Problems for Quantum Field Theory 1
 3. Tutorial

Problem 1: Lorentz invariance of the 3-momentum integral
In the lecture we have used the following, very important identity for the threemomentum integral

$$
\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega_{\vec{p}}} f(p)=\int \frac{d^{4} p}{(2 \pi)^{4}} 2 \pi \delta\left(p^{2}-m^{2}\right) \Theta\left(p_{0}\right) f(p),
$$

with $\omega_{\vec{p}}=\sqrt{\vec{p}^{2}+m^{2}}$. Note that

$$
\delta(g(x)-g(a))=\frac{1}{\left|g^{\prime}(a)\right|} \delta(x-a)
$$

Convince yourself that this implies that the three-momentum integral is invariant under proper, orthochronous Lorentz transformations $\Lambda \in S O(1,3)$ if $f(\Lambda p)=f(p)$. Which functions f satisfy $f(\Lambda p)=f(p)$?

