Problems for Quantum Field Theory 1

1. Tutorial

Problem 1: Natural units

In particle physics one often chooses units such that $\hbar=c=1$ and measures energies in MeV . Complete the following translation table (The charge of a proton is $e=1.6 \cdot 10^{-19} C$, the vacuum permittivity is $\left.\epsilon_{0}=8.85 \cdot 10^{-12} \mathrm{C} /(\mathrm{Vm})\right)$:

	SI units	Natural units
c	$3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$	1
\hbar	$1.05 \cdot 10^{-34} \mathrm{Js}$	1
m_{e}	$9.1 \cdot 10^{-31} \mathrm{~kg}$	
m_{p}		938.3 MeV
$\alpha=\frac{e^{2}}{4 \pi \epsilon_{0} \hbar c}$		
$a_{0}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} e^{2}}$	$0.53 \cdot 10^{-10} \mathrm{~m}$	
G	$6.67 \cdot 10^{-11} \mathrm{Nm}^{2} /\left(\mathrm{kg}^{2}\right)$	

Problem 2: Upper and lower indices

In special relativity one distinguishes between upper or contra-variant indices (as e.g. x^{μ}) and lower or co-variant indices (e.g. x_{μ}). The metric tensor

$$
\left(\eta_{\mu \nu}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

is used to raise or lower indices:

$$
x_{\mu}=\eta_{\mu \nu} x^{\nu}, \quad x^{\mu}=\eta^{\mu \nu} x_{\nu}
$$

For $x^{\mu}=\left(x^{0}, \vec{x}\right)$ and $p^{\mu}=\left(p^{0}, \vec{p}\right)$ calculate

$$
x_{\mu}, \quad p \cdot x=p_{\mu} x^{\mu}
$$

and show that

$$
\eta_{\nu}^{\mu}=\delta^{\mu}{ }_{\nu}, \quad\left(\eta^{\mu \nu}\right)=\left(\eta_{\mu \nu}\right) .
$$

Problem 3: Poincaré group
Under a Poincaré transformation (Λ, a) a coordinate vector x^{μ} transforms as

$$
x^{\mu} \rightarrow x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}+a^{\mu} .
$$

Poincaré transformations leave the scalar product of differences of coordinate vectors, $(x-y) \cdot(x-y)$, invariant. Hence the matrix Λ satisfies

$$
\begin{equation*}
\Lambda^{\rho}{ }_{\mu} \Lambda^{\sigma}{ }_{\nu} \eta^{\mu \nu}=\eta^{\rho \sigma} . \tag{1}
\end{equation*}
$$

a) Show that the components of Λ^{-1} are

$$
\left(\Lambda^{-1}\right)^{\mu}{ }_{\nu}=\Lambda_{\nu}{ }^{\mu} .
$$

b) Consider the product of two Poincaré transformations

$$
(\Lambda, a)=\left(\Lambda_{1}, a_{1}\right)\left(\Lambda_{2}, a_{2}\right)
$$

Determine (Λ, a) and show that Λ satisfies Eq. (1).
c) Determine the inverse transformation

$$
(\Lambda, a)^{-1} .
$$

Remark: The properties shown here together with associativity

$$
\left[\left(\Lambda_{1}, a_{1}\right)\left(\Lambda_{2}, a_{2}\right)\right]\left(\Lambda_{3}, a_{3}\right)=\left(\Lambda_{1}, a_{1}\right)\left[\left(\Lambda_{2}, a_{2}\right)\left(\Lambda_{3}, a_{3}\right)\right]
$$

and the existence of a unit element
imply that the set of Poincaré transformations constitutes a group.

