Problems for Quantum Field Theory 1
 2. Sheet

Suggested reading before solving these problems: Chapters 2.3 in the script and/or Chapters 2.3 to 2.4 of Peskin \mathcal{E} Schroeder.

Problem 1: Commutation relations

For a real scalar field $\phi(x)$ the Lagrangian density is

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2} .
$$

The canonical momentum density is $\pi=\partial \mathcal{L} / \partial \dot{\phi}=\dot{\phi}$. The theory is quantized by promoting ϕ and π to operators in the Schrödinger picture with the commutation relations

$$
\begin{aligned}
{[\phi(\vec{x}), \pi(\vec{y})] } & =i \delta^{(3)}(\vec{x}-\vec{y}), \\
{[\phi(\vec{x}), \phi(\vec{y})] } & =[\pi(\vec{x}), \pi(\vec{y})]=0 .
\end{aligned}
$$

Introduce now the operators a and a^{\dagger} by

$$
\begin{aligned}
\phi(\vec{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega_{\vec{p}}}\left\{a(\vec{p}) e^{i \vec{p} \vec{x}}+a^{\dagger}(\vec{p}) e^{-i \overrightarrow{\vec{x} \vec{x}}\},}\right. \\
\pi(\vec{x}) & =\frac{-i}{2} \int \frac{d^{3} p}{(2 \pi)^{3}}\left\{a(\vec{p}) e^{i \vec{p} \vec{y}}-a^{\dagger}(\vec{p}) e^{-i \vec{p} \vec{x}}\right\}
\end{aligned}
$$

and derive the commutation relations

$$
\left[a(\vec{p}), a^{\dagger}(\vec{q})\right], \quad[a(\vec{p}), a(\vec{q})], \quad\left[a^{\dagger}(\vec{p}), a^{\dagger}(\vec{q})\right] .
$$

Problem 2: Complex scalar field: quantization
Consider the Lagrangian density for a free complex scalar field

$$
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi .
$$

a) Show that the canonical momenta of ϕ and ϕ^{*} are

$$
\pi=\dot{\phi}^{*}, \quad \pi^{*}=\dot{\phi}
$$

and derive an expression for the Hamiltonian H.
b) Proceed to quantization by promoting ϕ, ϕ^{*} and π, π^{*} to operators ϕ, ϕ^{\dagger} and π, π^{\dagger} (in the Schrödinger picture). What would you postulate as their commutation relations?
c) Introduce now creation and annihilation operators by writing

$$
\begin{aligned}
\phi(\vec{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega_{\vec{p}}}\left\{a(\vec{p}) e^{i \vec{p} \vec{x}}+b^{\dagger}(\vec{p}) e^{-i \vec{p} \vec{x}}\right\} \\
\pi(\vec{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{-i}{2}\left\{-a^{\dagger}(\vec{p}) e^{-i \vec{p} \vec{x}}+b(\vec{p}) e^{i \vec{p} \vec{x}}\right\}
\end{aligned}
$$

Why do we now need operators b, b^{\dagger} in addition to a, a^{\dagger} ? Convince yourself that the commutation relations

$$
\begin{aligned}
{\left[a(\vec{p}), a^{\dagger}(\vec{q})\right] } & =\left[b(\vec{p}), b^{\dagger}(\vec{q})\right]=2 \omega_{\vec{p}}(2 \pi)^{3} \delta^{(3)}(\vec{p}-\vec{q}), \\
{[a(\vec{p}), a(\vec{q})] } & =[b(\vec{p}), b(\vec{q})]=0 \\
{[a(\vec{p}), b(\vec{q})] } & =\left[a(\vec{p}), b^{\dagger}(\vec{q})\right]=0
\end{aligned}
$$

are consistent with the ones postulated in part b).
d) Show that the Hamiltonian can be written as

$$
H=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2}\left\{a^{\dagger}(\vec{p}) a(\vec{p})+b^{\dagger}(\vec{p}) b(\vec{p})\right\}+\text { const. }
$$

Why is the positive sign in front of the $b^{\dagger} b$ term important? What is the physical interpretation of b and b^{\dagger} ?
e) Switch now to the Heisenberg picture

$$
\phi_{H}(t, \vec{x})=e^{i H t} \phi(\vec{x}) e^{-i H t} .
$$

Show that

$$
\begin{align*}
e^{i H t} a(\vec{p}) e^{-i H t} & =a(\vec{p}) e^{-i \omega_{\vec{p}} t}, & e^{i H t} a^{\dagger}(\vec{p}) e^{-i H t} & =a^{\dagger}(\vec{p}) e^{i \omega_{\vec{p}} t}, \\
e^{i H t} b(\vec{p}) e^{-i H t} & =b(\vec{p}) e^{-i \omega_{\vec{p}} t}, & e^{i H t} b^{\dagger}(\vec{p}) e^{-i H t} & =b^{\dagger}(\vec{p}) e^{i \omega_{\vec{p}} t}, \tag{1}
\end{align*}
$$

and therefore

$$
\phi_{H}(t, \vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega_{\vec{p}}}\left\{a(\vec{p}) e^{-i p x}+b^{\dagger}(\vec{p}) e^{i p x}\right\}
$$

Problem 3: "String quantization"

Consider the Lagrangian of the clamped string derived in problem 1 on sheet 1

$$
\begin{aligned}
L & =\int_{0}^{R} d x\left\{\frac{1}{2} \sigma\left(\frac{\partial y}{\partial t}\right)^{2}-\frac{1}{2} \tau\left(\frac{\partial y}{\partial x}\right)^{2}\right\} \\
& =\sum_{n=1}^{\infty}\left\{\frac{1}{2} \sigma \dot{q}_{n}^{2}-\frac{1}{2} \tau\left(\frac{n \pi}{R}\right)^{2} q_{n}^{2}\right\}
\end{aligned}
$$

a) How would you quantize that string? What commutation relations would you postulate for the "field operator" $y(x)$ and its canonical momentum $\left(\pi_{y}\right)(x)$ or for the operators q_{n} and their canonical momenta $\left(\pi_{q}\right)_{n}$?
b) Express the Schrödinger picture operators q_{n} and its canonical momentum in terms of creation and annihilation operators a_{n}, a_{n}^{\dagger}. (Use a normalization as in the lecture.) Can you guess the form of the Hamiltonian H expressed in terms of these operators?

