Problems for Quantum Field Theory 1 1. Tutorial

PROBLEM 1: Natural units

In particle physics one often chooses units such that $\hbar = c = 1$ and measures energies in MeV. Complete the following translation table (The charge of a proton is $e = 1.6 \cdot 10^{-19} C$, the vacuum permittivity is $\epsilon_0 = 8.85 \cdot 10^{-12} C/(Vm)$):

	SI units	Natural units
c	$3 \cdot 10^8 \text{ m/s}$	1
\hbar	$1.05 \cdot 10^{-34} \text{ Js}$	1
m_e	$9.1 \cdot 10^{-31} \text{ kg}$	
m_p		938.3 MeV
$\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c}$		
$a_0 = \frac{4\pi\epsilon_0 \hbar^2}{m_e e^2}$	$0.53 \cdot 10^{-10} \text{ m}$	
G	$6.67 \cdot 10^{-11} \text{ Nm}^2/(\text{kg}^2)$	

PROBLEM 2: Upper and lower indices

In special relativity one distinguishes between upper or contra-variant indices (as e.g. x^{μ}) and lower or co-variant indices (e.g. x_{μ}). The metric tensor

$$(\eta_{\mu\nu}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

is used to raise or lower indices:

$$x_{\mu} = \eta_{\mu\nu} x^{\nu}, \qquad x^{\mu} = \eta^{\mu\nu} x_{\nu}.$$

For $x^{\mu}=(x^0,\vec{x})$ and $p^{\mu}=(p^0,\vec{p})$ calculate

$$x_{\mu}, \qquad p \cdot x = p_{\mu} x^{\mu}$$

and show that

$$\eta^{\mu}_{\ \nu} = \delta^{\mu}_{\ \nu}, \qquad (\eta^{\mu\nu}) = (\eta_{\mu\nu}).$$

Problem 3: Poincaré group

Under a Poincaré transformation (Λ, a) a coordinate vector x^{μ} transforms as

$$x^{\mu} \rightarrow x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} + a^{\mu}.$$

Poincaré transformations leave the scalar product of differences of coordinate vectors, $(x-y) \cdot (x-y)$, invariant. Hence the matrix Λ satisfies

$$\Lambda^{\rho}_{\ \mu} \Lambda^{\sigma}_{\ \nu} \eta^{\mu\nu} = \eta^{\rho\sigma}. \tag{1}$$

a) Show that the components of Λ^{-1} are

$$(\Lambda^{-1})^{\mu}_{\ \nu} = \Lambda_{\nu}^{\ \mu}.$$

b) Consider the product of two Poincaré transformations

$$(\Lambda, a) = (\Lambda_1, a_1)(\Lambda_2, a_2).$$

Determine (Λ, a) and show that Λ satisfies Eq. (1).

c) Determine the inverse transformation

$$(\Lambda, a)^{-1}$$
.

Remark: The properties shown here together with associativity

$$[(\Lambda_1, a_1)(\Lambda_2, a_2)](\Lambda_3, a_3) = (\Lambda_1, a_1)[(\Lambda_2, a_2)(\Lambda_3, a_3)]$$

and the existence of a unit element

imply that the set of Poincaré transformations constitutes a group.