Quantum Field Theory 1
 Exam

Problem 1: Scalar field

Consider the following action for two real scalar fields ϕ_{1} and ϕ_{2}

$$
S=\int d^{4} x \mathcal{L}=\int d^{4} x\left\{\frac{1}{2} \partial_{\mu} \phi_{1} \partial^{\mu} \phi_{1}+\frac{1}{2} \partial_{\mu} \phi_{2} \partial^{\mu} \phi_{2}-\frac{1}{2} m^{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)\right\} .
$$

a) Show that S is invariant under the infinitesimal transformation

$$
\begin{aligned}
\phi_{1}(x) & \rightarrow \phi_{1}(x)+\alpha \phi_{2}(x) \\
\phi_{2}(x) & \rightarrow \phi_{2}(x)-\alpha \phi_{1}(x) .
\end{aligned}
$$

b) Using Noethers theorem or otherwise find the conserved current $j^{\mu}=\left(j^{0}, \vec{j}\right)$ associated with this symmetry.
c) Suppose that the interaction term

$$
\mathcal{L}_{\mathrm{int}}=-\lambda \phi_{1}^{4}-2 \sigma \phi_{1}^{2} \phi_{2}^{2}-\lambda \phi_{2}^{4}
$$

is added to the Lagrangian. For what values of λ and σ is j^{μ} still a conserved current?

Problem 2: Dirac field
The Dirac equation is

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0,
$$

where the gamma matrices in the chiral representation are

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \\
\bar{\sigma}^{\mu} & 0
\end{array}\right),
$$

with $\sigma^{\mu}=\left(\mathbb{1}_{2}, \sigma^{i}\right), \bar{\sigma}^{\mu}=\left(\mathbb{1}_{2},-\sigma^{i}\right)$ and

$$
\sigma^{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

the Pauli matrices.
a) Show that these matrices satisfy the Clifford algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \mathbb{1}_{4}$.
b) Show that the spinor $\psi(x)$ satisfies the Klein-Gordon equation.
c) Assume now that the field ψ is canonically quantized

$$
\begin{aligned}
\psi(x) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 p^{0}}\left\{a_{\vec{p}}^{s} u_{s}(\vec{p}) e^{-i p x}+\left(b_{\vec{p}}^{s}\right)^{\dagger} v_{s}(\vec{p}) e^{i p x}\right\} \\
\bar{\psi}(x) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 p^{0}}\left\{\left(a_{\vec{p}}^{s}\right)^{\dagger} \bar{u}_{s}(\vec{p}) e^{i p x}+b_{\vec{p}}^{s} \bar{v}_{s}(\vec{p}) e^{-i p x}\right\} .
\end{aligned}
$$

What quantization relation do the operators $a_{\vec{p}}^{s},\left(a_{\vec{p}}^{s}\right)^{\dagger}, b_{\vec{p}}^{s}$ and $\left(b_{\vec{p}}^{s}\right)^{\dagger}$ satisfy?
d) Consider the conserved charge

$$
Q=\int d^{3} x \bar{\psi} \gamma^{0} \psi
$$

Show that

$$
Q=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 p^{0}}\left\{\left(a_{\vec{p}}^{s}\right)^{\dagger} a_{\vec{p}}^{s}-\left(b_{\vec{p}}^{s}\right)^{\dagger} b_{\vec{p}}^{s}\right\}+\text { const. }
$$

You can use the relations

$$
\begin{aligned}
& \bar{u}_{s}(\vec{p}) \gamma^{0} u_{r}(\vec{p})=\bar{v}_{s}(\vec{p}) \gamma^{0} v_{r}(\vec{p})=2 p^{0} \delta_{r s}, \\
& \bar{u}_{s}(\vec{p}) \gamma^{0} v_{r}(-\vec{p})=\bar{v}_{s}(\vec{p}) \gamma^{0} u_{r}(-\vec{p})=0 .
\end{aligned}
$$

Problem 3: Feynman rules
Consider a theory involving the real scalar fields Φ and φ with the Langrangian

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi-\frac{1}{2} M^{2} \Phi^{2}+\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{1}{2} m^{2} \varphi^{2}-h \Phi \varphi \varphi .
$$

a) Write down the Feynman rules in momentum space for this theory.
b) Consider a scattering experiment where two φ-particles with initial momenta \vec{k}_{1} and \vec{k}_{2} are scattered to final momenta \vec{p}_{1} and \vec{p}_{2}. Show that to order h^{2} there are 3 tree-level contributions to the scattering matrix. Draw the corresponding Feynman diagrams and determine the contribution to the scattering amplitude $i \mathcal{M}$.

Problem 4: Gauge symmetry

The Lagrangian of a scalar field φ of mass m and charge e, interacting with the electromagnetic field is

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \varphi\right)^{*} D^{\mu} \varphi-m^{2} \varphi^{*} \varphi
$$

where $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ and $D_{\mu} \varphi=\partial_{\mu} \varphi-i e A_{\mu} \varphi$.
a) Show that this Lagrangian has a gauge symmetry.

