p̂ , (VI.44)

also depicted in Figure 14. Naturally, the dispersion (VI.44) vanishes at the middle of the Brillouin zone at p = 0
and shows a linear dispersion with a positive slope, 1/aK̃(p̂ ↓ 0) ↓ 1/ap̂ = p, depicted by the straight red tangent
line in Figure 14. On the boundary points of the Brillouin zone, the dispersion also vanishes with 1/aK̃(p̂) ↓ ↔p
depicted by the dashed blue tangent line in Figure 14. This leaves us with two fermions in the continuum limit, one
with dispersion p and one with the dispersion ↔p. Note that the latter fermion is distributed at the two boundary
points of the lattice p̂ = ς (positive dispersion) and p̂ = ↔ς (negative dispersion). In summary our attempt of putting
one fermion on the lattice ended in having two of them in the continuum limit. This is a baby version of the fermion
doubling problem.

Let us now try to get rid of the doubler in (VI.44), Figure 14. Note first that the problem can be avoided by using left
or right derivatives instead of the symmetric one (show it). However, these derivatives are not anti-hermitian, which
leaves us with complex eigenvalues for the Dirac operator that only turn real in the continuum limit. This is a hefty
price to pay. Another possibility consists out of adding higher derivatives terms such as K(p̂) ↓ sin p̂ + r/2 sin2 p̂/2,
where the second term is nothing but the lattice Laplacean (VI.13) in momentum space, (VI.24). Evidently for p̂ ↖ a
this term vanishes linear with the lattice distance in the physical dispersion 1/aK(p̂), while it leads to a 1/a divergence
at p̂ ↓ ς, ↔ς. Accordingly, the doubler disappears in the continuum limit.

After this little excursion we come back to the fermionic lattice field theory. As in our baby example we collect all
the zeros of the dispersion. For example, in two dimensions we have the four zeros

(0, 0) , {(0, ±ς)} , {(±ς, 0)} , {(±ς, ±ς)}) . (VI.45)
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More generally we have 2d zeros in d dimensions: at all points where all pµ take values (0, ±ς),

p̂µ ↑ {0 , ±ς} ∀µ = 1, ..., d . (VI.46)

At these points the continuum limit of the propagator is given by

lim
a⇐0

1
a3

∫
3

↑3

d4p̂

(2ς)4
eip̂(n↑m)

K̃(p̂)
= ↔ lim

a⇐0

∫
3/a

↑3/a

d4p

(2ς)4
eip(x↑y)

i↽µ
1
a

sin apµ + m
= ↔



j

∫

61

d4p

(2ς)4
eip(x↑y)

(↔1)j+1i↽µpµ + m
+ O(a) .

(VI.47)

Note that the sign of the ↽- matrices can be flipped by a p̂-dependent similarly transformation S(p̂),

S(p̂)↽µS↑1(p̂) = (↔1)j+1↽µ . (VI.48)

In summary we have produced 16 fermions on the lattice. This is the (in)famous doubling problem on the lattice.
We note in passing, that the rather heuristic statement above can be cast in a mathematical form by considering the
fermions in momentum space, ↼̂(p̂). As in position space, fermions are periodic in momentum space,

↼̂(p̂ + µ̂) = ↼̂(p̂ + 2ςµ̂) , (VI.49)

which singles out the Brillouin zone in the first place. Therefore, fermions can be seen as maps from the d-dimensional
(momentum ) torus into the field space, e.g. 4

↓
4 for a four-dimensional single Dirac fermion. In general even

dimensions, the latter has 2d/2 (complex) components as the Cli!ord algebra is 2d/2-dimensional. Then, left- and
right-handed eigenspaces can be defined by momentum dependent projections, and the winding numbers of these
projections is related to the total chirality of the theory, see e.g. [21] and references therein.

For the purposes of the present lecture course it is su"cient to briefly discuss possible resolutions and concentrate
on the simple practical ones, the topic is picked up later, when discussing the continuum limit in more detail, including
an renormalisation group (Kadano! block-spinning) analysis on the lattice.

2. Wilson fermions

We have already indicated above in the discussion of our baby example, that the introduction of higher derivative
terms in the kinetic term gives us the possibility to suppress the doublers in the continuum limit. This is done by
augmenting them with masses proportional to 1/a,

K(W )
◁5,nm

= K◁5,nm + r

2


n,m
a,ω

ˆ̄↼◁,n!̂n,m↼̂5,m . (VI.50)

with K◁5,nm in (VI.37b) and the dimensionless Wilson parameter r and the lattice Laplacian (VI.13). In Momentum
space this kinetic term reads

K(W )
p̂

= i↽µ sin p̂µ + m̂ϖ + 2r
d↑1

µ=0
sin2

(
p̂µ

2

)
, (VI.51)

with the lattice Laplacian in momentum space in (VI.24). The Wilson term vanishes for the fermion at p̂ ↓ 0, while
it diverges at all the doubler points defined by (VI.46),

d
r

2a
̸

2r

a

d↑1

µ=0
sin2

(
p̂µ

2

)
̸

r

2a
, for p̂ △= 0 and p̂µ ↑ {0 , ±ς} . (VI.52)

Evidently, (VI.51) breaks chiral symmetry as it includes the momentum dependent Wilson mass term proportional
to the identity in Dirac space. Only in the continuum limit chiral symmetry is restored (in the absence of explicit
fermion masses, mϖ = 0). While this is a heavy price to pay for theories with chiral symmetry or that ’close’ to
chiral symmetry such as present for the light current quark masses of the up and down quark in QCD, it is a simple
deformation which is amiable to numerical implementation in simulations.
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3. Staggered fermions

Another possibility is the exploitation of the doublers as physical mode. For example, as we have indicated above,
putting one (massless) Weyl fermion on the lattice leads us to 2d Weyl fermions in the continuum limit with di!erent
chirality. Now, we even can assign di!erent mass gaps to the fermions which allows us to define them as di!erent
flavours of the original fermion.

Staggered fermions exploit this possibility. Before we come to some technical details, we would like to give the
flavour of the argument (pun intended). The most e"cient way of their implementation is a simple counting and
distribution of fermionic degrees of freedom. In the following, we restrict ourselves to even dimensions, specifically
d = 2 and d = 4. In even dimensions d, a Dirac fermion has 2d/2 complex components, that can be distributed over
2d zeros of the dispersion at the positions (VI.46). This leads us to minimally 2d/2 di!erent Dirac fermions in this
formulation, called di!erent tastes. For example, in QCD in d = 4 dimensions we then would have 4 tastes. It is
tempting to identify them with the flavours in QCD, so a minimal version of lattice QCD would have four flavours, up,
down, strange charm. However, the latter have significantly di!erent masses, and the chiral structure of the theory
crucially depends on the mass ordering, typically indicated 2+1+1 in order to single out the two light quarks, u, d
with current masses mu,d ↙ 2 ↔ 5 MeV, the heavier strange quark with a current quark mass of ms ↙ 102 MeV and
the charm quark with a current quark mass of mc ↙ 103 MeV.

However, the fact, that in our QCD example we have four tastes with identical masses, leads us to

exp


trlattice log K


= det

lattice
K ↓

(
det
cont

[p/ + mϖ]
)4

= exp


4trcont log (p/ + mϖ)


. (VI.53)

Equation (VI.53) suggests to e.g. simply take the square root of (VI.53), if considering two-flavour QCD in the isopsin-
symmetric limit mu = md. The latter is typically chosen in many applications as both, the current quark masses
mu, md and the mass di!erence mu ↔ md is rather small in comparison to the mass arising from spontaneous strong
chiral symmetry breaking ↙ 300 ↔ 400 MeV.

Evidently, for one Dirac fermion one has to consider the fourth root of (VI.53). E!ectively, this is done on the level
of the exponent on the left hand side of (VI.53)

trlattice log K ↓
1
N

trlattice log K ↓ trcont log [p/ + mϖ] , (VI.54)

with N = 16 in the case of a four-dimensional Dirac fermion. Such a rooting is commonplace, but has its problems.
While (VI.54) provides the core of the argument, the remaining Dirac fermion is de-localised on the lattice, its
component being distributed at the points (VI.46).

How one can construct such a fermion technically, is discussed now at the example of a single Dirac fermion in
d = 4. We recall its action (VI.37),

Sϖ


↼̂, ˆ̄↼


= ↔



n,m

ˆ̄↼n

 4

µ=1
↽µ

εm,n+µ̂ ↔ εm,n↑µ̂

2 + m̂ϖεmn


↼̂m , (VI.55)

and we make a site-dependent transformation of the fermions in Dirac space such that the Dirac structure ’disappears’,
and the component fermions ↼◁,m run the show. This is done with the staggered transformations

↼̂n = ↽n1
1 ↽n2

2 ↽n3
3 ↽n0

0 ↼̂↔ , and ˆ̄↼n = ˆ̄↼↔

n
↽n0

0 ↽n3
3 ↽n2

2 ↽n1
1 . (VI.56)

The staggered transformation rotates the fermions from one lattice site to the next such that the Dirac structure of
the next neighbour hopping terms is absorbed into the fields. Moreover, for the site terms we have ˆ̄↼n↼̂n = ˆ̄↼↔

n
↼̂↔

n

owing to ↽2
µ

= .
Now we consider exemplary one hopping term in the µ = 3 direction. There we have

ˆ̄↼n↽3↼̂
n±3̂ = ˆ̄↼↔

n
↽n0

0 ↽n3
3 ↽n2

2 ↽n1
1 ↽3 ↽n1

1 ↽n2
2 ↽n3±1

3 ↽n0
0 ↼̂↔

n±3̂ = (↔1)n1+n2 ˆ̄↼↔

n
↼̂↔

n±3̂ . (VI.57)

Here, the factor (↔1)n1+n2 counts, how many times we have to have to anti-commute ↽1 and ↽2 with the explicit ↽3
in the middle. Again using ↽2

µ
= we arrive at (VI.57), and similarly for the other hopping terms.
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Inserting all these transformations into (VI.55), we are led to,

Sϖ[↼, ↼̄] =


n,µ


1
2 5n,µ

ˆ̄↼↔

n

(
↼̂↔

n+µ̂
↔ ↼↔

n̂↑µ̂

)
+ m̂ϖ

ˆ̄↼↔

n
↼̂↔

n


, (VI.58)

with

5n,1 = 1 , 5n,2 = (↔1)n1 , 5n,3 = (↔1)n1+n2 , 5n,0 = (↔1)n1+n2+n3 . (VI.59)

Importantly, (VI.58) is diagonal in Dirac space in the rotated Dirac fields ↼◁,n, and all components have the same
action. Accordingly, the rooting (VI.54) simply amounts to dropping the Dirac sum in (VI.58), only considering one
component, 7̂n = ↼̂◁,n. We arrive at the final result,

S4[7, 7̄] =


n,µ


1
2 5n,µ

ˆ̄7n (7̂n+µ̂ ↔ 7n̂↑µ̂) + m̂ϖ
ˆ̄7n7̂n


, (VI.60)

With this procedure we have reduced the number of 16 Dirac fermions to 4 Dirac fermions (tastes). In the current
lecture course we will rarely use staggered fermions, and if, we will use the rooting prescription indicated above. Hence,
for more details as well as a detailed discussion of chiral symmetry and taste violation, we refer to the literature, in
particular to [22], chapter 4 and [23], chapter 10.1.

4. Chiral symmetry on the lattice & the fate of the axial anomaly→

However, for its importance as well as its illustrative nature we briefly discuss the fate of (naive) chiral symmetry
on the lattice. We emphasise that the derivation below is sketchy and the single step, while straightforward, are a
bit tedious. This topic will be picked up later within a more elaborated point of view also involving renormalisation
group (RG) arguments.

To begin with, let us assume that we have coupled an external gauge field to the fermion, this will be detailed in
the next chapter. Then, the Dirac action reads

Sϖ


↼̂, ˆ̄↼


= ↔



n,m


ˆ̄↼nDn,m + m̂ϖεmn


↼̂m , (VI.61)

with the naive interacting lattice Dirac operator Dn,m that is proportional to ↽µ and hence it anti-commutes with ↽5
defined in (VI.29),

{D, ↽5} = 0 , (VI.62)

It is precisely the property (VI.62), that the Dirac operator of Wilson fermions violates, and indeed one can show,
that one either has doublers or one looses (VI.62).

In ?? we keep the mass but consider the limit m̂ϖ ↓ 0. Now we apply local chiral transformations

↼̂n ↓ ei◁(n)25 ↼̂n , ˆ̄↼n ↓
ˆ̄↼n ei◁(n)25 . (VI.63)

to the action (VI.61). Using (VI.61) as the action in the fermionic path integral, the theory is still Gaußian (free).
Expanding the transformed path integral in powers of ⇀, we are led to the standard (partial) axial current conservation,

ω̂µ↘j5,µ≃ = 2m̂ϖ↘
ˆ̄↼n↽5↼̂n≃ , with j5,µ = ˆ̄↼n↽5↼̂n , (VI.64)

where the derivative is the symmetric lattice derivative. Now we sum over the lattice, and the left hand side vanishes
as it is a total derivative. There are no boundary terms due to the periodic boundary conditions. This leads us
instantly to

m̂ϖ


↘

ˆ̄↼n↽5↼̂n≃ = ↔m̂ϖTr↽5↘↼̂n

ˆ̄↼m≃ = 0 . (VI.65)
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The expectation value under the trace is nothing but the propagator

↘↼̂n

ˆ̄↼m≃ =
[

1
D + m̂ϖ

]

nm

. (VI.66)

with the anti-hermitian operator D with the spectrum

D4̂j = i3j4j , with j ↑ , (VI.67)

For every 3j △= 0, ↽54j also is an Eigenfunction to the Eigenvalue ↔i3j . Since 3j △= 0, we have


n

4j(n)↽54j(n) = 0 . (VI.68)

This leads us to

↔m̂ϖTr↽5↘↼̂n

ˆ̄↼m≃ = n+ ↔ n↑ = 0 , (VI.69)

where n+ and n↑ is the number Eigenfunctions 4(0) of vanishing Eigenvalues with positive and negative chirality
respectively.

↽54(0) = ±4(0) , as 4(0)
j1

{↽5 , D} 4(0)
j2

= 0 . (VI.70)

In conclusion, the total chirality of the fermionic lattice theory is vanishing. Again this reflects the Nielsen-Ninomiya
theorem on the lattice. In this formulation is also hints at some serious physics problems, as the (non-vanishing) axial
anomaly carries important physics.

C. Gauge Fields on the Lattice

With lattice formulations of scalar fields and fermions as introduced in Section VI A and Section VI B respectively,
we close our discussion of lattice formulations of field theories with that of gauge theories. Before introducing
lattice gauge theories, we recapitulate the basiscs of gauge theories in the continuum, see Section I. For the better
comparability with lattice gauge theory textbooks we shall use a slightly di!erent notation here than in Section I. We
start with an Abelian gauge theory with a Dirac fermion,

Sϖ

[
↼, ↼̄, Aµ

]
=

∫

x

↼̄ (D/ + mϖ) ↼ , where D/ = ↽µDµ , Dµ = ωµ + ieAµ . (VI.71)

with the Abelian gauge field Aµ ↑ , that is in the algebra of the gauge group U(1). Note that the definition of the
covariant derivative di!ers from that in with Dµ = ωµ ↔ ieAµ by a relative minus sign. The action (VI.71) is invariant
under gauge transformations ’(x) = exp iϑ(x) ↑U(1) of the Dirac fermion and the gauge field,

↼(x) ↓ ’(x)↼(x) , ↼̄(x) ↓ ↼̄(x)’†(x) , Aµ ↓ ↔
i
e

’
(
Dµ’†

)
= Aµ ↔ ωµϑ . (VI.72)

The transformation of the gauge field implies that the covariant derivative transforms as a tensor under gauge trans-
formations

Dµ ↓ ’ Dµ ’† , (VI.73)

where we use the notation ’ ↑U(1) for gauge transformations, instead of U as in (I.5). The pure gauge field part of
the gauge field is given by the standard U(1) action with

SA[Aµ] = 1
4

∫

x

F 2
µε

, with Fµε = ↔
i
e

[Dµ , Dε ] = ωµAε ↔ ωεAµ . (VI.74)

The relative minus sign in comparison to (I.7) originates in the definition of the covariant derivative.
This set-up is easily generalised to non-Abelian gauge theories, where we restrict ourselves to SU(Nc) theories

coupled to fermions ↼A in the fundamental representation with A = 1, ...,Nc, where Nc is generically called the
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number of colors, referring to QCD. We have

Sϖ

[
↼, ↼̄, Aµ

]
=

∫

x

↼̄A (D/ + mϖ)AB ↼B , where DAB

µ
= ωµεAB + igAc

µ
(tc)AB , (VI.75)

with a = 1, ..., N2
↔1, and Aa

µ
(x) ↑ . The action (VI.75) is invariant under gauge transformations ’(x) = exp iϑ(x) ↑

SU(Nc) with the Lie algebra valued exponent ϑ(x) = ϑa(x)ta
↑su(Nc) of the Dirac fermion and the gauge field,

similarly to (VI.76),

↼(x) ↓ ’(x)↼(x) , ↼̄(x) ↓ ↼̄(x)’†(x) , Aµ ↓ ↔
i
g

’
(
Dµ’†

)
, (VI.76)

the di!erence being the non-commutativity of the gauge field. The transformation of the gauge field implies that the
covariant derivative transforms as a tensor under gauge transformations

Dµ ↓ ’Dµ’† , (VI.77)

with Dµ’†↼ = (Dµ’†)↼ + ’†(Dµ↼). The pure gauge field action (Yang-Mills action) is given by

SA[Aµ] = 1
2

∫

x

trfF
2
µε

= 1
4

∫

x

(F a

µε
)2 , (VI.78)

with the field strength Fµε = F a

µε
ta with

Fµε = ↔
i
g

[Dµ , Dε ] , and F a

µε
= ωµAa

ε
↔ ωεAa

µ
↔ g fabcAb

µ
Ac

µ
, (VI.79)

As already mentioned above, QCD has the gauge group SU(3) (three colours), and the fermions are the quarks
(u,d,s,c,b,t) or a subset thereof. It is also very common to do simulations in SU(2) theories as these theories share
many communalities but SU(2) is far simpler to simulate, in particular at finite densities. There, however, it is also
di!ers significantly from QCD with three colours. Moreover, the SU(2) case is also the weak sector of the Standard
Model (SM), and with the hyper charge U(1) it adds up to the electroweak sector of the SM.

In the latter case we also have to consider a scalar field, the Higgs field, that carries a representation of the
electroweak gauge group. Hence, more generally, we consider the kinetic term of a complex scalar field also carrying
the fundamental representation of a non-Abelian gauge group,

Sϱ[1, Aµ] =
∫

x

(1†)A(D2
µ
)AB1B , with 1 = 1

⇒
2

(11 + i12) . (VI.80)

The gauge transformation of the scalar field is given by

1(x) ↓ ’(x)1 , 1†(x) ↓ 1†’†(x) (VI.81)

and the gauge invariance of the action (VI.80) follows readily.
With the matter actions (VI.71), (VI.75), (VI.80) and the pure gauge theory actions (VI.74) and (VI.78) we have

all ingredients of the Standard Model, except the chiral structure of the electroweak interaction.

1. Lattice action of gauge field theories

We start our discussion of the action of lattice gauge theories by first working out the lattice analogue of (VI.81).
The arguments work the same way for the fermionic action.

As in the continuum we introduce the gauge transformation for the complex matter field 1̂n, living on the sites,

1̂n ↓ ’(n)1̂n, 1̂†

n
↓ 1̂†

n
’†(n) , (VI.82)

where ’(n) ↑ SU(Nc) or ’(n) ↑ U(1). The lattice action of the free (complex) scalar theory is given in (VI.14) with
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the dispersion Knm defined in (VI.15), which we recall here for the sake of convenience.

Knm = ↔



µ>0
[εn+µ̂,m + εn↑µ̂,m] + (m̂2

ϱ
+ 2d) εnm . (VI.83)

The terms in 1†Knm1 living on a site (part of Knm proportional to εnm) are invariant under (VI.82), and we have
to ensure gauge invariance for e.g.

1̂†

n
1̂n+µ̂ . (VI.84)

This entails that we have to transport the group element ’†(n + µ̂) from the lattice point n + µ̂ to n. To that end we
define the link variable Uµ(n) ↑SU(Nc) with

Uµ(n) ↓ ’(n)Uµ(n)’†(n + µ̂) , (VI.85)

and the parametrisation Uµ(n) = ei0̂µ(n) with the Lie algebra field 0µ(n) ↑ su(Nc). The link variable is nothing
but a parallel transporter along the link between the sites n and n + µ̂. It ’lives’ on the link between n and n + µ̂.
Accordingly, the term 1̂†

n
Uµ(n)1̂n+µ is gauge invariant: The link variable Uµ(n) parallel transports (infinitesimally)

the gauge transformation from the lattice site n + µ̂ to the lattice site n. There it is annihilated. Explicitly, this
upgrade of (VI.84) transforms with

1̂†

n
Uµ(n) 1̂n+µ ↓ 1̂†

n
’†(n)’(n) Uµ(n) ’†(n + µ̂)’(n + µ̂) 1̂n . (VI.86)

Trivially, this also holds for 1†
n
U†

µ
(n ↔ µ̂)1n↑µ. Then the free action (VI.14) turns into,

S[1̂, U ] = ↔



n
µ>0

(
1̂†

n
U†

n
(n ↔ µ̂)1̂n↑µ̂ + 1̂†

n
Uµ (n) 1̂n+µ̂

)
+



n

1̂†

n
1̂n

(
2d + m̂2

ϱ

)
, (VI.87)

which reduces to (VI.14) for Uµ = .

We proceed by showing that the continuum limit of the gauge invariant lattice action is the continuum action
(VI.80). To that end we write

Uµ(n) = eig0aAµ(an) = + ig0aAµ(an) ↔
1
2 (ig0aAµ(an))2 + O(a3) , (VI.88)

which defines a gauge field Aµ on the lattice. In the following we only need (VI.88) up to the quadratic term in the
lattice distance a as displayed in (VI.88). This already entails that (VI.88) is not the unique definition of the gauge
field. Moreover, we shall see that order a2 terms in the exponent of Uµ vanish in the continuum limit. Accordingly,
the gauge field is only defined up to terms O(a), and these terms disappear in the continuum limit.

Now we expand (VI.87) in powers of the lattice spacing a, using (VI.88) as well as (VI.6). For the sake of simplicity
we restrict ourselves to d = 4. First, using the expansion in (VI.88) we get,

S[1̂, U ] a⇐0
↓ ↔



n,m

1̂†

n
Knm1̂ ↔



n
µ>0

1̂†

n


↔iag0Aµ(na ↔ µ̂a)1̂n↑µ̂ + iag0Aµ(na)1̂n+µ̂


↔



n

1̂†

n
(iag0Aµ)2 1̂n , (VI.89)

where we only keep the terms up to order a2. Now we use (VI.6) to map our dimensionless scalar lattice fields to the
dimensionful ones, 1̂n = a 1(na). Moreover, we use

1(na ± aµ̂) = 1(na) ± aωµ1(na) + O(a2) , Aµ(na ± µ̂a) = Aµ(na) + aωµAµ(na) + O(a2) , (VI.90)

where no sum is implied. Collecting all the terms on the right hand side of (VI.89), we arrive at

↔a4







n,m

1†(na)Knm

a2 1(ma) + ig0


n
µ>0

1†(na) [ωµAµ(na) + Aµ(na)ωµ] 1(na) +


n

1̂†

n
(ig0Aµ)2 1̂n + O(a)




 .

(VI.91)
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FIG. 15: Plaquette variable Uµε(n).

We use that in the continuum limit we have a4 ∑
n

↓
∫

4 and arrive at

S[1̂, U ] ↓

∫
d4x1†(x)

[
D2

µ
+ m2

ϱ

]
1(x) + O(a) . (VI.92)

In summary, we have obtained the desired result, our gauge invariant lattice action (VI.87) reduces to the gauge
invariant continuum action (VI.80) for a ↓ 0.

Now we proceed with defining a lattice analogue of the pure gauge action (VI.74) or (VI.78). The building block of
the pure gauge action is the field strength tensor Fµε , which in the continuum is the curvature tensor 1/(ig) [Dµ , Dε ],
see (VI.79). The covariant derivative Dµ induces an infinitesimal parallel transport in the direction µ̂, and hence the
commutator is first transporting in the 8-, then in the µ-direction, and then back in the inverse path. On the lattice,
this operation is implemented by the Plaquette variable,

Uµv(n) = Uµ(n)Uε(n + µ̂)Û†

µ
(n + 8̂)U†

ε
(n) . (VI.93)

As the link variable, the Plaquette variable lives in the gauge group. In analogy to the algebra-valued gauge field
defined in the exponent of the link variable in (VI.88), we can define an algebra-valued field strength in the exponent
of the Plaquette,

Uµε(n) = eig0a
2
Fµν (n) (VI.94)

with lattice field strength tensor Fµε . In QED we derive from (VI.93),

Fµε(n) = 1
a



(Aε(n + µ̂) ↔ Aε(n))︸ ︷︷ ︸
7̂R

µ Aν

↔ (Aµ(n + 8̂) ↔ Aµ(n))
︸ ︷︷ ︸

7̂R
ν Aµ



 , (VI.95)

where the left and right derivatives in (VI.95) ensure the anti-symmetry of the expression. In non-Abelian gauge
theories such as QCD we use the Baker-Campbell-Hausdor! formula for the expansion,

eAeB = eA+B+ 1
2 [A , B]+··· . (VI.96)



C Gauge Fields on the Lattice 78

With (VI.96) we arrive at,

Fµε(n) = 1
a


ω̂R

µ
Aε ↔ ω̂R

ε
Aµ + ig0a [Aµ , Aε ](n) + O(a)


. (VI.97)

Both, (VI.95) and (VI.97) imply that the Plaquette variable can be expanded in powers of the field strength in the
continuum limit, each power going with higher orders of the lattice distance,

Uµε(n) a⇐0
↓ 1 + ig0aFµε(n) ↔

g2
0a2

2 F
2
µε

(n) + O(a3) . (VI.98)

Summed over µ, 8, the F 2
µε

-term in (VI.98) is the Yang-Mills action in the continuum, up to prefactors. In turn,
the unity and linear term have to be cancelled. Evidently, the linear term is removed by adding the adjoint of the
Plaquette to (VI.98),

Uµε(n) + U†

µε
(n) = 2 ↔ g2

0a2
F

2
µε

(n) + F
(
a3)

. (VI.99)

Then, the constant term simply can be subtracted and we arrive at a lattice analogue of the pure Yang-Mills action
in the continuum,

SW [Uµ] = ⇁


n
µ<ν

(
1 ↔

1
2Nc

trf
(
Uµε(n) + U†

µε
(n)

))
, with ⇁ = 2Nc

g2
0

. (VI.100)

Here, ⇁ takes the rôle of an expansion parameter getting small for large lattice coupling g0, and we shall later derive
analytic results in such a strong coupling expansion about ⇁ = 0, that is g2

0 ↓ ⇔. Here we simply check the naïve
continuum limit of (VI.100), to wit,

SW [Uµ] a⇐0
↔↓ SA [A] = 1

2

∫
d4xtrfF

2
µε

, (VI.101)

where we have used,



µ<ε

(
1 ↔

1
2Nc

tr
(
Uµε + U†

µε

))
=



µ<ε

g2
0a2

2Nc

tr F
2
µε

+ O
(
a3)

= g0a2

4Nc

tr Fµε + O
(
a3)

. (VI.102)

This finally leads us to a well-defined generating functional for compact Yang-Mills theory and U(1)-theory on the
lattice,

Z ∞

∫
DUe↑SW [Uµ] , (VI.103)

with the Wilson action SW in (VI.100). The path integral measure in (VI.103) is the finite product of finite Haar
measures of the link variables,

DU =
∏

l

↖

links

dUl

↖

.

Haar measure

(VI.104)

The Haar measure is the measure on the gauge group, that is invariant under a gauge rotation with a group element,
∫

dUV =
∫

d V UV † =
∫

dU = 1 . (VI.105a)

∫
dUUab = 0 ,

∫
dUUabU cd = 0 ,

∫
dU Uab

(
U†

)bd

︸ ︷︷ ︸
ϑad

= εad , (VI.105b)
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For the gauge group of QCD, SU(3), we also have more specifically,
∫

dUUab
(
U†

)cd = 1
3εadεbc ,

∫
dUUa1b1Ua2b2Ua3b3 = 1

3!9a1a2a39b1b2b3 . (VI.106)

where the 1/3 reflects the number of colours, 1/Nc. The relations in (VI.106) are confirmed straightforwardly by
summing over the indices. For example, summing over b with b = c in the first relation in (VI.106) and using
(VI.105a) leads to εad on both sides.

Finally, from the path integral we can derive correlation functions such as,
〈

Ua1b1
µ1 (n1) · · · Uambm

µm
(nm)

〉
= 1

Z

∫
DU Ua1b1

µ1 (n1) · · · Uambm
µm

(nm) e↑Sw[Uµ] (VI.107)

that can be computed either by numerical sampling or, for small lattices or, within appropriate expansion schemes,
analytically.

The generating functional (VI.103) is the lattice analogue of the generating functional of Yang-Mills theory or pure
U(1) theory in the continuum ?? in ??, with

Z[J ] ∞

∫
DAµ e

↑SA[A]+
∫

x
JµAµ . (VI.108)

In (VI.108) we have dropped a potential gauge fixing and Faddeev-Popov ghost action that typically have to be
implemented in the continuum. Another di!erence is apparent from the comparison of (VI.103) with (VI.108): the
latter is built on an integration over the gauge field Aµ living in the algebra of the gauge group while the former is
built on an integration over the link variable living in the gauge group. Locally, the respective quantum theories are
the same, they may di!er globally. Indeed, in two-dimensional gauge theories the two quantisations are known to
di!er.

D. The Wilson Loop & the Static Quark Potential

With the Wilson action for Abelian and non-Abelian gauge theories we introduce the strong coupling expansion
at the example of the expectation value of the Wegner-Wilson Loop, called the Wilson loop in the literature. In
QCD or rather pure Yang-Mills theory, this observable serves as an order parameter, and below we discuss its physics
interpretation and its computation in the limit ⇁ ↓ 0.

1. Wilson loop in QED & QCD

To that end we first consider an electron-positron pair or quark-anti-quark pair, which is created at some initial
time, pulled apart, kept at some distance L and then annihilated, see Figure 16 for a depiction of the respective
worldline or path C. Here we use the electron-positron (e+

↔ e↑) pair as an example with particles that can be
observed as asymptotic states. In turn, the process of interest with the quark-anti-quark (q ↔ q̄) pair does not relate
to asymptotic states as quarks are not. It is precisely this property we want to test here.

The physical process can be related to the path integral with the current Jµ of the world line C of the e+e↑ pair to
the photon in the source term exp

∫
x

JµAµ of the (continuum) path integral (VI.108). The precise definition in terms
of states will be described below. In any case, the exponent reads

∫
d4xJµAµ = ie

∫
t1

t0

dt
(

A0(t, ϱx) ↔ A0(t, ϱy)
)

+ ie

∫
,y

,x

dϱz
(

ϱA (t1, ϱz) ↔ ϱA (t0, ϱz)
)

, (VI.109)

where the di!erence in the two terms takes into account the parallel horizontal and vertical path segments, see also
the charge flow in Figure 16. The worldline current deduced from (VI.109) is given by

Jµ(x) = ie

∫

C

dzµ ε(4)(z ↔ x) , (VI.110)
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FIG. 16: Wordline or path C of a static e+
↔ e↑ or q ↔ q̄ pair created at the time t0 and pulled apart the distance

L = ∃ϱx ↔ ϱy∃ and kept at this distance for the time T = t1 ↔ t0. At the time t1 it is annihilated. The arrows indicate
the electric or colour charge flow.

and the full source term is given by the Wilson loop WC ,

WC := e
∫

d
4
xJµAµ = e

ie

∫
C

dzµ ,Aµ(z)
. (VI.111)

The expectation of the Wilson loop WC is proportional to the exponential of the free energy Fe+e↔ of the e+
↔ e↑

pair,

↘WC≃ ↙ e↑Fe+e↔ (C) , (VI.112)

and we are interested in its behaviour for large distances L and long times T . As we are working in a Euclidean
set-up, the distinction between L and T is an artificial one (for vanishing temperature) and the behaviour in T is the
same as that in L.

For (VI.112) being a physical observable, the Wilson loop operator (VI.111) has to be gauge invariant. To that end
we consider the Wilson loop with the gauge-transformed gauge field A$

µ
= Aµ ↔ ωµϑ in (VI.72),

WC(A$) = e
ie

∫
C

dzµA
#
µ (z) = e

ie

∫
C

dzµ(Aµ↑
1
e 7µω) = e

ie

∫
C

dzµAµ . (VI.113)

With the same line of arguments one readily proves that an open Wilson line with a generic path Cx,y

WCx,y (A) = e
ie

∫
Cx,y

dzµAµ(z)
(VI.114)

transforms similarly to a U(1) link variable on the lattice. Indeed WCx,y is a parallel transport from y to x. As such,
its infinitesimal form for y = x + ϖµ̂ with ϖ ↓ 0 is the continuum version of the the U(1)-link variable (with a ↓ ϖ).
Under a gauge transformation ’(x) the Wilson line (VI.114) transforms covariantly,

WCx,y (A) = ’(x)WCx,y (A)’†(y) , (VI.115)

see (VI.85) for comparison. With these definitions we can conclude our derivation of the state or matrix element for
the process Figure 16. To that end we consider the matrix element of the propagation of an electron (field) from a
position y to the position x. It is given by

↘↼̄(x)WCx,y (A)↼(y)≃ , (VI.116)

where the Wilson line is required for gauge invariance, it parallel transports the gauge group element from y to x. For
static quarks the phase carries the full dynamics and for closed worldlines C we are led to the Wilson loop (VI.111)
in the U(1) theory.

This derivation is now repeated for a non-Abelian gauge group. However, instead of starting with the worldline we
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FIG. 17: Wordline or closed paths C and open paths Cn,m on the lattice

rather use the analogue of the matrix element (VI.116). The non-Abelian Wilson line has to parallel transport the
gauge transformation ’ from y to x which leads us to a product of infinitesimal Wilson lines along the path Cx,y.
This is nothing but a path-ordered exponential similarly to the time-ordered time evolution operator known from the
derivation of the path integral. We define

UCx,y = P e
ig

∫
Cx,y

dzµAµ(z)
, (VI.117)

with the path ordering operator P. For a consecutive order of paths with Cx,y being composed out of the path from
y to z, Cz,y and then from z to x, Cx,z,

P e
ig

∫
Cx,y

dzµAµ(z)
= P e

ig

∫
Cx,z

dzµAµ(z)
P e

ig

∫
Cz,y

dzµAµ(z)
. (VI.118)

We remark that the definition of the Wilson line (VI.118) in terms of the gauge field Aµ makes very explicit its rôle as
a parallel transporter. In particular the covariant derivative is given as the parallel transport of the partial derivative,

U†

Cy,x
ωx

µ
UCy,x = ωµ + igAµ . (VI.119)

This property can be used to write the Dirac equation in terms of the phase factor UCx,y and the free Dirac operator.
The same follows for the respective solution ↼ = UCx,y ↼free of the full Dirac equation.

The closed Wilson loop with a closed Worldline C is given by the trace of the Wilson loop operator UC ,

WC = 1
Nc

Tr UC , (VI.120)

the traced Wilson loop in a non-Abelian gauge theory. In summary we conclude that the expectation value of a static
qq̄-pair is proportional to that of the traced Wilson loop with

W [L, T ] = ↘WC≃ = 1
Z

∫
dAWC(A)e↑SA[A] (VI.121)

and a similar expression holds for QED. There, we can resort to perturbation theory, and recover the Coulomb
potential. This exemplary computation is done in Appendix D, and leads to (D.5),

Ve+e↔(L) = ↔
e2

4ς

1
L

, (VI.122)

as expected. The derivation in Appendix D also entails, that the contributions come via the resummation of multi-
photon exchange diagrams presented in Figure 35 in Appendix D. The Coulomb potential (VI.122) serves as our
references result for the computation of the potential of static quarks in the strong coupling expansion in Section VI D 2.

The whole derivation and the final expression (VI.121) is easily translated to the lattice,

W [L, T ] = 1
Z

∫
DU WC [U ] e↑Sw[U ] (VI.123)
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with the lattice path C depicted in Figure 17 and the general Wilson line

WC [U ] = trf UC with UCn,m =
∏

l⇔Cn,m

Ul , (VI.124)

for a path Cn,m also depicted in Figure 17. As already discussed above, up to a multiplicative constant, this expectation
value is related to the free energy of a quark–anti-quark state at a distance L, hold there for a time T . This leads us
to

lim
T ⇐↓

W [L, T ] = F (L) e↑E(L)T , (VI.125)

where, F (L) is the overlap with the ground state.

2. Static quark potential in the strong coupling expansion

In non-Abelian gauge theories the perturbative computation done in Appendix D for QED within the Gaußian
approximation does not work, as we deal with a strongly-correlated system. If performed it yields a Coloumb potential
as in (VI.122). The full computation can only be done numerically, and with the current computer resources it is
easily done on a laptop for physical lattice sizes. This is beyond the scope of the present lecture course.

As a first step towards the full simulation we perform an analytic computation in the strong coupling expansion
with g0 ↓ ⇔, to wit,

⇁ = 2Nc

g2
0

↓ 0 . (VI.126)

Now we use that the Wilson action (VI.100) has a field independent summand which cancels out in the numerator
and in the denominator in (VI.103). Then the expectation value (VI.123) turns into

W [L, T ] =
∫

DU Wc[U ] e 5

∑
P

SP

∫
DU e 5

∑
P

SP

= ↘Wc[U ]≃ (VI.127)

with the Plaquette action

SP = 1
2Nc

tr
(

UP + U†

P

)
with UP = Uµε , (VI.128)

and
∑

P
in (VI.127) summing over all plaquettes on the lattice. Now we expand the exponential measure factor

exp ⇁
∑

P
SP in powers of the (inverse) coupling ⇁,

e 5

∑
P

SP =
∏

P

e 5 SP =
∏

P



n

⇁n

n!

(
SP

)n

. (VI.129)

Now we use the integration rules of the Haar measure in (VI.105) in the denominator of (VI.127) as well as the
expansion (VI.129). This leads us to

∫
DUe

5

∑
p

Sp =
∫

DU + O(⇁) = 1 + O(⇁) . (VI.130)

Hence, the normalisation is nothing but the product of the Haar measure of the link variables, which we have
normalised to unity. In the numerator, the respective term of O(⇁0) vanished as the integration for the link variables
Ul with l ↑ C vanish: There we have

∫
dUl Ul = 0, see (VI.105).

Accordingly we need at least one U†

l
for a finite result. This can only be achieved by inserting an ⇁U†

p
from the

expansion of e
5

∑
p

Sp done in (VI.129), see the left figure in Figure 18.
However, while this matches the link variable U†

lm
, it also creates three ’free’ links from U†

p
which have to be

matched. This is achieved by augmenting also these lines with the respective ⇁ U†
p
’s, yet again generating further

’free’ links. The generating of further free links stops for plaquette variables with links being on the contour C. In
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FIG. 18: Wilson loop with one adjunct plaquette (left). Wilson loop with plaquettes filling the interior (right).

conclusion, the smallest number of Plaquettes with all links matched is given by the right figure in Figure 18. There,
the Wilson loop is paired with

T̂︷︸︸︷
T/a

L̂︷︸︸︷
L/a = A

a2 = Â , (VI.131)

plaquettes, each of which carries a factor ⇁. We emphasise that the indices on CA are summed over due to the trace in
the Wilson loop. The expression in (VI.131) is nothing but the dimensionless area, counting the number of plaquettes
inside the path C. This leads us to

W [T, L] =
∏

l⇔AC

∫
dUlU

albl
l

(
U†

l

)cldl
(

⇁

2Nc

)Â

+ O(⇁Â+1) , (VI.132)

where AC is the area bounded by C. This area contains (including the boundary) 2Â + L̂ + T̂ links (for each plaquette
2 independent links: 2Â, and the remaining half boundary: L̂+ T̂ ). At each link we integrate over UU† with (VI.106).
Moreover, at each lattice site all group indices of parallel links and adjoint links are the same and summed over,

εa1a2εa2a3εa3a4εa4a1 = Nc . (VI.133)

As there are (L̂ + 1)(T̂ + 1) lattice sites within the loop including the boundary, we are led to,

(
1

Nc

)2Â+L̂+T̂

N

# lattice sites︷ ︸︸ ︷
(L̂ + 1)(T̂ + 1)
c = Nc

(
1

Nc

)Â

. (VI.134)

Putting everything together, we arrive at the final result,

W [T, L] = Nc

(
⇁

2N2
c

)Â

+ O

(
⇁Â+1

)
, (VI.135)

which entails an area law for the Wilson loop. This is the desired result as it entails an growth of the free energy with
the area AC surrounded by the Wilson loop. Evidently, if only the distance L is varied, this entails a linearly rising
potential, the two proportionalities go hand in hand. The logarithm of (VI.135) is the static qq̄-potential,

V̂ (L) = ↔ lim
T̂ ⇐↓

1
T̂

ln
〈

WC [U ]
〉

= σ̂ (g0) L̂ with σ̂ = ↔ ln ⇁

2N2
c

, (VI.136)

with the string tension σ̂, measured in lattice units. In summary, lattice Yang-Mills theory shows confinement in the
strong coupling limit (VI.126). However, we will see shortly that this exciting result does not survive the continuum
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limit:
To begin with, we have not used in the derivation above that the gauge group is non-Abelian. Indeed, it can be

straightforwardly carried out in the U(1) case as well without any qualitative changes. In conclusion, also compact
U(1) theory has a linearly rising static U(1)-potential in the strong coupling limit. Accordingly, compact U(1) has
a confining phase on the lattice, while it has a Coulomb potential in the continuum (quantised over the algebra).
Note however, that also the lattice version has a Coulomb phase with a 1/r-potential, and it is this phase which
encompasses the continuum limit.

This already casts some doubt on the survival of the SU(Nc) result (VI.135) and (VI.136) in the continuum. These
doubts are solidified if discussing the bare lattice coupling g0. In terms of momentum scales, g0(a) is the coupling of
’classical’ Yang-Mills theory, defined at the ’microscopic’ scale a, that is related to the momentum scale ς/a. In the
continuum limit the lattice distance a is approaching zero, and we are probing the coupling g(a) at successively larger
momentum scales. Luckily, the running coupling in Yang-Mills theory enjoys asymptotic freedom with the continuum
⇁-function being

⇁g = ↔
1

16ς2
11
3 Ncg3

0 . (VI.137)

Indeed, this well-known universal result carries over into the present lattice set-up. In any case the sign of the
⇁-function is negative and we have

g0(a) cont. limit
↔↓ 0 . (VI.138)

Accordingly, the continuum limit is safely governed by (lattice) perturbation theory in the bare lattice coupling g0(a).
As it is the only coupling or free parameter in Yang-Mills theory, tuning the continuum limit simply amounts to

⇁ = 2Nc

g2
0

↓ ⇔ , (VI.139)

the opposite limit of (VI.126), which confirms our suspicion.

E. The continuum limit and the renormalisation group

In this Chapter we discuss the continuum limit of lattice field theories. This limit is obtained by keeping the
physical scales fixed, while taking the lattice distance to zero, a ↓ 0. In the following we concentrate on the system
with one fundamental scale. This physical scale is well represented by the correlation length φ on the lattice that can
be extracted from the fundamental two point correlation functions of the theory. For the present introduction we
simply consider a real scalar field theory with

lim
r⇐↓

↘1(ϱx)1(ϱy)≃c ↖ e↑r/ξ , where r = ∃ϱx ↔ ϱy∃ , (VI.140)

where x0 = y0. The spatial correlation length is nothing but the inverse (screening) mass gap of the theory. Again
we consider a simple example, the classical propagator of the three-dimensional scalar field theory with

↘1(p)1(↔p)≃c,cl = 1
p2 + m2

ϱ

, ↔↓ ↘1(p0 = 0, ϱx)1(p0 = 0, ϱy)≃c,cl =
∫

d3p

(2ς)4
ei,p(,x↑,y)

ϱp2 + m2
ϱ

= 1
8ς

1
r

e↑mςr . (VI.141)

This leads us to φ = 1/mϱ. In the above case the temporal screening length is the same as the spatial one. This
is readily shown by repeating the same computation as in (VI.141) with the rôles of x0, y0 and ϱx, ϱy switched. This
equivalence is a consequence of Euclidean O(4) symmetry and also holds true for theories with Lorentzian signatures.

More generally, the correlation length is nothing but the distance of the nearest singularity in the complex momen-
tum plane of the correlation function at hand and defines the mass gap of the modes contributing to the correlation
function. We note in passing that the statement above holds true for fields that are directly related to asymptotic
states and the situation in gauge theories is far more complicated. However, in the present context this is not relevant.

Evidently this mass gap in general depends on the chosen correlation function as not all of them may overlap with
the lowest lying states in the theory. The mass gap of the theory is then given by the smallest mass gap carried by
the correlation functions. Again, a simple example is provided by a free scalar theory with two fields, 11 and 12 with
masses mϱ1 < mϱ2 . Clearly, the propagators of the two fields have di!erent correlation lengths φ1 > φ2 and the mass
gap of the theory is given by mϱ1 .
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FIG. 19: Going from a lattice theory with correlation length φ, defined on a lattice with lattice spacing a and length
L to a theory on a finer lattice with the same correlation length and length, but half the lattice spacing, a ↓ a/2.

1. Block-spinning transformations and the RG

So far we have defined lattice field theories by simply introducing an infinite volume lattice with a lattice spacing
a as well as defining a discrete version of the classical action, that approaches the continuum action for a ↓ 0 up to
O(a)-terms. More precisely, the continuum limit is achieved by taking a ↓ 0, while keeping the physical correlation
length φ fixed.

Let us now go to the more realistic situation in numerical applications: a lattice with a finite extent L in all d
directions. Then we deal with a hyper-cubic lattice with (L̂ + 1)d lattice sites (L̂d independent ones). A step towards
the continuum limit in a two-dimensional theory at fixed L is depicted in Figure 19 with a ↓ a/2. This implies
L̂ ↓ 2L̂ and hence this procedure increases the number of lattice sites by 2d.

Typically one does not have the luxury of achieving the continuum limit by simply increasing the number of lattice
sites. Instead, one is using the maximal lattice one (or rather the computing resources) numerically can cope with and
decreases the lattice spacing, see Figure 20. Then, L̂ is kept fixed as is φ. Instead the dimensionless lattice parameters
are changed, most clearly this happens for the mass m̂ϱ = mϱa: at fixed mϱ we have m̂ϱ ↓ 2m̂ϱ. Iterating this
procedure i times leads to a lattice spacing 2i a and a lattice extent of L/2i. Evidently, this implies that the correlation
length eventually will exceed the lattice extent, 2i φ/L > 1, and the finite volume e!ects will dominate the physics.
Already the cartoon situation in Figure 20 makes this abundantly clear.

In summary this asks for a careful, mathematically sound description of such a rescaling of lattice field theories,
which should also allow us to facilitate and optimise numerical computations. This is done with the renormalisation
group (Stueckelberg, Petermann (1953)), that has been introduced for describing the change of a given theory under
general rescalings (and reparametrisations). The discrete version of renormalisation group transformations for lattice
theories is the block-spinning transformation (Kadano! (1966)). At its heart it is Wilson’s (1971) renormalisation
group, that underlies most modern applications of the renormalisation group.

Such a block-spinning transformation is introduced as a transformation from a finer lattice with lattice distance
a to the coarser lattice with lattice distance 2a. For this transformation we average (coarse grain) the field values

FIG. 20: Mapping the lattice theory with correlation length φ, defined on a lattice with lattice spacing a and length
L to a theory on a finer lattice with the same correlation length, but half the lattice spacing and length: a ↓ a/2 and
L ↓ L/2.
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FIG. 21: Block-Spinning on the lattice: we average (coarse graining) the field on the finer lattice (black dots) with
lattice distance a on fundamental squares or plaquettes. This defines a field on a lattice with lattice distance 2a (red
dots).

over square blocks of neighbouring lattice sites, see fig. 21. This procedure is called coarse graining and is the first
block-spinning step. Applied to the finer lattice in Figure 19 with lattice distance a/2, it brings us back to the original
lattice with lattice distance a. Applied to the finer lattice in Figure 20, is gives us back the original lattice with half
the lattice extent.

Note that this step implies a loss of resolution at fixed correlation length φ. This is reflected in momentum space
by the fact, that the Brillouin zone reduces from pµ ↑ [↔ς/a , ς/a] to pµ ↑ [↔ς/(2a) , ς/(2a)]. This entails that the
quantum fluctuations of the momentum shell

|pµ| ↑ [↔ς/(2a) , ς/(2a)] , (VI.142)

are averaged over (integrated out). Put di!erently, this is an information loss, evident in Figure 21, and is mirrored
in φ̂ = φ/a, which transforms φ̂ ↓ 1/2 φ̂.

However, in a second block spinning step we can recover the original situation on the right hand side of fig. 21. To
that end we rescale φ by a factor 2 with φ ↓ 2 φ. The latter implies that all the dimensionfull parameters in the
lattice theory have to be rescaled accordingly, i.e. mϱ ↓ 1/2 mϱ leading to m̂ϱ ↓ 1/2 m̂ϱ. Moreover, this implies
that L is kept fixed. Then the final lattice field theory has the same correlation length as before as before the two
block-spinning steps, and we have,

φ̂
step 1
↔↓

φ̂

2
step 2
↔↓ φ̂ , and m̂ϱ

step 1
↔↓ 2m̂ϱ

step 2
↔↓ m̂ϱ , 3̂

step 1&2
↔↓ 3̂ . (VI.143)

We emphasise again that on a finite lattice, the combination of the two steps is no identity transformation, as

L̂
step 1&2

↔↓
L̂

2 . (VI.144)

The above example is the simple case of more coarse grainings and rescalings. For example, in a Ising spin system,
the blocking on fundamental plaquettes is not well-defined as the spins can average to zero, while the spin operators
on the coarse grained lattice only take values ±1. Generally, we introduce a blocking

1↔

n→ = fn→(1n) , (VI.145)

with a potentially non-linear blocking function fn→(1n). In the example above the n↔ are the vectors of the center of
fundamental plaquettes and fn→ simply sums the field over the sites of the plaquette. The coarse grained field 1↔ lives
on the coarse-grained lattice. For a given lattice action S[1n] the block-spinning amounts to

e↑S
→[ϱ→

n→ ] =
∫ ∏

n

d1n ε[1↔

n→ ↔ fn→(1n)] e↑S[ϱn] , (VI.146)

which also defines a lattice action on S↔[1↔

n→ ] the coarse-grained lattice. Note that the generating functional Z is
unchanged as the Dirac ε-function is removed by the integral over all field values on the sites on the coarse-grained
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lattice,
∫

d1↔

n→ ε[1↔

n→ ↔ fn→(1n)] = 1 , (VI.147)

and hence we conclude

Z ↔ =
∫ ∏

n

d1↔

n→ e↑S
→[ϱ→

n→ ] =
∫ ∏

n

d1↔

n→

∫ ∏

n

d1n ε[1↔

n→ ↔ fn→(1n)] e↑S[ϱn] =
∫ ∏

n

d1n e↑S[ϱn] = Z . (VI.148)

Again this emphasises the point that the coarse-grained system has the same expectation values for correlations 1↔

n→ ,
that can also be simulated on the original lattice, but does not resolve smaller distances than 2a.

In summary, our analysis entails that a lattice action at a given lattice distance a, or rather a/φ, comprises already
quantum e!ects of momenta pµ > ς/a, as these momenta can be integrated out shell-wise, see (VI.142), starting
at an infinitely fine lattice. Coarser lattices are approached by successive block-spinning or coarse graining within
block-spinning RG-steps. The opposite procedure is, strictly speaking only possible on a lattice with infinite extent,
therefore called an inverse RG step. Both, RG and inverse RG are used for optimising lattice simulations as well as
conceptual investigations.

2. The Continuum Limit of Lattice Yang-Mills

With the understanding gained in Section VI E 1 we now come back to the continuum limit of Lattice Yang-Mills
theories, already sketchily discussed at the end of Section VI D 2. In the continuum limit of a lattice theory we keep
the physical correlation length

φ = 1/mgap , (VI.149)

fixed, where mgap is the mass gap of the theory; in a scalar theory the mass gap is simply the pole mass of the
scalar field, mgap = mϱ,pole. Note that the latter is not the mass parameter in the action, but rather defined as
the singularity (at p2

0 = ↔m2
ϱ,pole) of the propagator. In Yang-Mills theory the situation is more complicated as the

classical action features no mass scale (the theory has conformal symmetry on the classical level). The quantised
theory has a mass gap given by the mass of the lowest lying glueball state.

In any case, (VI.149) implies, that the dimensionless mass gap tends to zero on the lattice,

m̂gap = mgap a ↓ 0 , (VI.150)

and hence the correlation length φ̂ = 1/m̂ diverges, This is the signature of a 2nd order phase transition. At this
point the system has infinite many points inside a physical distance measured in units of the correlation length. As
discussed above, in lattice YM we only have the bare strong coupling g0 on the lattice for tuning this limit,

φ̂ (g0) ↓
g0⇐g↗

⇔ , (VI.151)

where g→ is the fixed point value of the bare lattice coupling g0.
It is left to extract the dependence of g0(a) on the lattice spacing a in the continuum limit. To that end we discuss

the g0 and a dependence of a general observable O in the continuum limit. Its relation to the dimensionless lattice
observable Ô is given by

O (g0, a) =
(

1
a

)dO

Ô (g0) (VI.152)

where dO is the momentum dimension of the observable O. In the continuum limit we have,

O (g0 ↓ g→, a ↓ 0) = Ophys (VI.153)

Thus, if we know the functional dependence of O on g0, we know g0(a) with O (g0, a) = Ophys. The above argument
seemingly implies that g0(a) depends on the choice of O. However, the coupling g0(a) is two-loop universal, to that
order it does not depend on the observable or the renormalisation procedure. In the continuum limit with a ↓ 0 we
shall see, that also the coupling g0 ↓ 0 and hence the continuum limit is governed by the universal running of the
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FIG. 22: Diagrams contributing to the e!ective potential V (L) up to order g4
0 .

coupling.
Let us now take as O the qq̄-potential V defined in the previous section:

V (L, g0, a) = 1
a

V̂
(

L̂, g0

)
(VI.154)

Now, keeping V (L, g0, a) fixed at its physics value Vphys while a ↓ 0 implies
(

a
ω

ωa
↔ ⇁ (g0) ω

ωg0

)
V (L, g0, a) = 0 (VI.155)

with the lattice ⇁-function,

⇁ (g0) = ↔a
ωg0
ωa

. (VI.156)

The standard continuum formulation with a cuto! or RG scale ” is obtained with ” ↙ 1/a and hence ”ω# = ↔aωa.
We now consider the RG-equation up to the forth order in the bare lattice coupling g4

0 . The respective diagrams are
depicted in Figure 22 and the potential is computed as

V (L) = ↔
g2

0(a)
4ςL

C2(f)
[
1 + g2

0(a)11Nc

24ς2 ln L̂ + const
]

. (VI.157)

If we insert (VI.157) in (VI.156) we get

⇁ (g0) = ↔
g3

0
16ς2

11
3 Nc = ⇁0g3

0 , (VI.158)

the well-known continuum result (I.38) in Sections I B 2 and II A 2. Since ⇁(g0) < 0 is smaller (asymptotic freedom),
the coupling is driven to zero in the limit a ↓ 0.

a = 1
”L

e
1

2ω0g2
0 (VI.159)

This concludes the discussion of the scaling of lattice Yang-Mills theory in the limit a ↓ 0. Let us now rewrite the
RG-equation (VI.155) in terms of physical scales, substituting a with the distance scale L in the heavy quark potential
(not to be confused with the extend of the lattice, which is assumed to be infinite here). With (VI.157) this leads us
to

(
L

ω

ωL
+ ⇁ (g0) ω

ωg0

)
V (L, g0, a) = ↔V (L, g0, a) , (VI.160)

where the right hand side of (VI.160) originates in the 1/L factor in (VI.157), and constitutes an inhomogeneous term
in the RG equation. It simply entails the dimension-scaling of the potential, and hence can be undone if we rescale
the potential V with L in order to make it dimensionless. The homogeneous form of the RG has the advantage that
we can directly read of the running coupling from it, as discussed below. We define the dimensionless potential V̄
with

V̄ (L̂, g0) = LV (L̂, g0) , with L̂ = L

a
. (VI.161)

In (VI.161) we have used that the dimensionless potential can only depend on dimensionless variables, and hence it
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only can depend on the ratio of the two length scales L and a. Put di!erently, the distance scale in the potential has
to be measured in units of the lattice distance, the only scale in the system.

Inserting V = 1/LV̄ into (VI.160) gives us the desired homogeneous RG equation,
(

L
ω

ωL
+ ⇁ (g0) ω

ωg0

)
V̄ (L̂, g0) = 0 . (VI.162)

Equation (VI.162) entails that a change in the physical distance L can be absorbed in a corresponding change of the
bare coupling g0. It is nothing but the lattice version of the renormalisation group equation for the running coupling
of QCD discussed in Sections I B 2 and II A 2. Now we perform yet another change of variables, and change from
the bare coupling g0(a) to the running coupling g(L) in analogy to our discussion in QCD, where we went from the
renormalised coupling ⇀s,ren(µ) to the running coupling ⇀s(p). In the present analysis, the rôle of the momentum p
is taken by ς/L. In this spirit we write

V̄ = V̄ (L, g(L)) , with L
ω

ωL
g(L) = ↔⇁(ḡ(L)) , (VI.163)

in a slight abuse of notation. We emphasise that (VI.163) is not simply obtained by substituting the bare coupling
in (VI.161) by the running coupling. It implies a reshu#ing of explicit L and implicit L-dependences as can be seen
from the RG equation for the running coupling. The solution of the RG equation of the coupling has been already
discussed in Sections I B 2 and II A 2, see (I.39). In the present case we obtain

g2(L) = g2
0

1 + ⇁0g2
0 ln L2/a2 , with g0 = g(a) . (VI.164)

Using (VI.164) in V̄ and V with (VI.157) and (VI.161) leads to,

V (L) = ↔CF

⇀S(L)
L

, with ⇀s(L) = ḡ2(L)
4ς

. (VI.165)

The prefactor in (VI.165) is the Casimir invariant CF = N2
c

↔ 1/(2Nc), in QCD we have CF = 4/3. Our result
(VI.165) seemingly depends on a. However, with the relation (VI.166), the a-independence is apparent,

⇀s(L) = 1
4ς

g2
0

1 + ⇁0g2
0 ln L2”2

L
e↑1/50ã

2
0

= 4ς

⇁0

1
ln L2”2

L

. (VI.166)

with ⇁0 = 11/3Nc, and the lattice version of ”QCD,

”L = 1
a

e
1

2ω0g2
0 , with a

d

da
”L =

(
a

ω

ωa
↔ ⇁(g0) ω

ωg0

) (
1
a

e
1

2ω0g2
0

)
= 0 . (VI.167)

Equation (VI.166) is the lattice version of (I.39). In the present one-loop treatment the coupling diverges at the
infrared Landau pole L = 1/”L. For a better accuracy we may invoke two-loop perturbation theory or even higher
orders even though this quickly gets unsolvable on the lattice.

VII. PHASE STRUCTURE OF QCD

In its early stages the universe undergoes a thermal or rather non-equilibrium phase transition from the initial
quark-gluon phase into the hadronic phase, it is in nowadays. The description of this chiefly important evolution
requires the access to QCD at finite temperature and density and for a full description one also has to incorporate
non-equilibrium e!ects. The QCD phase structure is also studied at heavy ion facilities such as the FAIR facility,
RHIC, HIAF and others.

The study of non-equilibrium QCD is beyond the scope of the present lecture course. Here we only provide a brief
overview on QCD at finite temperature and density and defer the participants to dedicated lectures for further insights.
Moreover, instead of discussing first principle QCD at finite temperature and density, we shall use a combination of
low energy e!ective theories or descriptions, we have set up in the course of this lecture course. As for non-equilibrium
QCD, the resolution of the phase structure of QCD from first principles is a very intricate and not yet fully resolved
task and goes beyond the scope of the current lecture course. More details can be found in Non-perturbative Aspects

https://www.thphys.uni-heidelberg.de/~pawlowski/NPgauge24.php
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of Gauge Theories.
The access to the QCD phase structure requires to assess chiral symmetry breaking and confinement, as discussed

in Section III and Section VI E 2, at finite temperature and density. In Section VII A we introduce quantum fields at
finite temperature and evaluate the thermal chiral phase transition. In ?? we evaluate the confinement-deconfinement
phase transition at finite temperature with a variant of the Wilson loop expectation value introduced in Section VI E 2.
Finally, in Section VII C, we put the pieces together and study the phase structure of QCD at finite temperature and
density.

A. Chiral phase transition

In Section III we have learned that chiral symmetry breaking is triggered by the quark fluctuations, while the
mesonic low energy fluctuations work against symmetry breaking. The symmetry breaking scale ”4 is of the order of
300-400 MeV. This vacuum physics is used to fix the parameters of the low energy e!ective theory such as the mesonic
mass function, the Yukawa coupling, and the expectation value of the radial mode, ↘σ≃. The related observables are
the pion and sigma pole masses, the constituent quark mass as well as the pion decay constant.

In heavy ion collisions or the early universe the temperature is/has been high of the order of hundreds of MeV.
In Kelvin this translates into 100 MeV⇑ 1.16 → 1012 Kelvin. It is expected that a high temperatures the system
undergoes a phase transition to the chirally symmetric phase. As a rough estimate the phase transition temperature
Tc is expected to be of the order of the chiral symmetry breaking scale ”4 which itself has been argued to be of the
order of ”QCD, the only intrinsic scale in QCD.

1. Mesons at finite temperature

For a more quantitative investigation we need a thermal formulation of QCD or at least of the low energy e!ective
theory we have derived in the previous chapter. Here we give a brief introduction to the -Euclidean- path integral at
finite temperature, where we follow the introduction of the path integral in Chapter 9 & 10, QFT I+II lecture notes.
We start with the partition function of a scalar theory at finite temperature

ZT = Tr e↑5Ĥ =


n

e↑5En with ⇁ = 1
T

and Ĥ|n≃ = En|n≃ , (VII.1)

with the Hamiltonian operator of a scalar theory

Ĥ[1̂, ς̂] =
∫

d3x

[
1
2 ς̂2 + 1

2(ϱ¬1)2 + V (1̂)
]

, (VII.2)

with field operator 1̂ and field momentum operator ς̂. In (VII.1) we dropped the source term for the sake of brevity.
Eq.(VII.1) is the standard statistical partition function at finite temperature well known from quantum mechanics.
Now we rewrite this partition function in terms of a basis in field and canonical momentum space. First we note that
the trace in (VII.1) can be rewritten in terms of field eigenstates with

Tr e↑5Ĥ =
∫

d1 ↘1| e↑5Ĥ
|1≃ with 1̂(ϱx)|1≃ = 1(ϱx)|1≃ , (VII.3)

with the eigenvalues 1(ϱx). Moreover, the statistical operator e↑5Ĥ can be interpreted as the evolution operator
U(0, i⇁) in an imaginary time from the initial state |1(ti)≃ at ti = 0 to the final state |1(tf)≃ at tf = i⇁ with

U(0, i⇁) = eiĤ(tf↑ti) and |1(tf)≃ = |1(ti)≃ . (VII.4)

The identification of initial and final state is the trace condition in (VII.3). Now we simply repeat all the steps for
the derivation of the path integral of a scalar theory. Also adding a source term we arrive at

ZT [J ] =
∫

ϱ(5,,x)=ϱ(0,,x)
d1 e

↑ST [ϱ]+
∫ ω

0
d

4
x J(t,,x)ϱ(,x)

, (VII.5)

https://www.thphys.uni-heidelberg.de/~pawlowski/NPgauge24.php
https://www.thphys.uni-heidelberg.de/~pawlowski/NPgauge24.php
https://www.thphys.uni-heidelberg.de/~pawlowski/qftII_23.php
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with the periodic fields 1(t + ⇁, ϱx) = 1(t, ϱx) and the finite temperature action ST [1] with

ST [1] =
∫

5

0
d4x

[
1
2(ωµ1)2 + V (1)

]
, where

∫
5

0
d4x =

∫
5

0
dt

∫
d3x . (VII.6)

Accordingly, the path integral of a finite temperature field theory is related to a Euclidean path integral with a finite
time extent in imaginary time t ↑ [0 , ⇁]. Note that this time does not describe the time evolution of the system but
simply the statistical nature of the thermal partition function. The real time correlation function are obtained by a
Wick rotation, for more details see finite temperature quantum field theory books such as Le Bellac or Kapusta. The
correlation functions are periodic in imaginary time,

↘1(x1) · · · 1(ti + ⇁, ϱx) · · · 1(xn)≃ = ↘1(x1) · · · 1(ti, ϱx) · · · 1(xn)≃ . (VII.7)

Finally we want to repeat the computation of the e!ective potential in the last chapter section III G at finite temper-
ature. This is done in momentum frequency space and we would like to illustrate the di!erences at finite temperature
at the important example of the propagator

Gϱ(x ↔ y) = ↘1(x)1(y)≃ ↔ ↘1(x)≃↘1(y)≃ . (VII.8)

The propagator in spatial momentum and frequency space is given by

Gϱ(ϑn, ϱp) =
∫

5

0
d4x ei (ωnt+,p,x) Gϱ(t, ϱx) , where ϑn = 2ςTn , with n ↑ Z . (VII.9)

The discrete frequencies ϑn are called Matsubara frequencies and originate in the finite imaginary time extent. The
frequency Fourier transformation back gives

Gϱ(t, ϱp) =


n⇔Z

e↑iωntGϱ(ϑn, ϱp) , (VII.10)

which has the necessary periodicity in imaginary time, G(t + ⇁, ϱp) = G(t, ϱp), of a correlation function, see (VII.7). In
frequency and spatial momentum space the classical propagator looks the same as in the vacuum. We have

Gϱ(ϑn, ϱp) = 1
ϑ2

n
+ ϱp2 + m2 with m2(1) = ω2

ϱ
V (1) . (VII.11)

While the Fourier transformation w.r.t. spatial momentum is also the same as at T = 0, that w.r.t. frequency changes.
Here we discuss the Fourier transformation for t = 0 for the mixed representation Gϱ(t, ϱp),

Gϱ(t = 0, ϱp) = T


n⇔Z

1
ϑ2

n
+ ϱp2 + m2 = 1

2ϖϱ

p

coth ⇁ ϖϱ

p
= 1

2ϖϱ

p

[
1 + 2 nB(ϖϱ

p
)
]

, (VII.12)

with the dispersion ϖϱ

p
and the thermal distribution function nB(ϑ) given by

ϖϱ

p
(m) =


ϱp2 + m2 , nB(ϑ) = 1

e5|ω| ↔ 1
(VII.13)

The latter is the standard Bose-Einstein distribution and clearly shows the thermal nature of the Matsubara path
integral.

As a warm-up of the computation for the e!ective potential in the quark-meson theory at finite temperature we
compute that of the scalar theory used here as an example. Its thermal part is related to the thermal pressure of the
theory with potential. To that end we remind ourselves that the scalar free energy density ’ϱ and the pressure of the
theory are given by

ZT [0] = e↑5V $ς , pϱ = ↔
ωV’ϱ

ωV
with V =

∫
d3x . (VII.14)
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The one-loop contribution to the free energy density and pressure are hence given by

’ϱ ∞
1

2V
T Tr ln

(
↔ω2

µ
+ m2)

= 1
2T



n⇔Z

∫
d3p

(2ς)3 ln
(
ϑ2

n
+ ϱp2 + m2)

, pϱ ∞ ↔
1
2T



n⇔Z

∫
d3p

(2ς)3 ln
(
ϑ2

n
+ ϱp2 + m2)

,

(VII.15)

where we dropped the normalisations in ’ϱ and pϱ. We also remind the reader that m2 = m2(1) as introduced in
(VII.11). Note also that the pressure is nothing but (minus) the e!ective potential at finite temperature. At vanishing
temperature we encountered singularities in the computation of the e!ective potential proportional to ”4, 32 and ln ”
that had to be absorbed in the bare couplings. The highest singularity proportional to ”4 we disregarded as the
absolute value of the potential energy which cannot be measured. The expressions in (VII.15) are also infinite,
showing the standard divergence of zero point functions at vanishing temperature. Similarly, we could introduce a
spatial momentum cuto! ” with p2

▽ ”2 and proceed as in the last chapter. In the following we shall not make
this cuto! explicit for the following reason: it is one of the cornerstones, and can be proven in thermal field theory
all singularities are temperature-independent. This statement can be understood heuristically as the ultraviolet
singularities are short-distance singularities. At short-distance singularities the finite extent in time-direction cannot
be accessed. For detailed discussions we refer to the literature, here this fact will simply come out.

For the computation we take the mass (squared) derivative of the pressure, ωm
2
ς
p. This removes the logarithm from

the expression and leaves us with integrals and sums that can be computed by complex analysis. The mass-derivative
of the pressure is related to the momentum integral of the propagator in the mixed representation G(0, ϱp) computed
in (VII.12),

ωm2pϱ ∞ ↔
1
2

∫
d3p

(2ς)3 Gϱ(0, ϱp) = ↔
1
4

∫
d3p

(2ς)3
1
ϖϱ

p

[
1 + 2 nB(ϖϱ

p
)
]

. (VII.16)

Eq.(VII.16) entails that the mass-derivative of the pressure, and hence the pressure, only carries a temperature-
independent singularity proportional to 1/ϖϱ

p
. The term proportional to nB vanishes in the zero temperature limit.

Upon integration over m2 the pressure is given by

pϱ ∞ ↔

∫
d3p

(2ς)3

[
1
2ϖϱ

p
+ T ln

(
1 ↔ e↑5ς

ς
p

)]
. (VII.17)

The singular, temperature-independent piece pressure in (VII.17) proportional to ϖϱ

p
is nothing but the e!ective poten-

tial at vanishing temperature which we have computed for a fermionic theory in the last chapter. Its renormalisation
can be performed analogously. Here we are only interested in the thermal pressure, and we subtract the pressure at
vanishing temperature,

pϱ,thermal = pϱ(T ) ↔ pϱ(T = 0)

= ↔ T

∫
d3p

(2ς)3 ln
(

1 ↔ e↑5ς
ς
p

)
= ↔

T

2ς2

∫
↓

0
dp p2 ln

(
1 ↔ e↑5ς

ς
p

)
. (VII.18)

Eq.(VII.18) is manifestly finite as for large momenta p2
∋ m2

ϱ
, T 2 the exponential in the logarithm decays with

exp(↔p/T , the typical thermal decay. It is also positive as the argument in the logarithm is always smaller than one
and hence the logarithm is strictly negative. With the minus sign in front of the integral this leads to a positive
expression, as expected for a thermal pressure. For a given temperature (VII.18) takes its maximal value for m2

ϱ
= 0

and decays monotonously with increasing m2
ϱ

as the thermal part of the mass-derivative is negative, see (VII.16). For
m2

ϱ
↓ ⇔ the thermal pressure vanishes. Accordingly the pressure is positive for all m2

ϱ
. For large masses mϱ ∋ T the

pressure decays exponentially with exp(↔mϱ/T ) (up to polynomial prefactors). For vanishing masses the momentum
integration can be performed easily and we arrive at

pϱ,thermal|m2=0 = ς2T 4

90 . (VII.19)

The explicit result for vanishing mass is the Stefan-Boltzmann pressure of a free gas. It is the tree-level thermal
pressure. Note also that (VII.18) is the result for the thermal part of the (one-loop) e!ective potential of a bosonic
theory, see (VII.18).
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Now we have collected all results for discussing the mesonic fluctuations in our Nf = 2 low energy e!ective theory.
The mesonic contribution to the pressure and hence to minus the free energy density/e!ective potential are simply
given by summing up (VII.18) for the sigma and the three pions leading to


’ϱ,T (1) ↔ ’ϱ,T =0(1)



mes.flucs.
∞

T

2ς2

∫
↓

0
dp p2 ln

(
1 ↔ e↑5ς

ς
p (m⇁)

)
+ 3 T

2ς2

∫
↓

0
dp p2 ln

(
1 ↔ e↑5ς

ς
p (m⇀)

)
, (VII.20)

The concentration on the thermal part of the fluctuations allows us to simply add (VII.20) to the low energy e!ective
action at valishing temperature regardless of how we have treated the mesonic fluctuations there. Note also in this
contect that (VII.20) is finite as it should be: in thermal field theory all UV divergences can be treated already in the
T = 0 case and the subtractions can be chosen to be temperature-independent.

In (VII.20) this comes about as it only summarises the thermal fluctuations and momentum fluctuations with p ∋ T
are suppressed. Accordingly in the context of our low energy EFT setup (VII.20) is only valid for T/” ′ 1. For
larger temperatures already the Matsubara sum that takes account of high frequencies is at odds with the fact that
p2

0 + ϱp2
▽ ”2.

2. Quarks at finite temperature

In summary we are but one step away from our goal of accessing the thermal chiral phase transition in QCD in
the quark-meson EFT. For that task we need to translate the results above to the -free- quark path integral. The
computation of the last chapter in the vacuum carries over here, we only have to discuss the fermionic Matsubara
frequencies. For that end we redo the derivation of the thermal path integral for fermions again by starting from
partition function ZT as defined in the scalar case in (VII.1). Everything goes as in the scalar case except one subtlety
concerning the trace. More details can be found in Chapter 12, QFT I+II lecture notes. As in the case of the bosonic
field we need coherent states that allow us to define ↼̂|↼≃ = ↼|↼≃. For the sake of the argument we restrict ourselves
to one creation and annihilation operator a, a† and Grassmann variable c. A coherent state is given by

|c≃ = (1 ↔ c a†)|0≃ = e↑c a
†

|0≃ with a|c≃ = c a a†)|0≃ = c|0≃ = c(1 ↔ c a†)|0≃ = c|c≃ , (VII.21)

where the latter property proves the coherence property of the state. The dual state ↘c| = |c≃
† has the property

↘c|a† = ↔↘c|c→ . (VII.22)

In consequence, instead of periodicity of the fields in time in the scalar case coming from the trace in (VII.1) we have
anti-periodicity,

↼(t + ⇁, ϱx) = ↔↼(t, ϱx) , (VII.23)

that reflects the Grassmannian nature of the fermionic field. The fermionic path integral Zq with the Dirac action at
finite temperature then reads

Zq,T [J ] =
∫

ϖ(5,,x)=↑ϖ(0,,x)
d↼̄ d↼ e

↑SD,T [ϱ]+
∫ ω

0
d

4
x J̄↼(t,,x)ϖ(,x)↑ϖ̄J↼ , SD,T [↼] =

∫
5

0
d4x ↼̄ · (D/ + mϖ + i ↽0µ) · ↼ .

(VII.24)

As in the scalar case we can reveal the thermal nature of correlation functions derived from the generating functional
(VII.24) by looking at the Dirac propagator of the quarks in the mixed representation at vanishing time, Gq(t, ϱp). To
that end we first notice that the Fourier transformation of the anti-periodic fermionic fields is reflected in a shift of
the Matsubara modes by ςT . We have

↼(x) = T


n⇔Z

∫
d3p

(2ς)3 e↑i(ωn,f t+,p,x)↼(p0, ϱp) , ϑn,f = 2ς

(
n + 1

2

)
, (VII.25)

where the additional factor ei3T t leads to the minus sign in the periodicity relation (VII.23) with ei3T (t+5) =
ei3ei3T t = ↔ei3T t. Now we perform the computation for the frequency sum of the quark propagator Gq with Nf

https://www.thphys.uni-heidelberg.de/~pawlowski/qftII_23.php
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flavours and Nc colors,

1
mϖ

1
4Nf Nc

tr Gq(t = 0, ϱp) = T


n⇔Z

1
ϑ2

n,f
+ ϱp2 + m2

ϖ

= 1
2ϖϖ

p

tanh ⇁ϖϖ

p
= 1

2ϖϖ

p

[
1 + 2n(ϖϖ

p
)
]

, (VII.26)

where the trace tr in (VII.26) sums over flavour, color and Dirac space. The dispersion ϖp and the thermal distribution
function n(ϑ) are given by

ϖϖ

p
(mϖ) =

√
ϱp2 + m2

ϖ
, nF (ϑ) = 1

e5ω + 1 . (VII.27)

The latter is the expected Fermi-Dirac distribution. The di!erence to the Bose-Einstein statistics in the scalar case
originates in the anti-periodicity of the fermions related to their Grassmannian nature. The free energy and pressure
can be derived analogously to the scalar case. The one-loop contribution to the quark free energy density ’q and the
pressure are hence given by

’q ∞ ↔
T

2V
Tr ln

(
↔ω2

µ
+ m2)

= ↔2NcNf T


n⇔Z

∫
d3p

(2ς)3 ln
(
ϑ2

n,f
+ ϱp2 + m2)

,

pq ∞ 2NcNf T


n⇔Z

∫
d3p

(2ς)3 ln
(
ϑ2

n,f
+ ϱp2 + m2)

= 12 T


n⇔Z

∫
d3p

(2ς)3 ln
(
ϑ2

n,f
+ ϱp2 + m2)

, (VII.28)

where as in the scalar case we dropped the normalisations in ’q and pq. For the pressure we have also inserted the
Nf = 2, Nc = 3 case discussed here.

For a first simple computation we also use µ = 0, a vanishing quark chemical potential. The prefactor ↔2 in
comparison to the prefactor 1/2 in the scalar case comes from the relative minus sign and factor 2 of the fermionic
loop, the symmetrisation of the frequency and spatial momentum trace and the Dirac trace: ↔1 → 1/2 → 4 = ↔2
instead of 1/2 in the scalar case. The factor NcNf counts the degrees of freedom. For the computation of the thermal
pressure we proceed similar to the scalar case with a m2

ϖ
-derivative which maps the pressure to (VII.26). We also

remove the divergent vacuum contribution which is the e!ective potential at vanishing temperature, see (III.89). The
grand potential and thermal quark pressure in the Nf = 2 case is then given by

’q,T (↼, ↼̄, 1) ↔ ’q,T =0(↼, ↼̄, 1) = ↔
12
ς2 T

∫
↓

0
dp p2 ln

(
1 + e↑5ς

↼
p

)
= ↔pq,thermal , (VII.29)

where

m2
ϖ

(1) = 1
2h22 . (VII.30)

This has to be compared with (VII.20) for the mesons. Both expressions for the pressure are strictly positive which
is due to

∅ ln
(

1 ∅ e↑5ς
ς/↼
p

)
̸ 0 , (VII.31)

with the minus signs in the bosonic case and the plus sign in the fermionic one. The global ∅ in (VII.31) reflects the
relative sign of fermionic and bosonic loops while the ∅ reflects the Bose-Einstein vs Fermi-Dirac quantum statistics.

The sum of (VII.20) and (VII.38),

’T (↼, ↼̄, 1) ↔ ’T =0(↼, ↼̄, 1) = ’ϱ,T + ’q,T ↔ ’ϱ,T =0 + ’q,T =0 (VII.32)

encodes all thermal fluctuations on one loop. As in the vaccum case for T = 0 we have several possibilities of
how to integrate out the thermal fluctuations, e.g. either in parallel or successively. Even though being relevant
for the quantitative results, it is irrelevant for the access of the mechnism of chiral symmetry restauration at large
temperatures: At large temperatures the quark exhibits a Matsubara gapping as the lowest lying Matsubara mode is
ςT in comparison to the vanishing one in the mesonic case. For higher temperatures more and more of the infrared
quark fluctuations are gapped. However, the quark fluctuations triggers strong chiral symmetry breaking in the first
place. Consequently at large enough temperatures chiral symmmtry breaking is melted away.
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3. RG for the e!ective potential at finite temperature
→

For quantitative statements the RG equation as in chapter III G 3 or similar non-perturbative techniques such as
Dyson-Schwinger equations or 2PI/nPI techniches (2-particle irreducible/n-particle irreducible) should be used. Here
we just extend the Wegner-Houghton equation we have derived for the T = 0 case in chapter III G 3. There we have
the frequency and spatial momentum integration with an O(4)-dimensional momentum cuto! with p2

̸ ”2 in the
integrals.

At finite temperature the four-momentum is given by (2ςT )2n2 + ϱp2 and the related 0-function is 0(2ςT )2n2 + ϱp2
↔

”2). A four dimensional cuto! leads to discontinuous flows as it jumps if we sweep over one of the Matsubara modes.
In (VII.34) we would have to substitute

Trε(


p2 ↔ ”) ↓ Trε(


(2ςT )2n2 + ϱp2 ↔ ”) , (VII.33)

which makes the non-analyticity apparent. Even though the spatial momentum integration smoothens the non-
analyticity, it is present and hampers in particular the simple computation of the thermodynamical properties such
as the pressure, see [24]. This is not a conceptual problem as these jumps have to be absorbed in the ”-dependence
of the initial condition, it hampers explicit computations.

For that reason we choose a spatial momentum cuto! ϱp2 > ”2, leading us to the functional Wegner-Houghton
equation

”ω#$#[↼, ↼̄, 1] = ↔
1
2Tr,p2=#2 ln

$(2)
ϱϱ

”2 + Tr,p2=#2 ln
$(2)

ϖϖ̄

”2 , (VII.34)

where the trace

Tr,p2=#2 = T


n

∫
d3p

(2ς)3 ε(


p2 ↔ ”) , (VII.35)

now only sums over the spatial momentum shell with p2 = ”2, but over all Matsubara modes. In the line of the
arguments in chapter III G 3 this cuto! is now applied to all fluctuations and not only to the thermal ones.

Practically our computations so far allow us to read o! the flow equation for the e!ective potential. For the meson
part we start with (VII.17) for a scalar mode, leading to

’ϱ,# ∞
1

2ς2

∫ #UV

#
dp p2

[
1
2ϖϱ

p
+ T ln

(
1 ↔ e↑5ς

ς
p

)]
+ ’ϱ,#UV , (VII.36)

including the vacuum part. Hence, we simply read-o! (minus) the integrand as the ”-derivative of ’ϱ. Applying this
immediately to the mesonic part of our EFT we arrive at

”ω#’ϱ,#(1) = ↔
”3

2ς2

{
1
2

[
ϖϱ

#(m↽) + 3
2ϖϱ

#(m3)
]

+ T

ln

(
1 ↔ e↑5ς

ς
”(m⇁)

)
+ ln

(
1 ↔ e↑5ς

ς
”(m⇀)

)}
, (VII.37)

where the spatial momentum arguments in the dispersions ϖϱ

p
are now taken at the cuto! scale, p = 3. The first two

terms on the right hand side is the T = 0 flow as the second term vanishes for T = 0. It is di!erent from its counter
part in (III.100) as (VII.37) only involves a spatial momentum cuto!, reflected in the cubic power of ”.

The derivation of the quark part of the flow proceeds similarly. We start with the expression for ’q or ↔pq after
integration of the Matsubara frequency, (VII.38) and restore the T = 0 part,

’q,#(↼, ↼̄, 1) = ↔
12
ς2

∫ #UV

#
dp p2


ϖϖ

p
+ T ln

(
1 + e↑5ς

↼
p

)
+ ’q,#UV(↼, ↼̄, 1) , (VII.38)

leading us to the flow

”ω#’q,#(↼, ↼̄, 1) = 12”3

ς2


ϖϖ

# + T ln
(

1 + e↑5ς
↼
”

)
. (VII.39)

As in the mesonic part, the first term on the right hand side is the T = 0 part of the flow. It also does not match its
counterpart in (III.100) due to the di!erent cuto!s.
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In summary we are led to the full flow

”ω#’#(↼, ↼̄, 1) = ↔
”3

2ς2


1
2

[
ϖϱ

#(m↽) + 3
2ϖϱ

#(m3)
]

↔ 12 ϖϖ

#

+ T

ln

(
1 ↔ e↑5ς

ς
”(m⇁)

)
+ ln

(
1 ↔ e↑5ς

ς
”(m⇀)

)
↔ 24 T ln

(
1 + e↑5ς

↼
”

)
, (VII.40)

where the first line is the T = 0 part of the flow, while the second line is the thermal part. Note that both parts are
dependent on derivatives of ’ via the mass-functions and hence feed into each other. One cannot simply solve the
T =-part first. For example, the thermal pressure is given by (minus) the ”-integral of the second line on the solution
of the full flow equation. If we take ”-independent mass functions, the ”-integral gives the one-loop expressions we
have started with.

B. Confinement-deconfinement phase transition at finite temperature

The dynamics of confinement and the confinement-deconfinement phase transition is the second cornerstone of the
low energy QCD phenomenology we have to unravel. Here we aim at a treatment of this phenomenon within the
continuum formulation of QCD similar to that of the chiral phase structure in chapter VII A. We mainly concentrate
on the e!ective potential of the order parameter, the Polyakov loop. This observable is derived directly from the
Wilson loop discussed before.

1. Polyakov loop

We consider a rectangular Wilson loop, Figure 16, within the static situation also used in our discussion of con-
finement on the lattice in Section VI D 2. At finite temperature T the time is limited to t ↑ [0, ⇁] with ⇁ = 1/T , see
chapter VII A 1. Moreover, the gauge fields are periodic in time up to gauge transformations, i.e.

Aµ(t + ⇁, ϱx) = i

g
T (t, ϱx)

(
DµT †(t, ϱx)

)
, (VII.41)

with T (t, ϱx) ↑ SU(N) are the transition functions. It follows from (VII.76) that under gauge transformations they
transform as

T U (t, ϱx) = U(t + ⇁, ϱx) T (t, ϱx) U†(t, ϱx) , (VII.42)

they parallel transport gauge transformations from t to t + ⇁. The transformation property (VII.76) ensures the
periodicity of gauge invariant quantitites. It is indeed possible to restrict ourselves to strictly periodic fields, t ⇐ 1l,
even though this limits the possible gauge choice. For the time being we restrict ourselves to the periodic case and
discuss the general case at the end. We want to construct the state, that desribes a static quark–anti-quark pair for
all times. To that end we take a path that extends in time direction from t = 0 to ⇁. Then the spatial paths at fixed
time t = 0 and t = ⇁ have to be identified up to the opposite orientation due to the periodicity on the lattice. Since
the paths at t0 and t1 are identified up to the orientation, their combined phases would simply be unity for Abelian
gauge theories and periodic gauge fields. In the non-Abelian case these contribution simply gives rise to an overall
normalisation, see e.g. [25, 26] for respective lattice studies.

We conclude that the path C[L, ⇁] splits into two loops winding around the time direction at the points ϱx and ϱy
with L = |ϱx ↔ ϱy|. The Wilson loop expectation value is then given by

1
N2

C

W [L, ⇁] = ↘WC[L,5][A]≃ ↙ ↘L[A0](ϱx)L†[A0](ϱy)≃ , (VII.43)

where we have dropped the normalisation in the second identity, and L[A0] is the Polyakov loop variable with

L = 1
Nc

trf P (⇁, ϱx) , with P (t, ϱx) = Pe
↑i g

∫ t

0
A0(1,,x)d1

. (VII.44)
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The normalisation of the Polyakov loop is such that it is unity for a vanishing gauge field, L[0] = 1. It lives in the
fundamental representation as it is related to a creation operator of a quark. It is gauge invariant under periodic
gauge transformations that keep the strict periodicity of the gauge field we have required. In general we have

L[AU ] = 1
Nc

trf
[
U†(⇁, ϱx)U(0, ϱx)

]
P (⇁, ϱx) , (VII.45)

where we have used the cyclicity of the trace. The combination
[
U†(⇁, ϱx)U(0, ϱx)

]
is unity for periodic gauge trans-

formations, which is the case we have restricted ourselves to when deriving (VII.43) from the gauge invariant Wilson
loop. In the general case the two spatial parts of the path at t = 0, ⇁ only cancel up to the transition functions.
Working through the derivation we get

L = 1
Nc

trf T (0, ϱx)P (⇁, ϱx) , (VII.46)

which is also gauge invariant under non-periodic gauge transformations. Here we only consider T ⇐ 1l but (VII.46)
has to be used for example in the temporal axial gauge A0 ⇐ 0. Evidently, in this gauge (VII.44) simply is one.
However, in order to achieve this gauge non-periodic gauge transformations (in time) have to be used. Then, the
whole physics information of the Polyakov loop is stored in the transition function T instead of the gauge field. While
this is not a convenient choice in continuum formulations it is a common choice on the lattice. There is is obtained
by taking trivial temporal link variables U0 = 1l for all but the last link from t = ⇁ ↔ a to ⇁.

We now come back to our main line of arguments, and restrict ourselves to the fully periodic case. The Wilson loop
in (VII.43) is an order parameter for confinement: in the confining phase it tends towards zero for large distances,
L ↓ ⇔, due to the area law,

lim
L⇐↓

W [L, ⇁] ∞ lim
L⇐↓

e↑↽5L = 0 . (VII.47)

In turn, in the deconfined regime of the theory the quark–anti-quark potential Vqq̄ is Coulomb-like, Vqq̄ ↖ 1/|ϱx ↔ ϱy|

and the Wilson loop follows a perimeter law, leading to

lim
L⇐↓

W [L, ⇁] > 0 . (VII.48)

In conclusion the Wilson loop expectation value or Polyakov loop two-point correlation function for L ↓ ⇔ serves
as an order parameter for confinement at finite temperature. Moreover, in this limit we can use the clustering
decomposition property of a local quantum field theory,

lim
|,x↑,y|⇐↓

↘A(ϱx)B(ϱy)≃ ↔ ↘A(ϱx)≃ ↘B(ϱy)≃ = 0 . (VII.49)

for local operators A and B. Hence we conclude that

lim
L⇐↓

W [L, ⇁] ↙ ↘L[A0](ϱx)≃ ↘L†[A0](ϱy)≃ , (VII.50)

it only depends on the temporal component of the gauge field. Again we have dropped the normalisation factor
already discussed above (VII.43). It is irrelevant for the present line of arguments.

The Polyakov loop expectation value ↘L[A0]≃ does not depend on the spacial variable due to translation invariance.
Thus also the Polyakov loop expectation value itself serves as an order parameter for confinement,

↘L[A0]≃ =
 0 confining phase

△= 0 deconfining phase
(VII.51)

2. Center-Symmetry and the confinement-deconfinement phase transition

So far we have argued on a heuristic level which led us to (VII.51) as an order parameter, without even discussing
the symmetry behind the pattern in (VII.51): we are searching for a symmetry that is preserved by the Yang-Mills
action but does not keep ↘L[A0]≃ invariant. This is the center symmetry of the gauge group. The center elements are
those elements that commute with all other elements in the gauge group. In SU(N) these are the Nth roots of unity



B Confinement-deconfinement phase transition at finite temperature 98

in the groups. For the cases used here, the example group SU(2) and the physical group SU(3), the centers Z are

ZSU(2) = {1l, ↔1l} ∞ Z2 , ZSU(3) = {1l, 1l e
2
3 3i, 1l e

4
3 3i

} ∞ Z3 . (VII.52)

where the identities 1l in SU(2) and SU(3) are 1l2↙2 and 1l3↙3 respectively. The non-trivial center elements in
(VII.52) are related to combinations of generators in the algebra. This relation is not unique as the eigenvalues of the
combination of algebra elements is only determined up to 2ςn with n ↑ Z. For example, one representation is

SU(2) : ↔1l = e3i↽3 , SU(3) : 1l e
2
3 3i = e23i

1
↘

3 ▷8 , 1l e
4
3 3i = e23i

2
↘

3 ▷8 . (VII.53)

with the Pauli matrices in (III.40) and the Gell-Mann matrices

31 =




0 1 0
1 0 0
0 0 0



 , 32 =




0 ↔i 0
i 0 0
0 0 0



 , 33 =




1 0 0
0 ↔1 0
0 0 0



 , 34 =




0 0 1
0 0 0
1 0 0



 ,

35 =




0 0 ↔i
0 0 0
i 0 0



 , 36 =




0 0 0
0 0 1
0 1 0



 , 37 =




0 0 0
0 0 ↔i
0 i 0



 , 38 = 1
⇒

3




1 0 0
0 1 0
0 0 ↔2



 , (VII.54)

in the fundamental representation of SU(3). The generators of the SU(3) algebra are ta

fund = 3a/2. In the adjoint
repesentation the generators of the algebra are given by the structure constants, see ??. The SU(3) structure constants
are given by

SU(2) : fabc = ϖabc ,

SU(3) : f123 = 1 , f147 = f246 = f257 = f345 = 1
2 , f156 = f367 = 1

2 , f458 = f678 = 1
2 . (VII.55)

Hence, in the adjoint representation these elements are all represented by idad, the unit element in the adjoint
representation,

Zad = 1lad , for Z ↑ Z . (VII.56)

In the adjoint representation every center element is mapped to the identity, z = 1lad, ∀z ↑ Z. Hence we have

Zad = {1lad} . (VII.57)

As the gauge fields and the ghosts live in the adjoint representation, the gauge-fixed Yang-Mills action is trivially
invariant under center transformations. However, they cause a non-trivial T ↑ Z. Accordingly, this leads us to

P (⇁, ϱx) ↓ z P (⇁, ϱx) , with z ↑ Z , (VII.58)

with A0 ↓ AU(z)
0 . Here, the gauge transformation U(z) triggers a center transformation of P (or rather the transition

function). In the adjoint representation (VII.58) is an identity transformation. However, the Polyakov loop L[A0], as
we have discussed it, is the trace of the Polyakov line P (⇁, ϱx) in the fundamental representation, see (VII.44). The
underlying reason is its connection to the quark that carries the fundamental representation. Hence, with (VII.58)
we arrive at

L[A0] ↓ z L[A0] , with z ↑ Zn . (VII.59)

Note that in (VII.59), the z’s are now simple phase factors and not SU(N)-matrices, in a slight abuse of notation. We
conclude that in the center-symmetric phase of the theory the Polyakov loop expectation value (VII.51) has to vanish
while in the center-broken phase it is finite.

The center symmetry can be made even more explicit on the level of the gauge fields that live in the algebra of
the gauge field. For this purpose we rewrite the Polyakov loop P (⇁, ϱx) in (VII.44) in terms of the exponential of an
algebra field,

P (⇁, ϱx) = e↑23i ⇁̂(,x) , 4̂(ϱx) U
↔↓ U†(0, ϱx)4̂(ϱx)U(0, ϱx) . (VII.60)
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The algebra field transforms as a tensor under periodic gauge transformations: in (VII.60) we have used U(⇁, ϱx) =
U(0, ϱx). Moreover, in the absence of the path ordering the algebra field 2ς4̂ would just be identical to the exponent
i g

∫
t

0 A0(◁, ϱx)d◁ in (VII.44). This holds true for gauge fields in the Cartan subalgebra. In the following we consider
the approximation of constant (mean) gauge fields, which can always be rotated into the Cartan subalgebra with
constant gauge transformations. This leads us to

4̂ = ⇁g

2ς
A0 , L(4̂) = L[A0] = 1

Nc

tr e↑23i ⇁̂ . (VII.61)

with 4̂ in the Cartan subalgebra. For the two gauge groups considered, SU(2) and SU(3), we find

SU(2) : 4̂ = 43
σ3

2 , SU(3) : 4̂ =
(

43
33

2 + 48
38

2

)
, (VII.62)

with 33,8 given in (VII.54). The eigenvalue equation of the field 4̂ in the fundamental representation is given by

4̂f
|4f

n
≃ = 8f

n
|4f

n
≃ , n ↑ 1, ..., Nc , (VII.63)

where the superscript f indicates the fundamental representation. The eigenvalues for SU(2) and SU(3) are given by

SU(2) : 8f
n

↑

{
±

43
2

}
, SU(3) : 8f

n
↑


±

43 + 1
↘

3 48

2 , ↔
1

⇒
3

48


. (VII.64)

Using (VII.63) and (VII.64) in the Polyakov loop in SU(2) we arrive at

L(4) = cos ς4 , (VII.65)

For SU(3) we have

L(43, 48) = 1
3


e

2⇀i ↽8↘
3 + 2 cos(ς43) e↑

2⇀i ↽8↘
3


, (VII.66)

As the Polyakov loop potential (for vanishing chemical potential) has minima at 43 = 0 we can work with the Polyakov
loop variable at 48 = 0,

L(4) = 1
3 (1 + 2 cos ς4) , (VII.67)

with L(4) = L(43 = 4, 0). Then, confinement is signaled by the (mean) gauge field configurations

4 = 1
2 for SU(2) , and 4 = 2

3 for SU(3) . (VII.68)

Having identified the symmetry we can envoke universality to predict the scaling of the order parameter in the vicinity
of the phase transition:

For SU(2) we are in the Ising universality class, the symmetry group being Z2. If SU(2)-Yang-Mills exhibits a
second order phase transition (and it does), it should have Ising scaling. This is indeed seen. For SU(3) the symmetry
group is Z3 and we epxect a first order phase transition which is also seen. Our explicit computations later will not
encorporate the full fluctuation analysis so detecting Ising scaling is out of reach here. However, we are able to see
the seoncd and first order nature of the respective phase transitions. This closes our very rough symmetry discussion.

We also would like to add some more arguments for the intuitive understanding for the Polyakov loop expectation
value. We have argued for the Wilson loop expectation value, that it is related to the expectation value of a static
quark–anti-quark pair,

W [L, ⇁] ∞ ↘q̄(ϱx) Pe
↑i g

∫
C▷x,▷y

Aµdzµ

q(ϱy)≃ , (VII.69)

where the path-ordered phase ensures gauge invariance. Using -naively- the clustering decomposition property (or
short declustering) for |ϱx ↔ ϱy| ↓ ⇔, we can decompose the expectation value in (VII.69) in the product of the
expectation value of a quark state and and anti-quark state. Naturally the latter have to vanish as the creation of a
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single quark or anti-quark requires an infinite energy. However, be aware of the fact that the quark and anti-quark
states do not belong to the Hilbert space of QCD and hence we cannot apply declustering that easily.

Still, the Polyakov loop expectation value is related to the heuristic situation described above. To see this more
clearly let us consider a static quark. This situation can be achieved by taking the infinite quark mass limit, mq ↓ ⇔.
The Dirac equation

(D/ + mϖ) ↼ = 0 , (VII.70)

then reduces to a space-independent equation as the quark cannot move, ϱωx↼ = 0. Hence, the Dirac equation (VII.70)
reads in the static limit

(↽0D0 + mϖ) ↼ = 0 . (VII.71)

A solution to this equation is given by

↼(x) = P †(t, ϱx)↼0(x) , with (↽0ω0 + mϖ) ↼0 = 0 . (VII.72)

where ↼0 solves the free Dirac equation, and P (t, ϱx) is the untraced Polyakov loop (VII.44). For proving (VII.72) we
use that (D0P †(t, ϱx)) = 0 following from (VII.44). Hence, in a -vague- sense we can identify the expectation value of
the trace Polyakov loop L, (VII.44), with the interaction part of a static quark.

3. Polyakov loop potential

As in the case of chiral symmetry breaking we would like to compute the e!ective potential of the order parameter,
VPol[L]. This turns out to be a formidable task both on the lattice and in the continuum. Note however, that the
computation of the expectation value itself is simple on the lattice.

In the continuum we compute the e!ective potential of QCD, that is the e!ective action $[#] for constant fields.
Before we embark on the explicit computation we first have to deal with the issue of gauge invariance in the gauge-
fixed approach we are working in. To that end we upgrade our covariant gauge fixing to the background gauge: To
that end we split our gauge field in a background Ā and a fluctuation a, to wit

Aµ = Āµ + aµ . (VII.73)

While the background Ā is kept fixed, a carries all the quantum fluctuations. In the path integral the integration over
A then turns into one over a. So far nothing has been changed. Now we modify our gauge fixing,

ωµAµ = 0 ↓ D̄µa = 0 , with D̄µ = Dµ(Ā) . (VII.74)

For Ā = 0 we regain the orginial covariant gauge fixing. For the background gauge fixing the gauge fixed classical
action with ghost term reads

SA[Ā, a, c, c̄] = SA[A] + 1
2φ

∫

x

(D̄ab

µ
ab

µ
)2 + c̄aD̄ad

µ
Ddb

µ
cb . (VII.75)

At finite temperature T , the time integration in (VII.75) is limited to t ↑ [0, ⇁] with ⇁ = 1/T as discussed in
Section VII A 1. Moreover, the gauge fields are periodic in time up to gauge transformations, i.e.

Aµ(t + ⇁, ϱx) = i

g
T (t, ϱx)

(
DµT †(t, ϱx)

)
, c(t + ⇁, ϱx) = T (t, ϱx) c(t, ϱx) T †(t, ϱx) , c̄(t + ⇁, ϱx) = T (t, ϱx) c̄(t, ϱx) T †(t, ϱx) ,

(VII.76)

with T (t, ϱx) ↑ SU(N) are the transition functions. It follows from (VII.76) they transform under gauge transforma-
tions as

T U (t, ϱx) = U(t + ⇁, ϱx) T (t, ϱx) U†(t, ϱx) , (VII.77)

they parallel transport gauge transformations from t to t + ⇁. The transformation property (VII.76) ensures the
periodicity of gauge invariant quantitites. It is indeed possible to restrict ourselves to strictly periodic fields, t ⇐ 1l,
even though this limits the possible gauge choice. For the time being we restrict ourselves to the periodic case and
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discuss the general case at the end. The state we want to construct is the one, where we desribe a static quark–anti-
quark pair for all times. To that end we take a path that extends in time direction from t = 0 to ⇁. Then the spatial
paths at fixed time t = 0 and t = ⇁ have to be identified (up to the orientation) due to the periodicity on the lattice,
as well as the fact that we have restricted ourselves to periodic gauge fields.

In the presence of the background field and with the gauge fixing (VII.74) we have an additional -auxiliary- gauge
symmetry: the gauge-fixed action is invariant under background gauge transformations

ĀU

µ
= i

g
U (D̄µU†) , au = U aµ U†

↔↓ AU = i

g
U (DµU†) . (VII.78)

Evidently this is true for the Yang-Mills action, it is left to show this for the gauge fixing and ghost term. The gauge
fixing condition (VII.74) transforms as a tensor under (VII.78): D̄µa ↓ U D̄µa U† and hence tr(D̄µa)2 is invariant
under (VII.78). The Faddeev-Popov operator M in the background gauge is given by

M = ↔D̄µDµ ↓ U D̄µDµ U† . (VII.79)

It also transforms as a tensor and hence the ghost term is gauge invariant under (VII.78). However, the background
gauge transformations are an auxiliary symmetry. The physical gauge transformations are those of the fluctuation
field at fixed background Ā, the quantum gauge transformations

ĀU

µ
= Āµ , au = U (DµU†) ↔↓ AU = i

g
U (DµU†) . (VII.80)

Again this can be understood by choosing the standard covariant gauge with a vanishing background. Then, (VII.80)
is the only gauge transformation left, while (VII.78) leads to a non-vanishing background and hence changes the gauge
fixing. The neat feature of the background field formalism is that it can be shown that both transformations are indeed
related via background independence of the quantum equations of motion. Therefore background gauge invariance
under the transformations (VII.78) carries physical gauge invariance, more details can be found in Appendix C

Still, the introduction of the background seems to complicate matters but it indeed facilitates computations and
gives a more direct access to physics. Here we explore both properties. First we note that the introduction of Ā leads
to an e!ective action that depends on two fields,

$[A] ↓ $[Ā, a] . (VII.81)

Switching of the mean value of the fluctuation field, a = 0 leads to a (background) gauge invariant action

$[A] = $[A, a = 0] (VII.82)

As mentioned before, this is the physical gauge invariance. Moreover, one can show that the background correlation
functions are directly related to S-matrix elements. In summary the e!ective action $[A] defined in (VII.82) carries
the information about the Polyakov loop potential.

Now we proceed with the explicit computation of the e!ective potential at one loop. For the Polyakov loop potential
the only mean field of interest is the temporal component of the gauge field, and the other fields are put to zero. We
will perform this computation first on the one-loop level with the classical ghost and gluon propagators. Finally we will
introduce the fully non-perturbative propagators to this one-loop computation. This re-sums infinitely many diagrams
and carries the essential non-perturbative computation. The explicit results are in semi-quantitative agreement with
the full results obtained with functional renormalisation group methods and also show a good agreement with the
lattice results.

In summary the Polyakov loop potential for constant temporal gauge fields is given by

VPol(A0) = 1
2Tr ln G↑1

A
(A0) ↔ Tr G↑1

c
(A0) ↔ N , (VII.83)

where the color traces in (VII.83) are in the adjoint representation and CN is the normalisation of the potential which
we leave open for now. For the one-loop computation we have G↑1 = S(2)

A
with SA in (VII.75) and hence

G↑1
A

(A0) = ↔D2
φ

εµε +
(

1 ↔
1
φ

)
DµDε , G↑1

c
(A0) = ↔D2

φ
. (VII.84)

In (VII.84) we have used that the spin one terms proportional to Fµε drop out for a constant A0-background. In
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the re-summed non-perturbative approximation we use numerical results, e.g. the Yang-Mills analogue of Figure 8 at
finite temperature.

As a preparation for the full computation we go through the perturbative computation. This already reveals the
main mechanism we need for the access of the confinement-deconfinement phase transition. This computation has
been done independently in [27] and [28] in 1980 (published 81). The potential is often called the Weiss potential.

For the explicit computation we restrict ourselves to SU(2). The result does not depend on the gauge fixing
parameter φ and we choose φ = 1, Feynman gauge, in order to facilitate the computation. Then the Lorentz part of
the trace in the gauge field loop can be performed immediately, leading to a factor four for the four polarisations of
a vector field. We have

VPol(A0) ∞ 4 →
1
2Tr ln(↔D2

φ
) ↔ 2 →

1
2Tr ln(↔D2

φ
) = 21

2Tr ln(↔D2
φ
) , (VII.85)

where we have made explicit the multiplicities of gluon and ghost, and we dropped the normalisation. The gluon
dominates and the final result is twice that of one polarisation, which accounts for the two physical polarisations of
the gluon. This is an expected property as we compute a gauge invariant potential that should reflect the fact that
we only have two physical polarisations, and the gauge fixing is only a means to finally compute gauge invariant
quantities. Now we use that we can diagonalise the operator D2

φ
in the adjoint representation in the algebra. The

color eigenfunctions and eigenvalues in the adjoint representation are given by

4̂ad = g⇁

2ς
Aad

0 , 4̂ad
|4ad

n
≃ = 8ad

n
|4ad

n
≃ , n ↑ 1, ..., N2

c
↔ 1 , (VII.86)

and

SU(2) : 8ad
n

↑ {0 , ±4} , SU(3) : 8ad
n

↑

{
0 , 0 , ±43 , ±

43 ±
⇒

348
2

}
, (VII.87)

in comparison to the eigenvalues (VII.64) in the fundamental representation. Note for example, that the eigenvalues
of T 3

ad are ±1, while they are ±1/2 in the fundamental representation. This relative factor 1/2 reflects the sensitivity
to center transformations in the fundamental representation and the insensitivity in the adjoint representation.

With these preparations we can compute the one-loop Polyakov loop potential analytically. Performing the trace
in (VII.85) in terms of the eigenfunctions |4n≃ and momentum modes, we arrive at

VPol(A0) ∞ 2

Vmode(4) + Vmode(↔4)


, (VII.88)

with VPol being 1/2 Tr ln(↔D2), where the gauge field is substitute by one eigenmode,

Vmode(4) = T

2


n⇔Z

∫
d3p

(2ς)3

{
ln (2ςT )2(n + 4)2 + ϱp2

(2ςT )2n2 + ϱp2

}

= T

4ς2



n⇔Z

∫
↓

0
dp p2

{
ln (2ςT )2(n + 4)2 + p2

(2ςT )2n2 + p2

}
, (VII.89)

where the denominator in the logarithm in (VII.89) is a normalisation of the mode potential at vanishing 4: Vmode(0) =
0. The sum in (VII.89) can be performed analytically by taking first a derivative w.r.t. p2 and then using contour
integrals. It results in

Vmode(4) = T

4ς2

∫
↓

0
dp p2




±

ln sinh ⇁p ± 2ςi 4

2


↔ 2 ln sinh ⇁p

2


. (VII.90)
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FIG. 23: One loop Polyakov loop potential for SU(2).

Now we use that


±

ln sinh ⇁p ± 2ςi 4

2 ↔ 2 ln sinh ⇁p

2 =


±

ln(1 ↔ e↑5p±23i ⇁) ↔ 2 ln(1 ↔ e↑5p)

=


±

↓

n=1

1
n

e↑5pn
(
e±23i n⇁

↔ 1
)

. (VII.91)

In (VII.91) we have pulled out a factor ln exp(⇁p ± 2ςi4)/2 = (⇁p ± 2ςi4)/2 from the ln sinh-terms with 4, and
2 ln exp ⇁p/2 = ⇁p from the ln sinh-term in the normalisation. These terms cancel each other and we are led to the
right hand sid e of (VII.91). Then we have expanded the logarithms in a Taylor expansion in the exponentials. In
summary this leads us to

Vmode(4) = T

4ς2

∫
↓

0
dp p2



±

↓

n=1

1
n

e↑5pn
(
e±23i n⇁

↔ 1
)

= T 4

ς2

↓

n=1

1
n4 (cos 2ςn4 ↔ 1) . (VII.92)

The sum in (VII.92) is gain easily performed with methods of complex analysis and we arrive at

⇁4 Vmode(4) = ς2

48


4

(
4̃ ↔

1
2

)2
↔ 1

2

, 4̃ = 4 mod 1 , (VII.93)

where we have devided out the trivial dimensional thermal factor T 4. Inserting (VII.93) in (VII.88) for the Polyakov
loop potential we are led to

⇁4 Vpol(A0) = ς2

12


4

(
4̃ ↔

1
2

)2
↔ 1

2

, (VII.94)

for SU(2), while for SU(3) the potential is given by

Vpol(A0) =
8

n=1
Vmode(8n) , (VII.95)

with the eigenvalues 8n in (VII.87). We have plotted the SU(2) potential in Figure 23 as it has a very simple form
which carries already the relevant information. The potential has minima at 4 = 0, 1 and a maximum at 4 = 1/2.
For the minima the Polyakov loop variable L[A0] takes the value ±1, the maximum is the center-symmetric value
L[A0] = 0. This structure is also present for all SU(N)-theories and originates in the -necessary- center symmetry of
the potential. The center transformation in SU(2) is given by

4 ↓ 1 ↔ 4 , (VII.96)
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which maps L[4 = 0] = 1 ↓ L[4 = 1] = ↔1 and vice versa, this comes via the multiplication of the Polyakov line P (ϱx)
with the center element ↔1l. We conclude that in perturbation theory the potential has its minimum at the maximally
center-breaking values, the theory is in the center-broken phase. At large temperatures perturbation theory is valid
and quantum fluctuations are small: the fluctuating gauge field is close to A0 = 0. This leads to

lim
T ⇐↓

L[↘A0≃] = 1 . (VII.97)

In turn, for small temperatures the potential should exhibit a minimum at 4 = 1/2. Interestingly, this is achieved
within the one loop computation if the gluon contributions are switched o!, and the ghost contribution is left.

Finally we come back to the normalisation of Vpol(A0) in (VII.83). We have normalised it such that Vpol(A0) = 0.
However, if we choose the normalisation as

N =
[

1
2Tr ln G↑1

A
(0) ↔ Tr G↑1

c
(0)

]

T =0
, (VII.98)

the value of the e!ective potential simply is the thermal pressure of the theory. The di!erence between (VII.98) and
that chosen in (VII.89) for the mode potential is given by

!N = 2(N2
c

↔ 1)


T

2


n⇔Z

∫
d3p

(2ς)3 ln
[
(2ςT )2n2 + ϱp2]

↔

∫
d4p

(2ς)4 ln p2


= ↔pA,SB with pA,SB = ς4T 4

45 (N2
c

↔ 1) .

(VII.99)

(VII.99) is nothing but (minus) the Stefan-Boltzmann pressure of a SU(Nc) gauge theory, see (VII.19) for the scalar
case. It is the scalar pressure times the number of physical modes: two physical transversal polarisations times the
number of color modes, (N2

c
↔ 1), leading to 2(N2

c
↔ 1)pϱ,SB. This leads us to our final result

⇁4 Vpol(A0) = ς2

12


4

(
4̃ ↔

1
2

)2
↔ 1

2

↔
ς4

45 (N2
c

↔ 1) . (VII.100)

We proceed with a non-perturbative computation of the Polyakov loop potential which still keeps the analogy to
the one loop computation above. Even though this is an approximation, both the numerical result as well as the
conceptual structure are also present in the full computation. We again start with (VII.83). Now, instead of using
the classical inverse propagators we utilise the fully non-perturbative ones. These propagators can only be computed
with numerical non-perturbative approaches, either gauge fixed lattice simulations or with functional methods such
as the functional renormalisation group (FRG) already used in the low energy EFT for chiral symmetry breaking or
Dyson-Schwinger equations (DSEs). Instead of using the available numerical data we add another approximation in
order to keep our approach semi-analytic.

From Fig. 8 we know that the gluon propagator exhibits a mass gap for low momenta. In turn, for large momenta is
runs logarithmically. This behaviour is also present at finite temperature, see Fig. 25. There we plot the momentum
dependence of the dressing of the chromo-magnetic gluon propagator for di!erent temperatures. Both, results from
functional methods and from gauge-fixed lattice simulations are shown. The dressing is defined as

1
ZM

A
(ϱp2)

= 1
2 ϱp2

↘Ai(0, ϱp)Ai(0, ↔ϱp)≃ , (VII.101)

it is the dressing of the gluon propagator perpendicular ro the heat bath. In Fig. 24 we plot the temperature-dependent
mass (screening mass) of chromo-electric gluon propagator, the gluon propagator parallel to the heat bath,

1
ZE

A
(ϱp2)

= ϱp2
↘A0(0, ϱp)A0(0, ↔ϱp)≃ . (VII.102)

Note that the simple relations (VII.101), (VII.102) are only valid for p0 = 0. For p0 △= 0 one has to use the thermal
projection operators, see e.g. [29]. At large temperatures we expect them to tend towards their perturbative values.
This is indeed happening, however, we need higher order thermal perturbation theory. The one-loop Debye mass is
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FIG. 24: Debye screening mass ms, plot taken from [29], for more details see there.
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(a) Magnetic gluon dressing in SU(2) from [29] in comparison
with SU(2) lattice results from [31, 32]. .
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(b) Magnetic gluon dressing in SU(2) from [29] in comparison
with SU(3) lattice results from [33]. .

FIG. 25: Magnetic gluon propagator dressing (VII.101).

given by

m0
D

=
√

N

3 gT T + O(g2
T

T ) , (VII.103)

and is also displayed in Fig. 24. For the comparison, the temperature-dependent coupling is fully non-perturbative
and has been also taken from [29] for internal consistency, for more details see there. In [30] higher order e!ects have
been taken into account, leading to

mD = m0
D

+
(

cD + N

4ς
ln

(
m0

D

g2
T

T

))
g2

T
T + O(g3

T
T ) . (VII.104)

(VII.104) already leads to a very good agreement with the full result above 600 MeV. At low temperatures, the mass
settles at its T = 0 value, indicated by the 1/T behaviour of md/T in Fig. 24b, and the perturbative prescriptions
fail even with the full non-perturbative coupling. The Debye mass itself for low temperatures is depicted in Fig. 24a,
from which it is evident that a temperature-independent (or decaying) additional part !mD(T = 0) ⇑ 380 MeV to
m0

D
would lead to agreement up to ⇑ 150 MeV.



B Confinement-deconfinement phase transition at finite temperature 106

In conclusion a good semi-quantitative approximation to the thermal propagator (in particular the chromo-magnetic
on) is the perturbative propagator with a temperature-dependent mass term. It goes beyond the scope of the present
lecture notes to present a full computation, here we simply investigate the qualitative e!ect of such a mass gap, first
done in [34], for a full, comprehensive analysis see [35]. We revisit (VII.92) for simple massive propagators

GA ↖
1

(2ςT )2(n + 4)2 + ϱp2 + m2
T

, (VII.105)

even dropping the perturbative running. While the latter is important for the correct scaling ( fixing ”QCD and hence
for the correct Tc it is not important for the confining property. With the propagator (VII.105) we are led to

Vmode(4, m) = T

4ς2



±

↓

n=1

1
n

(
e±23i n⇁

↔ 1
) ∫

↓

0
dp p2 e

↑

(
5

⇒
p2+m2

)
)n

= T 4

4ς2



±

↓

n=1

1
n

(
e±23i n⇁

↔ 1
) ∫

↓

0
dp̄ p̄2 e

↑

(⇒
p̄2+52m2

)
n

. (VII.106)

The momentum integration in (VII.107) cannot be performed analytically. However, in the zero temperature limit
the terms in the sum decays with e(↑5m)n up to polynomials. This is seen easily for the absolute value of the mode
potential,

|Vmode(4, m)| ▽
T 4

4ς2

↓

n=1

1
n

∫
↓

0
dp̄ p̄2 e

↑

(⇒
p̄2+52m2

)
n

▽
T 4

4ς2

↓

n=1

1
n

∫
5m

0
dp̄ p̄2 e↑(5m)n +

∫
5m

0
dp̄ p̄2 e↑p̄n



5m⇐↓
↔↓ T 4 Pol(⇁m) e↑5m , (VII.107)

with a polynomial Pol(⇁m). In summary the mode potential decays exponentially for gapped propagators. This
entails that for su"ciently small temperatures the contributions of the chromo-electro and the two chromo-magnetic
modes decay exponentially. The longitudinal gauge mode stays trivial and gives the contribution 2Vmode(4). Now we
use that the ghost propagator keeps it 1/(↔D2) behaviour it already has perturbatively. In a covariant gauge this is
already suggested from the ghost-gluon vertex which is linear in the anti-ghost momentum. Hence, all loop corrections
to the inverse ghost propagator are proportional to p2 from the onset. If no additional singularity is created from the
propagators in the loops it stays this way. Since the gluon propagator is gapped this is only possible with a global
non-trivial scaling.

Let us now study the case of a trivial ghost propagator and a gapped gluon propagator. In this case we conclude
that

lim
T =0

VPol(A0) ∞
1
2 lim

T ⇐0
Tr ln G↑1

A
(A0) ↔ lim

T ⇐0
Tr G↑1

c
(A0)

∞
1
2Tr ln (↔D2

φ
)(A0) ↔ Tr ln (↔D2

φ
)(A0) (VII.108)

= ↔ Tr ln (↔D2
φ
)(A0) =



i

Vmode(4i) . (VII.109)

With the mode potential (VII.89), see Fig. 23 this gives confinement. The present qualitative study can be extended
to a fully non-perturbative one with the help of functional methods, leading to the SU(2) and SU(3) potentials
depicted in Fig. 26 taken from [35]. The respective Polyakov loop expectation values L[↘A0≃] are shown in Fig. 27.

The above considerations also hold in full Yang-Mills theory without approximations. This allows us to formulate
a confinement criterion in Yang-Mills theory with (VII.83), (VII.94) and (VII.107):

Confinement criterion: ’In covariant gauges the gluon propagator has to be gapped relative to the ghost at low
temperatures’
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(a) SU(2) Polyakov loop potential. (b) SU(3) Polyakov loop potential

FIG. 26: SU(2) and SU(3) Polyakov loop potential taken from [35] for di!erent temperatures across the phase
transition. The potentials exhibits the second and first order of the SU(2) and SU(3) transitions respectively.

FIG. 27: Polyakov loop expectation values L[↘A0≃] for SU(2) and SU(3) taken from [34].

put forward in [34]. Note that we have been led to this criterion in the one-loop resummed approximation with (VII.83).
However, it can be proven in Yang-Mills theory without approximations on the basis of the functional renormalisation
group, [34, 35], as well as Dyson-Schwinger equations and the two-particle irreducible (2PI) formalism [35]. It also
extend beyond the covariant gauges, e.g. to the Coulomb gauge. In QCD with dynamical QCD -as expected- the
quark contributions spoil the applicability of the confinement criterion as they introduce center-breaking terms to the
potential, for a detailed discussion see [35].

We close this chapter with some remarks on the order parameter we introduced. We started with the Polyakov loop
variable ↘L[A0]≃, but computed the Polyakov loop potential Vpol[A0] with the order parameter ↘A0≃ or L[↘A0≃]. As
both are order parameters for the same symmetry, this is not relevant for us. Still, one can investigate their relation:
evidently they are not the same but only agree in a Gaußian approximation,

↘L[A0]≃ △= L[↘A0≃] , (VII.110)

Dropping for the moment the necessary renormalisation of ↘A0≃, they satisfy the Jensen inequality,

↘L[A0]≃ ▽ L[↘A0≃] , (VII.111)

see [34]. We conclude that if L[↘A0≃] = 0, so is ↘L[A0]≃. In turn, one can show that L[↘A0≃] vanishes if ↘L[A0]≃ does,
see [37]. While L[↘A0≃] has so far only been computed with functional methods, we have a solid results for ↘L[A0]≃
from the lattice, both in Yang-Mills theory and in QCD. More recently, ↘L[A0]≃ has been also computed with the FRG
on the basis of L[↘A0≃] in quantitative agreement with the lattice results [36], see Fig. 29. Seemingly, their relation is
rather non-trivial but is has been shown in [36] that most of the di!erence between ↘L[A0]≃ and L[↘A0≃ comes from
a temperature dependent normalisation of the former. In any case there is a relation

↘L[A0]≃(4) (VII.112)
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that maps 4 = ⇁g/(2ς)↘A0≃ to the Polyakov loop expectation value in a given background.

C. Phase structure of QCD

The preparations in Section VII A and Section VII B allow us to access the phase structure of QCD at finite
temperature and density. We emphasise that, while we draw from QCD computation, the approach set up in these
Chapters (and also the Chapters before) is based on an (intricate) low energy e!ective theory. This class of low energy
EFTs is called Polyakov loop augmented/enhanced low energy EFTs. They are based on the following observation that
can be made already on a one-loop level (with resummed propagators). The full one loop resummed e!ective action
of Nf = 2 flavour QCD including e!ective mesonic degrees of freedom is given by

$QCD[#] = SQCD[#] + 1
2Tr ln G↑1

A
[#] ↔ Tr ln G↑1

c
[#] ↔ Tr ln G↑1

q
[#] + 1

2Tr ln G↑1
ϱ

[#] , # = (Aµ, c, c̄, ↼, ↼̄, σ, ϱς) ,

(VII.113)

with the gluon and ghost propagators GA, Gc carrying the physics and fluctuations of the glue sector of QCD, and the
quark and meson propagators carrying the physics and fluctuations of the matter sector of QCD. Note that (VII.113)
with the full propagators is a complicated non-perturbative equation where all di!erent loops feed into each other.
For example, taking the derivative of (VII.113) w.r.t. the gauge field, we get

ε$ ↔ S

εA0
= 1

2Tr

$(3) G



AA

↔ Tr G↑1
c

[#]

$(3) G



cc̄

↔ Tr

$(3) G



qq̄

+ 1
2Tr


$(3) G



ϱ↗ϱ

, (VII.114)

where the mesonic part has been dropped and G is the full matrix propagator of all modes. This has to be compared
with the A0-DSE

ε$
εA0

=


εS

εA0


, (VII.115)

the QCD-version of (III.14). It is derived analoguously from the path integral representation of the QCD e!ective
action $, see (C.1), by taking an A0-derivative. It is depicted in Fig. 30. The vertices in the DSE (VII.115) are
the classical ones while in (VII.114) they are the full quantum vertices. The other di!erence is the two-loop term in
Fig. 30 that is not present in (VII.114) but can be understood as part of the dressed vertices, see e.g. [35]. In any
case, the two-loop term in the DSE is typically dropped in explicit computations for technical reasons, and modern
applications often use 2PI and 3PI (three-particle irreducible) approximations that feature dressed vertices.

Note also that the Wegner-Houghton RG, or more generally functional renormalisation group equations for QCD,
are one loop excact, see chapter III G 3. Hence, they are given by a sum of gluon, ghost, quark and optionally meson

FIG. 28: The infrared glue potential, V (43, 48), is shown in the confined phase (left, T = 236 MeV) and in the
deconfined phase (right, T = 384 MeV). We restrict ourselves to the line 48 = 0 and 43 ̸ 0 (indicated by the black,
dashed line), where one of the equivalent minima is always found, and where L[↘A0≃] is real and positive semi-definite.
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FIG. 29: Expectation value of ↘L[A0]≃ versus L[↘Ā0≃] from [36]. Both observables are order parameters for the
confinement-deconfinement phase transition. Moreover, L[↘Ā0≃] = 1 entails ↘Ā0≃ = 0 . .

diagrams, see Fig. 31. Note that the equation in Fig. 31 is exact, no two-loop or higher loop terms are missing.

1. Glue Sector

We conclude that (VII.113) provides a good qualitative approximation to full QCD, and the following formal
arguments also go through beyond the current approximation: we are interested in the low energy limit of QCD, in
which the gapped gluons do not drive the matter dynamics anymore. Since the ghost terms only couple to matter
through the gluons, they also decouple even though they are massless. Hence, in a first qualitative approximation
we can drop the dynamics of the glue sector. Still, the gluons, i.e. ↘A0≃ serve as a background for the matter
fluctuations. Its value is determined by the Polyakov loop potential in QCD, obtained by evaluating (VII.113) for
constant A0-background. The glue part of the potential,

Vglue(A0) = 1
2Tr ln G↑1

A
[A0] ↔ Tr ln G↑1

c
[A0] , (VII.116)

The definition of Vglue is identical to that in pure Yang-Mills theory, (VII.83). In (VII.116), however, the QCD gluon
and ghost propagator enter. A common procedure is now to use lattice results on the pressure and the Polyakov loop
expectation value in pure Yang-Mills theory for an estimate of Vglue. From the perspective of the correlation functions
approaches discussed here this is justified if the Yang-Mills gluon and ghost propagators in an A0-background are
similar to those in QCD. This is indeed the case, the biggest di!erence coming from the RG-scaling that is reflected in
the momentum-dependence at large and medium momenta p2 ↫ 2↔5 GeV2. This can be made even more quantitative
if simply comparing the two glue potentials (in terms of A0) in QCD and Yang-Mills theory, see [38]. Apart from the
di!erent absolute temperature scale and the di!erent RG-running the two potentials agree semi-quantitatively.

These results support in retrospect the low energy EFT approach with lattice-induced Polyakov loop potentials
V (L, L̄). On the lattice the Polyakov loop variables

L = ↘L[A0]≃ , L̄ = ↘L→[A0]≃ , (VII.117)

are computed. At vanishing density we have L̄ = L→. At non-vanishing density this relation is not valid anymore as

FIG. 30: Functional A0-Dyson-Schwinger equation for QCD.
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the chemical potential leads to a complex action in the path integral, and hence ↘L[A0]≃→
△= ↘L[A0]→≃. The respective

potential is Upol(L, L̄). We emphasise that the potential Vpol(4) is not simply U(L(4), L̄(4)) due to (VII.110).
These potentials are derived as follows:

(1a) Compute the Yang-Mills pressure (zero-point function) and the Polyakov loop expectation value (one-point
function)

pA(T ) = , L = ↘L[A0]≃(T ), L̄ = ↘L[A0]≃(T ) . (VII.118)

(1b) Further correlation functions of the Polyakov loop variable are computed. At present this approach only extends
to the two-point functions of the Polyakov loop, [39]. The two-point function of the Polyakov loop is nothing
but its propagator at large distances, which is given by the inverse of the second derivative of the Polyakov loop
potential. We write schematically


↘LL≃ ↘LL̄≃

↘L̄L≃ ↘L̄L̄≃


↖


ω2

L
Upol ωLω

L̄
Upol

ω
L̄

ωLUpol ω2
L̄

Upol

↑1

. (VII.119)

(2) Construct a potential VYM(L, L̄) that leads to all the observables under (1a) and potentially (1b). We have

pA = ↔V (LEoM, L̄EoM) ,
ωU(L, L̄)

ωL

∣∣∣∣ L = LEoM

L̄ = L̄EoM

= 0 ,
ωU(L, L̄)

ωL̄

∣∣∣∣ L = LEoM

L̄ = L̄EoM

= 0 , (VII.120)

and (VII.119), evaluated on the equations of motion.

Here we quote the standard form of the Polyakov loop potential. It reads

U(L, L̄) = 1
2a(T )L̄ L + b(T ) ln MH(L, L̄) + 1

2c(T ) (L3 + L̄3) + d(T )(̄L L)2 , (VII.121)

where MH comes from the Haar measure of the gauge group

MH = 1 ↔ 6 L̄ L + 4(L3 + L̄3) ↔ 3(L̄ L)2 . (VII.122)

Eq.(VII.121) is a variation of a Landau-Ginsburg-type phi4-potential commonly used for describing phase transitions.
The cubic terms proportional to c(T ) and in MH carry the center symmetry L ↓ zL where the cubic roots z ↑ Z3
has the property z3 = 1. Thse terms drives the phase transition. The parameters a(T ), b(T ), c(T ) are now adjusted to
the temperature-dependent observables in (1). Examples can be found e.g. in [39–41]. The latter work also contains a
detailed study of various model potentials. We close this discussion we a few remarks. Firstly, as it is not possible to
compute the glue potential in QCD on the lattice, we have to rely on Yang-Mills potentials on the lattice extrapolated
to the glue potential. Secondly, the direct computation of the Polyakov loop potential in Yang-Mills theory proves to
be very costly and has not fully been resolved yet. For that reason one has to rely on potentials that only match a
few but important observables. Thirdly, the Polyakov loop potential Upol is not the natural input in the low energy
EFTs, it is Vpol and the two only agree in the Gaußian approximations.

Alternatively one computes the glue potential directly in the continuum, but at present neither Upol nor Vpol has
been computed to a quantitative satisfactory precision. This task is left for future work.

FIG. 31: Functional renormalisation group equation for QCD. In the Wegner-Houghton case the cross stands for the
restriction of the loop integration to p2 = ”2.
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2. Matter sector

It is left to discuss the matter sector. In (VII.113) it looks identical to the low energy EFT or the DSE/FRG in
QCD we have discussed in the context of strong chiral symmetry breaking. However, now we have to consider also
the glue background A0 or L, L̄ depending on the tratment of the glue sector. Since the mesons are color-neutral,
they do not couple to the gluon and hence the meson loop stays the same as before.

However, the quark loop has to be taken in an A0 background. We recall the one-loop expression in (VII.28), now
in the presence of an A0 background as well as a chemical potential µ. It reads

’q,T ↔ ’q,T,µ=0 = ↔ 4 T


n⇔Z

∫
d3p

(2ς)3 trf ln
(2ςT )2 (

n + 1
2 + 4̂ + i µ

)2 + ϱp2 + m2
q

(2ςT )2
(
n + 1

2
)2 + ϱp2 + m2

q

↔ pq,thermal

= ↔
2
ς2 T



n⇔Z

∫
↓

0
dp p2 trf

{
ln

(
1 + Pe↑5(ς

q
p↑µ)

)
+ ln

(
1 + P †e↑5(ς

q
p+µ)

)}
, (VII.123)

where P (ϱx) = P (⇁, ϱx) is the untraced Polyakov loop, see (VII.44), and we recall the quark dispersion and the thermal
distribution function from (VII.27)

ϖq

p
=

√
ϱp2 + m2

q
, nF (ϑ) = 1

e5ω + 1 . (VII.124)

In the present approximation P, P † are ϱx-independent. The combinations Pe5µ and Pe↑5µ reflect the relation of L
and L̄ to the creation operator of quark and anti-quark states respectively. The final expression in (VII.123) reduces
to the quark contribution of the grand potential (VII.38) discussed in chapter VII A for P = 1l. Due to the subtraction
of the T = 0 grand potential hidden in pq,thermal is nothing but the negative thermal pressure in a given background.
On the EoM for all fields it is the physical quark pressure of the system. The color trace in (VII.123) can be rewritten
as a determinant with trf ln O = ln detf O, and we are led to

’q,T ↔ ’q,T,µ=0 = ↔
2
ς2 T

∫
↓

0
dp p2

{
ln


1 + 3(L + L̄e↑5(ς

q
p↑µ)) e↑5(ς

q
p↑µ) + e↑35(ς

q
p↑µ)



+ ln

1 + 3(L̄ + Le↑5(ς

q
p+µ)) e↑5(ς

q
p+µ) + e↑35(ς

q
p+µ)

}
. (VII.125)

For L = L̄ = 1 and µ = 0 (VII.125) reduces to the one in (VII.38) in chapter VII A. This happens for large
temperatures, T/Tconf ↓ ⇔ deep in the perturbative regime. Then we simply see the thermal distribution of single
quarks. Note that (VII.125) only vanishes for T ↓ 0 if ϖp > |µ| for all p. For µ2 > m2

q
we have

lim
T ⇐0

(’q,T ↔ ’q,T,µ=0) = ↔
6
ς2

∫ ⇒
µ2↑m2

q

0
dp p2 (

|µ| ↔ ϖq

p

)
, (VII.126)

reflecting the fact that for µ2 > m2
q

the level of the Fermi sea is rising accordingly and the part of the quark fluctuations
below disappear from the fluctuation spectrum. As we have subtracted the grand potential at T = 0 and µ = 0, this
term is left in the T ↓ 0 limit.

For T/Tconf ↓ 0 the Polyakov loop expectation value tends towards one, L = L̄ = 0. Interestingly, for these values
we have

’q,T ↔ ’q,T,µ=0 = ↔
2
ς2 T

∫
↓

0
dp p2

{
ln


1 + e↑35(ς

q
p↑µ)


+ ln


1 + e↑35(ς

q
p+µ)

}
, (VII.127)

the grand potential (or negative thermal pressure) of a gas of three-quark states, in our case the nucleons. This
observation has been called statistical confinement as the confining value of the background Polyakov loop gives the
thermal distribution of nucleons. If this property is investigated more carefully, the related distribution functions are
given by

nF (x, L, L̄) = 1 + 2L̄ e5x + L e25x

1 + 3L̄ e25x + 3L e25x + e35x
, x =

√
p2 + m2

q
↔ µ , x̄ =

√
p2 + m2

q
+ µ , (VII.128)
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for the quark and nF (x̄, L̄, L) for the anti-quark. As for the grand potential, the Polyakov-loop enhanced themral
distribution functions tend towards the quark and anti-quark distribution functions for L, L̄ ↓ 1. For L, L̄ ↓ 0
(VII.128) gives the nucleon distribution function. However, this only happens if

lim
T/Tconf⇐0

L e25x
↓ 0 . (VII.129)

It can be shown that the limit (VII.129) is not present in QCD, see [42]. This does not invalidate the above picture
as the failure of (VII.129) orginates in mesonic contributions that indeed should be present. Moreover, the grand
potential is that of nucleons.

This concludes our derivation of the low energy EFT that governs the phase structure of QCD. This specific type
of low energy EFT has been constructed in [40]. On the one loop level its grand potential in Nf = 2 flavor QCD
is given by the sum of the quark contribution (VII.125), the mesonic contribution and the Polyakov loop potential.
This combination gives access to the two basic phenomena that governs the phase structure, confinement and chiral
symmetry breaking.

3. RG for the phase structure
→

Here we simply repeat the steps for the derivation of the Wegner-Houghton equation done in chapter VII A 3 for
finite temperature at finite temperature and density. The mesonic part is the same as in (VII.40) and we can just
take it over here. The thermal quark part at finite density can be read o! from (VII.127) while the vacuum part (at
µ = 0) of the integral is the same as before. In summary we get

”ω#’#(↼, ↼̄, 1) = ↔
”3

2ς2


1
2

[
ϖϱ

#(m↽) + 3
2ϖϱ

#(m3)
]

↔ 12 ϖq

#

+ T

ln

(
1 ↔ e↑5ς

ς
”(m⇁)

)
+ ln

(
1 ↔ e↑5ς

ς
”(m⇀)

)

↔ 4 T
{

ln

1 + 3(L + L̄e↑5(ς

q
”↑µ)) e↑5(ς

q
”↑µ) + e↑35(ς

q
”↑µ)



+ ln

1 + 3(L̄ + Le↑5(ς

q
”+µ)) e↑5(ς

q
”+µ) + e↑35(ς

q
”+µ)

}
. (VII.130)

In (VII.130) the first line is the T, µ = 0 part of the flow, the second line comprises the thermal part of the meson
fluctuations, while the last two lines comprise the thermal and density fluctuations of the quarks. As has been discussed
above, this term does not vanish in the limit T ↓ 0 but removes the infrared part of the vacuum fluctuations of the
quark above the onset chemical potential µ2 = m2

q
, see (VII.126).
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4. Results & discussion

Figure 32 contains the state of the art results from functional QCD for the phase structure of QCD. Further data
are finite µB-extrapolations of lattice data at µB = 0 and chemical freeze-out points obtained from experimental data
with phenomenological freeze-out curves. While the functional QCD data have quantitative precision for µB/T ↭ 4,
their systematic error increases successively for larger chemical potentials. This regime is the subject of current
studies. For the sake of comparison we also show two di!erent LEFT results in Figure 33.

FIG. 32: Phase diagram in the plane of the temperature and the baryon chemical potential. The blue band denote
the continuous crossover for the Nf = 2 and 2+1 flavor QCD, respectively; and the red star and circle is the CEP.
The Functional QCD results refer to [43] (Fu et al. 2019), [44] Gao et al. 2020), and [45] (Fischer et al. 2021). The
lattice results refer to [46] (WB), [47] (HotQCD).
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FIG. 33: Phase diagram from LEFTs [48] (two-flavour Polyakov-enhanced Quark-Meson Model, light constistuent
quark mass ml = 298 MeV. By now, improved LEFTs encode the same phase structure as full functional QCD, see
e.g. [49]. This is achieved by augmenting them with correlation functions (scattering vertices) computed in full QCD
(QCD-assisted LEFTs).
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Appendix A: Feynman rules for QCD in the covariant gauge

In this Appendix we depict the Feynman rules for QCD in the general covariant gauge.

= g2(2⇡)4�(4)
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FIG. 34: Feynman rules.

Appendix B: Gribov copies

In Section I A we have derived the gauge-fixed path integral under the assumption that there is only one represen-
tative of the gauge orbit that satisfies the gauge fixing condition. However, there might be several (Gribov) copies,
i.e. several physically equivalent solutions to the gauge fixing condition that are related by gauge transformations not
yet fixed by the gauge fixing condition F = 0. Indeed, any su"ciently smooth gauge exhibits (infinite many) Gribov
copies,

∑
Gribov copies = #Gr. As for the integration over the gauge group, #Gr occurs in the numerator as well as the

denominator in (I.18) and hence cancels. It is left to compute the Jacobian J [A] = !F [A]. To that end we use the
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representation of the Dirac ε-function

ε[F [AU ]] =
#Gr

i=1

1
|det ϑF

ϑω
|
ε[ϑ ↔ ϑi] with U = eiω. (B.1)

which leads to

!F [A] =
#Gr

i=1

1∣∣ detMF [Aei◁i ]
∣∣

↑1

with MF [A] = εF

εϑ

∣∣∣∣
ω=0

[Ae
i◁

] . (B.2)

In the QFTII lecture notes in chapter IV, Appendix A the occurance of the Gribov copies in gauge field reparam-
eterisations due to gauge fixings is elucidated at the simple example of the reparameterisation of a two-dimensional
intergal.

Appendix C: Some important fact of the background field approach

In the background field approach the e!ective action has the following integro-di!erential path integral representa-
tion which facilitates the access to important properties,

e↑”[Ā,a] =
∫

Dâ !F [Ā, â + a] ε[D̄µ(âµ + a)] e
↑SYM[A+â]+

∫
x

ϱ![Ā,a]
ϱaµ

âµ , J = ε$[Ā, a]
εa

a = ↘â≃ . (C.1)

where Â = Ā + â, D̄ = D(Ā), D = D(A) and we restricted ourselves to Landau-deWitt gauge (φ = 0) with the
background gauge fixing condition

D̄µâµ = 0 , ↔↓ M[Ā, â + a] = ↔D̄µDµ , !F [Ā, â + a] = det M[Ā, â + a] . (C.2)

see (VII.74). Inserting the relation between the a-derivative of $ and the current J in (C.1) as well as using $ =∫
x

Jµaµ ↔ log Z we arrive at the standard path integral expression for Z[J ] in the gauge (C.2). First we note that the
e!ective action, evaluated on the equation of motion for the fluctuation field a,

ε$[Ā, a]
εaµ

∣∣∣∣
a=aEoM

= 0 (C.3)

does not depend on the background field: the e!ective action $[Ā, aEoM] is given by (C.1) without the source term.
Then the path integral in (C.1) reduces to

e↑”[Ā,aEoM] =
∫

Dâgf e↑SYM[A+âgf] . (C.4)

Even though the measure depends on the background field via the gauge fixing, the intergration leads to Ā-independent
result as the action SYM is gauge invariant. Accordingly we have

ε$[Ā, aEoM]
εĀ

= ε

εĀ

∣∣∣∣
aEoM

$[Ā, aEoM]] = 0 . (C.5)

The first relation in (C.5) follows with (C.3), the second from the Ā-independence of the integration in (C.4). In
conclusion, a solution to the EoM of a also is one of Ā. Eq.(C.4) also entails that

$[Ā, aEoM(Ā)] = $[Ā + aEoM(Ā)] , (C.6)

it only depends on the full gauge field A.
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Appendix D: Wilson loop in QED

In this appendix we discuss the case of an electron-positron pair e+e↑. Then the static potential is the standard
Coulomb potential. Indeed in the static limit there is no self-interaction of the photon and the expectation value
of the Wilson loop is simply given by the sum of boxes with n photon exchanges from positions xi to yi where one
integrates over xi and yi on the contour C[L, T ]. This is depicted in Fig. 35.

In other words, we have

W [L, T ] = e
↑

e2
2

∫
C[L,T ]

dxµ

∫
C[L,T ]

dyν ∝Aµ(x)Aν (y)′sub
, (D.1)

where we have used that ↘Aµ1 · · · Aµn+1≃ = 0. The subscript ↘· · · ≃sub refers to the necessary subtraction of infinite
selfenergies related to close loops with endpoints x = y. Moreover, all correlation functions decay in products of
two-point functions (Wick-theorem), schematically we have ↘A1 · · · A2n≃ = ↘A1A2≃ · · · ↘A2n↑1A2n≃+ · · · , and there are
(2n ↔ 1)(2n ↔ 3) · · · combinations. Upon contour integration all combinations give the same contribution and overall
we have the nth order term in the propagator

(2n ↔ 1)(2n ↔ 3) · · ·

(2n)! 2n

(
↔

e2

2

)n (∫

C

dxµ

∫

C

dyε↘Aµ(x)Aε(y)≃
)n

= 1
n!

(
↔

e2

2

∫

C

dxµ

∫

C

dyε↘Aµ(x)Aε(y)≃
)n

, (D.2)

for a general contour C, leading to the Gaußian expression eq. (D.1). This leaves us with the task of computing
∫

C

dxµ

∫

C

dyε↘Aµ(x)Aε(y)≃ =
∫

C

dxµ

∫

C

dyε

∫
d4p

(2ς)4
1
p2

(
εµε ↔ (1 ↔ φ)pµpε

p2

)
eip(x↑y)

=
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dxµ

∫

C

dyµ

∫
d4p

(2ς)4
1
p2 eip(x↑y)

=
∫

C

dxµ

∫

C

dyµ

1
4ς2

1
(x ↔ y)2 . (D.3)

To be explicit, we picked a covariant gauge in eq. (D.3). However, we have already proven that the closed Wilson line
is gauge invariant which now is explicit as the φ-dependent term drops out with the help of

∫

C

dxµpµeipx = ↔i

∫

C

dxµωx

µ
eipx = 0 , (D.4)

which eliminates all longitudinal contributions for closed loops. Note that this is not valid for open Wilson lines.
Finally we are interested in the large T -limit in (D.1), see also (VI.125), where we have

Ve+e↔(L) = ↔ lim
T ⇐↓

1
T
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1
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)
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= ↔ lim
T ⇐↓

1
T
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1
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1
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)
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1
L

. (D.5)

Equation (D.5) is the Coulomb potential as expected. This has to be compared with the lattice result in the strong
coupling expansion that shows an area law.
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FIG. 35: Perturbative expansion of the Wilson loop expectation value for e+e↑.
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