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PROBLEMS FOR QUANTUM FIELD THEORY 1
1. Sheet

Suggested reading before solving these problems: Chapters 2.1 and 2.2. in the script
and/or Chapters 2.1 to 2.4 of Peskin & Schroeder.

PROBLEM 1: Lagrangian “String Theory”
Consider a series of one-dimensional coupled oscillators y;, + = 1, ..., N with distance
a, boundary conditions yy = ynyy1 = 0, and the Lagrange function
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Show that the Lagrange function becomes that of a (clamped) string
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in the limit N — oo,a — 0 with R = N - a fixed. Here 0 = m/a is the mass per

unit length and 7 = ¢/a is the string tension. By expanding the displacement as a
Fourier expansion in the form
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Use the variational principle with this form of the Lagrangian to obtain the Euler-

Lagrange equations
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Hence show that the string is equivalent to an infinite set of harmonic oscillators
with frequencies
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What happens in the limit R — oo?



PROBLEM 2: Complex scalar field
Consider the following action for a complex scalar field
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It is easiest to consider ¢ and ¢* as independent, rather than the real and imaginary
parts of ¢.
a) Derive the Euler-Lagrange equations for ¢ and ¢*.
b) Show that S is invariant under the infinitesimal transformation

¢(x) — (1+ia) o(z)
¢*(x) — (1—ia) ¢"(x). (1)

¢) Derive an expression for the Noether current j#* = (j°, ;) associated with this
symmetry transformation and show that it is conserved for fields ¢, ¢* that
satisfy the Euler-Lagrange equations.

d) Show that the invariance of S under infinitesimal space and time translations
leads to four conserved currents. Give interpretations for the components of
the energy-momentum tensor
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and derive explicit expressions.




