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Suggested reading before solving these problems: Chapter 6.1-6.2 in the script
and/or chapter 7.5 of Peskin & Schroeder.

PROBLEM 1: Dimensional reqularization

Dimensional regularization is a method to regularize expressions that formally diver-
ge in d = 3+ 1 dimensions. One takes d to be a real number, for example d = 4 — 2e.
A typical example is a (Euclidean or Wick-rotated) integral of the form
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a) The first integral in Eq. (1) contains the area of a unit sphere in d dimensions.
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b) By substituting x = m?/(¢*> + m?) show that the remaining integral in Eq. (1)
can be written as
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¢) Derive from Eq. (2)
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and use this together with properties of the Gamma function to show
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PROBLEM 2: Vacuum polarization of QED
In this problem we calculate a one-loop contribution to the photon propagator of
the form below.
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a) Use the Feynman rules of QED to show that this amplitude reads
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b) Use now the trace identity
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the Feynman trick
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an appropriate shift in the integration variable and Wick rotation to show
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¢) You can now use the results of problem 1 as well as the expansion (d = 4 — 2¢)
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with v &~ 0.5772 the Euler-Mascheroni constant to show that II*”(p) is of the
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