## Problems for Quantum Field Theory 1

1. Sheet

Suggested reading before solving these problems: Chapters 2.1 and 2.2. in the script and/or Chapters 2.1 to 2.4 of Peskin $\mathcal{F}$ Schroeder.

Problem 1: Lagrangian "String Theory"
Consider a series of one-dimensional coupled oscillators $y_{i}, i=1, \ldots, N$ with distance $a$, boundary conditions $y_{0}=y_{N+1}=0$, and the Lagrange function

$$
L=\sum_{i=1}^{N} \frac{1}{2} m \dot{y}_{i}^{2}-\sum_{i=0}^{N} \frac{1}{2} t\left(\frac{y_{i+1}-y_{i}}{a}\right)^{2} .
$$

Show that the Lagrange function becomes that of a (clamped) string

$$
L=\int_{0}^{R} d x\left\{\frac{1}{2} \sigma\left(\frac{\partial y}{\partial t}\right)^{2}-\frac{1}{2} \tau\left(\frac{\partial y}{\partial x}\right)^{2}\right\}
$$

in the limit $N \rightarrow \infty, a \rightarrow 0$ with $R=N \cdot a$ fixed. Here $\sigma=m / a$ is the mass per unit length and $\tau=t / a$ is the string tension. By expanding the displacement as a Fourier expansion in the form

$$
y(x, t)=\sqrt{\frac{2}{R}} \sum_{n=1}^{\infty} q_{n}(t) \sin \left(\frac{n \pi x}{R}\right)
$$

show that

$$
L=\sum_{n=1}^{\infty}\left\{\frac{1}{2} \sigma \dot{q}_{n}^{2}-\frac{1}{2} \tau\left(\frac{n \pi}{R}\right)^{2} q_{n}^{2}\right\} .
$$

Use the variational principle with this form of the Lagrangian to obtain the EulerLagrange equations

$$
\frac{\partial}{\partial t}\left(\frac{\partial L}{\partial \dot{q}_{n}}\right)-\frac{\partial L}{\partial q_{n}}=0 .
$$

Hence show that the string is equivalent to an infinite set of harmonic oscillators with frequencies

$$
\omega_{n}=\sqrt{\frac{\tau}{\sigma}} \frac{n \pi}{R} .
$$

What happens in the limit $R \rightarrow \infty$ ?

Problem 2: Complex scalar field
Consider the following action for a complex scalar field

$$
S=\int d^{4} x \mathcal{L}=\int d^{4} x\left\{\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi-\frac{\lambda}{2}\left(\phi^{*} \phi\right)^{2}\right\} .
$$

It is easiest to consider $\phi$ and $\phi^{*}$ as independent, rather than the real and imaginary parts of $\phi$.
a) Derive the Euler-Lagrange equations for $\phi$ and $\phi^{*}$.
b) Show that $S$ is invariant under the infinitesimal transformation

$$
\begin{align*}
\phi(x) & \rightarrow(1+i \alpha) \phi(x) \\
\phi^{*}(x) & \rightarrow(1-i \alpha) \phi^{*}(x) . \tag{1}
\end{align*}
$$

c) Derive an expression for the Noether current $j^{\mu}=\left(j^{0}, \vec{j}\right)$ associated with this symmetry transformation and show that it is conserved for fields $\phi, \phi^{*}$ that satisfy the Euler-Lagrange equations.
d) Show that the invariance of $S$ under infinitesimal space and time translations leads to four conserved currents. Give interpretations for the components of the energy-momentum tensor

$$
T^{\mu}{ }_{\nu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \partial_{\nu} \phi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi^{*}\right)} \partial_{\nu} \phi^{*}-\mathcal{L}{\delta^{\mu}}^{\mu}
$$

and derive explicit expressions.

