Problems for Quantum Field Theory 1

3. Sheet

Suggested reading before solving these problems: Chapter 2.3, 3.1 in the script and/or Chapters 2.2, 2.3 and 2.4 of Peskin \mathcal{G} Schroeder.

Problem 1: A commutation relation for the three-momentum operator Consider a real scalar field with Lagrangean density

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}
$$

and conjugate momentum $\pi=\partial \mathcal{L} / \partial \dot{\phi}$. You have learned how to quantize the system by promoting ϕ and π to operators with the commutation relations

$$
\begin{align*}
{[\phi(\vec{x}), \pi(\vec{y})] } & =i \delta^{(3)}(\vec{x}-\vec{y}), \tag{1}\\
{[\phi(\vec{x}), \phi(\vec{y})] } & =[\pi(\vec{x}), \pi(\vec{y})]=0 . \tag{2}
\end{align*}
$$

The associated Hamiltonian and the three-momentum operators read

$$
\begin{aligned}
H & =\int d^{3} x\left[\frac{1}{2} \pi^{2}+\frac{1}{2}(\vec{\nabla} \phi)^{2}+\frac{m^{2}}{2} \phi^{2}\right] \\
\vec{P} & =\int d^{3} x(\pi \vec{\nabla} \phi)
\end{aligned}
$$

Show that these operators commute: $[H, \vec{P}]=0$ by only using the commutation relations (1) and (2).

Problem 2: Charge of a complex scalar field
Consider the Lagrangean density for a free complex scalar field

$$
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi .
$$

and define the associated conjugate momenta π and π^{\star}. The Noether theorem leads to a conserved charge, given in terms of 0 -component of the Noether current:

$$
Q \equiv \int d^{3} x j^{0}
$$

For a complex scalar field, the four-vector associated with the current j reads

$$
j^{\mu}=i\left[\left(\partial^{\mu} \phi\right)^{\star} \phi-\phi^{\star}\left(\partial^{\mu} \phi\right)\right],
$$

from which an expression for the corresponding charge Q can be easily obtained.

The theory is quantised by promoting ϕ, ϕ^{*} and their conjugate momenta to operators. To that end it is convenient to introduce the creation and annihilation operators

$$
\begin{align*}
\phi(\vec{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega_{\vec{p}}}\left\{a(\vec{p}) e^{i \vec{p} \vec{x}}+b^{\dagger}(\vec{p}) e^{-i \vec{p} \vec{x}}\right\}, \tag{3}\\
\pi(\vec{x}) & =\frac{-i}{2} \int \frac{d^{3} p}{(2 \pi)^{3}}\left\{b(\vec{p}) e^{i \vec{p} \vec{x}}-a^{\dagger}(\vec{p}) e^{-i \vec{p} \vec{x}}\right\} . \tag{4}
\end{align*}
$$

with commutation relations

$$
\begin{aligned}
{\left[a(\vec{p}), a^{\dagger}(\vec{q})\right] } & =\left[b(\vec{p}), b^{\dagger}(\vec{q})\right]=2 \omega_{\vec{p}}(2 \pi)^{3} \delta^{(3)}(\vec{p}-\vec{q}), \\
{[a(\vec{p}), a(\vec{q})] } & =[b(\vec{p}), b(\vec{q})]=0 \\
{[a(\vec{p}), b(\vec{q})] } & =\left[a(\vec{p}), b^{\dagger}(\vec{q})\right]=0
\end{aligned}
$$

Express the charge Q in terms of the operators a, a^{\dagger} and b, b^{\dagger}, carrying out all the details of the calculation.

Problem 3: Scalar field operator in Heisenberg picture
In the Heisenberg picture, a real scalar field operator $\phi(\vec{x})$ can be made time dependent in the following way

$$
\phi(t, \vec{x})=e^{i H t} \phi(\vec{x}) e^{-i H t}
$$

and analogously for its conjugate momentum. Consider now the expansion of $\phi(\vec{x})$ and $\pi(\vec{y})$ in terms of creation and annihilation operators, obtained by imposing reality conditions to equations (3) and (4). Show that the following relation holds for any n :

$$
\vec{P}^{n} a(\vec{p})=a(\vec{p})(\vec{P}-\vec{p})^{n}
$$

where \vec{P} is the three-momentum operator, with \vec{p} the corresponding eigenvalue. Find the relation satisfied by the operator $a^{\dagger}(\vec{p})$. Deduce that the following identities hold

$$
e^{-i \vec{P} \vec{x}} a(\vec{p}) e^{i \vec{P} \vec{x}}=a(\vec{p}) e^{i \vec{p} \vec{x}} \quad, \quad e^{-i \vec{P} \vec{x}} a^{\dagger}(\vec{p}) e^{i \vec{P} \vec{x}}=a^{\dagger}(\vec{p}) e^{-i \vec{p} \vec{x}}
$$

With this information, show that the time dependent real scalar operator $\phi(t, \vec{x})$ can be expressed as

$$
\phi(t, \vec{x})=e^{i(H t-\vec{P} \vec{x})} \phi(0, \overrightarrow{0}) e^{-i(H t-\vec{P} \vec{x})} .
$$

