PROBLEMS FOR QUANTUM FIELD THEORY 1 11. Sheet

Suggested reading before solving these problems: Chapter 6.1-6.2 in the script and/or chapter 7.5 of $Peskin \ \mathcal{E}\ Schroeder$.

Problem 1: Dimensional regularization

Dimensional regularization is a method to regularize expressions that formally diverge in d=3+1 dimensions. One takes d to be a real number, for example $d=4-2\epsilon$. A typical example is a (Euclidean or Wick-rotated) integral of the form

$$\int \frac{d^d q}{(2\pi)^d} \frac{1}{(q^2 + m^2)^n} = \frac{1}{2} \int \frac{d\Omega_d}{(2\pi)^d} 2 \int dq \frac{q^{d-1}}{(q^2 + m^2)^n}.$$
 (1)

a) The first integral in Eq. (1) contains the area of a unit sphere in d dimensions. By using $(\sqrt{\pi})^d = \left(\int dx \ e^{-x^2}\right)^d = \int d^dx \ e^{-\sum_{i=1}^d x_i^2}$, show that

$$\frac{1}{2} \int \frac{d\Omega_d}{(2\pi)^d} = \frac{1}{(4\pi)^{d/2} \Gamma(d/2)},$$

with the Gamma function $\Gamma(x) = \int_0^\infty dt \ t^{x-1} e^{-t}$.

b) By substituting $x = m^2/(q^2 + m^2)$ show that the remaining integral in Eq. (1) can be written as

$$2\int dq \frac{q^{d-1}}{(q^2+m^2)^n} = \left(\frac{1}{m^2}\right)^{n-\frac{d}{2}} \int_0^1 dx \ x^{n-\frac{d}{2}-1} (1-x)^{\frac{d}{2}-1}.$$

Use now the formula $\int_0^1 dx \ x^{\alpha-1} (1-\alpha)^{\beta-1} = \Gamma(\alpha)\Gamma(\beta)/\Gamma(\alpha+\beta)$ to show

$$\int \frac{d^d q}{(2\pi)^d} \frac{1}{(q^2 + m^2)^n} = \frac{1}{(4\pi)^{d/2} \Gamma(\frac{d}{2})} \left(\frac{1}{m^2}\right)^{n - \frac{d}{2}} \frac{\Gamma(n - \frac{d}{2})\Gamma(\frac{d}{2})}{\Gamma(n)}.$$
 (2)

c) Derive from Eq. (2)

$$\int \frac{d^d q}{(2\pi)^d} \frac{1}{(q^2 + m^2 + 2q \cdot p)^n} = \frac{\Gamma(n - \frac{d}{2})}{(4\pi)^{d/2} \Gamma(n)} \frac{1}{(m^2 - p^2)^{n - \frac{d}{2}}}$$

and use this together with properties of the Gamma function to show

$$\int \frac{d^d q}{(2\pi)^d} \frac{q^{\mu}}{(q^2 + m^2 + 2q \cdot p)^n} = -\frac{\Gamma(n - \frac{d}{2})}{(4\pi)^{d/2} \Gamma(n)} \frac{p^{\mu}}{(m^2 - p^2)^{n - \frac{d}{2}}}$$

and

$$\int \frac{d^d q}{(2\pi)^d} \frac{q^{\mu} q^{\nu}}{(q^2 + m^2 + 2q \cdot p)^n} = \frac{1}{(4\pi)^{d/2} \Gamma(n)} \cdot \left[p^{\mu} p^{\nu} \frac{\Gamma(n - \frac{d}{2})}{(m^2 - p^2)^{n - \frac{d}{2}}} + \frac{1}{2} \delta^{\mu\nu} \frac{\Gamma(n - \frac{d}{2} - 1)}{(m^2 - p^2)^{n - \frac{d}{2} - 1}} \right].$$

Problem 2: Vacuum polarization of QED

In this problem we calculate a one-loop contribution to the photon propagator of the form below.

a) Use the Feynman rules of QED to show that this amplitude reads

$$i\mathcal{M} = \epsilon_{\mu}^{*}(p) \left(i\Pi^{\mu\nu}(p)\right) \epsilon_{\nu}(p)$$

with

$$i\Pi^{\mu\nu}(p) = -(-ie)^2 \int \frac{d^4q}{(2\pi)^4} \text{tr} \left[\gamma^{\mu} \frac{i(\not q+m)}{q^2 - m^2} \gamma^{\nu} \frac{i(\not q+\not p+m)}{(q+p)^2 - m^2} \right].$$

b) Use now the trace identity

$$\operatorname{tr} \gamma^{\mu} \gamma^{\nu} \gamma^{\sigma} \gamma^{\rho} = 4(\eta^{\mu\nu} \eta^{\sigma\rho} + \eta^{\mu\rho} \eta^{\nu\sigma} - \eta^{\mu\sigma} \eta^{\nu\rho}),$$

the Feynman trick

$$\frac{1}{AB} = \int d\alpha \frac{1}{(\alpha A + (1 - \alpha)B)^2},$$

an appropriate shift in the integration variable and Wick rotation to show

$$i\Pi^{\mu\nu}(p) = -4ie^2 \int_0^1 d\alpha \int \frac{d^dq}{(2\pi)^d} \cdot \frac{-\frac{2}{d}\eta^{\mu\nu}q^2 + \eta^{\mu\nu}q^2 - 2\alpha(1-\alpha)p^{\mu}p^{\nu} + \eta^{\mu\nu}(m^2 + \alpha(1-\alpha)p^2)}{(q^2 + \Delta)^2}$$

with $\Delta = m^2 - \alpha (1 - \alpha)q^2$.

c) You can now use the results of problem 1 as well as the expansion $(d = 4 - 2\epsilon)$

$$\Gamma(2 - \frac{d}{2}) = \Gamma(\epsilon) = \frac{1}{\epsilon} - \gamma + \mathcal{O}(\epsilon),$$

with $\gamma \approx 0.5772$ the Euler-Mascheroni constant to show that $\Pi^{\mu\nu}(p)$ is of the form

$$i\Pi^{\mu\nu}(p) = (p^2\eta^{\mu\nu} - p^{\mu}p^{\nu})i\Pi(p^2)$$

with

$$\begin{split} \Pi(p^2) &= -\frac{8e^2}{(4\pi)^{d/2}} \int_0^1 d\alpha \ \alpha (1-\alpha) \frac{\Gamma(2-\frac{d}{2})}{\Delta^{2-\frac{d}{2}}} \\ &\stackrel{d\to 4}{\to} -\frac{e^2}{2\pi^2} \int_0^1 d\alpha \ \alpha (1-\alpha) \left(\frac{1}{\epsilon} - \ln \Delta - \gamma\right). \end{split}$$