Problems for Quantum Field Theory 1
 5. Sheet

Suggested reading before solving these problems: Chapters 3.1 to 3.2 in the script and/or Chapters 4.2 to 4.3 of Peskin \mathcal{E} Schroeder.

Problem 1: Time and normal ordering 1
Explain in a few words and formula
a) What is a time ordered product and why do we need it?
b) What is a normal ordered product and why is it useful?
c) How can we transform a time ordered expression to a normal ordered one?

Problem 2: Time and normal ordering 2

a) Show that the time ordered product $T\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right)$ and the normal ordered product : $\phi\left(x_{1}\right) \phi\left(x_{2}\right)$: are both symmetric under the interchange of x_{1} and x_{2}. Deduce that the Feynman propagator $D_{F}\left(x_{1}-x_{2}\right)$ has the same property.
b) Check Wick's theorem for the case of three real scalar fields

$$
\begin{aligned}
T\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right)\right)= & : \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right):+\phi\left(x_{1}\right) D_{F}\left(x_{2}-x_{3}\right) \\
& +\phi\left(x_{2}\right) D_{F}\left(x_{1}-x_{3}\right)+\phi\left(x_{3}\right) D_{F}\left(x_{1}-x_{2}\right) .
\end{aligned}
$$

Problem 3: Three-point correlation function
Consider the following Lagrangian, involving two real scalar fields Φ and ϕ :

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi-\frac{1}{2} M^{2} \Phi^{2}+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-h \Phi \phi \phi .
$$

The last term is an interaction term that allows a Φ particle to decay into two ϕ 's, provided that $M>2 m$. Assume that this is the case and calculate the $\mathcal{O}(h)$ contribution to the correlation function

$$
\langle 0| T \Phi(x) \phi(y) \phi(z) e^{-i \int d t H_{\mathrm{int}}(t)}|0\rangle .
$$

