Institute for Theoretical Physics \Rightarrow Group Home \Rightarrow Teaching \Rightarrow Quantum Field Theory

Quantum Field Theory II

Jan Martin Pawlowski, summer term 2010

Tuesday & Thursday, 9:15-11:00, gHS Pw 12 [LSF]

- Content
- Literature
- · Exercises & bonus material
- Script
- QFT I

Prerequisites: quantum mechanics, classical field theory, statistics, basic knowledge of QFT

Content of lecture series

In the lecture course advanced topics in quantum field theory are discussed.

Outline

- Path integral quantisation: path integral, correlation functions, Feynman rules, lattice theory
- Gauge theories:
 Faddeev-Popov quantisation, BRST-symmetry, non-perturbative aspects
- Renormalisation theory: renormalisation group equations, beta-functions, renormalisability, fixed points & critical phenomena
- Applications:
 QCD, Operator product expansion (OPE), spontaneous symmetry breaking, standard model, anomalies & topology

LINKS

Institute for Theoretical Physics

ExtreMe Matter Institute EMMI

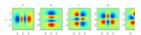
DFG research group FOR 723

Research Training Group Simulational methods in Physics

Department of Physics and Astronomy

Graduate School of Fundamental Physics

Graduate Academy



Literature

• Quantum field theory, basics

Haag	Local Quantum Physics	Springer, 1996
Itzykson, Zuber	Quantum Field Theory	McGraw-Hill, 1980
Mandl, Shaw	Quantum Field Theory	Wiley, 1993
Peskin, Schroeder	An Introduction to Quantum Field Theory	Addison Wesley, 1995
Ramond	Field Theory. A Modern Primer	Addison Wesley, 1999
Ryder	Quantum Field Theory	Cambridge UP, 1996
Siegel	Fields	hep-th/9912205
Srednicki	Quantum Field Theory	Cambridge UP, 2007
Stone	The Physics of Quantum Fields	Springer, 2000
Weinberg	The Quantum Theory of Fields, Vol. 1-2	Cambridge UP, 1996

• Quantum field theory, applications

Kugo	Eichtheorie	Springer, 1997
Miransky	Dynamical Symmetry Breaking in Quantum Field Theories	World Scientific, 1993
Muta	Foundations of Quantum Chromodynamics	World Scientific, 1987
Nachtmann	Elementarteilchenphysik - Phänomene und Konzepte	Vieweg,1992
Pokorski	Gauge Field Theories	Cambridge UP, 1987
Wu-Ki Tung	Group Theory in Physics	World Scientific, 1985
Zinn-Justin	Quantum Field Theory and Critical Phenomena	Oxford UP, 1993

• Textbooks on the renormalisation group and critical phenomena

Amit	Field Theory, the	World Scientific
------	-------------------	------------------

Renormalization Group, and Critical Phenomena

Binney, The Theory of Critical

Dowrick, Phenomena, an Clarendon Fisher, Introduction to the Press, Oxford Newman Renormalization Group

Scaling and

Renormalization in Cambridge UP Cardy

Statistical Physics

Collins Renormalization Springer

Parisi Statistical Field Theory Addison-Wesley

• Textbooks on geometry & topology in physics

Anomalies in Quantum Oxford UP, 2000 Bertlmann Field Theory

Geometry, Topology and

Nakahara Hilger **Physics**

Topology And Geometry Academic Nash & Sen

For Physicists

(1.3)

1 Functional integral approache 1.1 Pæth integræl in quantum nucleanics We aim at correlation fets. & time evolution of QUI systems? (1 dim)

 $\hat{H} = \hat{p}^2/2m + V(\hat{q})$ (1.1)

with $[\hat{q}, \hat{p}] = i$ Heisenherg algo (1.2)

Hilbert spæce He related to (1.2):

Space of square-integrable fots.:

Ψ: q → Ψ(q)

with Say 1412(a) < >

Remark: The above is only a possible rep. of the Heisenberg alg. (1.1) and the Hilbert spæce.

Representation of ops.:

$$\hat{q}: \hat{q} \mathcal{V}(q) = q \cdot \mathcal{V}(q)$$

$$\hat{p}: \hat{p} \mathcal{V}(q) = -i \frac{\partial \mathcal{V}}{\partial q}(q)$$

$$\hat{p} = -i \frac{\partial}{\partial q}$$

$$(1.4)$$

Eigen Hales:
$$\beta | p \rangle = p | p \rangle$$
 (1.5) $\hat{q} | q \rangle = q | q \rangle$

with continuous spedrum q,p = IR.

$$\Rightarrow \langle q | q' \rangle = \delta(q - q') \tag{1.6}$$

We also define
$$\langle p | p' \rangle = 2\pi \delta(p - p')$$
 (1.4)

Hence
$$\langle p|q \rangle = e^{-ipq}$$
 (1.8)

Correlation fets. : transition amplitude from initial state (qin) at to to final state 19+2 at tj=t see QFT I, chapter 3

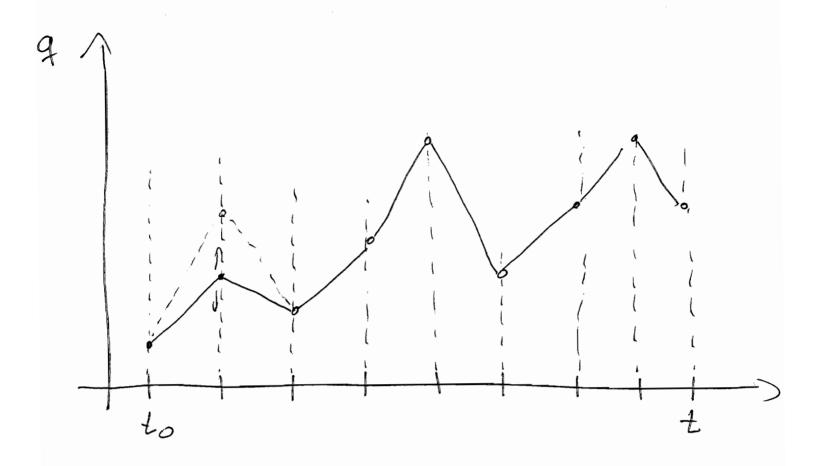
time evolution op?

$$[i\partial_{t}u(t,t_{0})=\hat{H}(t)u(t,t_{0})] \qquad (1.9)$$

=> transition amplitude: $\Delta t = \frac{t - t_0}{M}$ < 9,1 U(t, to) | 9 in> = < 9+ | U(+, t- Dt) ... U(+-(M-1) St, 16) 4 in> $= \left| \frac{1}{11} \int dq_i \right| < q_+ \left| \mathcal{U}(t, t-\Delta t) \right| q_{n-1} \mathcal{L}q_{n-1} \left| \mathcal{U}(t-\Delta t, t-2\Delta t) \right| q_{n-2}$

where we have used (1.10)

$$\mathcal{U}(t,t_1)\mathcal{U}(t_1,t_2) = \mathcal{U}(t,t_2)$$
for $t \ge t_1 \ge t_2$ (9.11)



= 4 (ti)

For
$$\Delta t \rightarrow 0$$
: $t_i = t_0 + i \Delta t$, $t = t_m$

$$\mathcal{U}(t_{i_1}t_{i_1} - \Delta t) = 1 - i \hat{H} \Delta t + O(\Delta t^2) \quad (1.12)$$
Sætisfies (1.9) .

We use that: (eq. (1.1))

$$\langle p|\hat{H}|q \rangle = \langle p|\hat{p}_{2m}^{2} + V(\hat{q})|q \rangle$$

= $(P_{2m}^{2} + V(q))\langle p|q \rangle$
= $(P_{2m}^{2} + V(q))e^{-ipq}$ (1.14)

Remarks in eq. (1.14) we have used that $\hat{H} = \hat{H}_1(\hat{p}) + \hat{H}_2(\hat{q}). \text{ For general } \hat{H}$ $\langle p|\hat{H}|q \rangle = H(p,q) \langle p|q \rangle \text{ does not hold.}$

5

We conclude

$$q_i - q_{i-1} = \frac{q_i - q_{i-1}}{z_i t}$$
. Δt

discrete derivative q_i

Jt follows:
$$(2i)^m$$

$$\langle q_{+} | \mathcal{U}(H_{1} + \delta) | q_{in} \rangle = \iint_{i}^{\infty} dq_{i} dp_{i} \int_{i}^{\infty} (1.16)^{n} dq_{i} dp_{i} dp_{i} dq_{i} dp_{i} dp_{i} dq_{i} dp_{i} dp_{i} dq_{i} dq_{i} dp_{i} dq_{i} dq_{i}$$

with
$$H(P,q) = P_{zm}^2 + V(q)$$
. Finally, $\Delta t \rightarrow 0$?

(1.17)

$$Dq = \sqrt{1} dq_i = \sqrt{1} dq_i(t_i) \Big|_{q_i(t_0)=q_{ii}} (1.18)$$
 $p = \sqrt{1} dp_i = \sqrt{1} dp_i(t_i) q_i(t_i) q_i(t_i) q_i(t_i)$

$$\int \frac{dp}{\sqrt{20}} e^{i(p\cdot q - p_{2m}^{2})} = \int \frac{dp}{\sqrt{20}} e^{-i(p-q\cdot m)_{2m}^{2}} - i(p\cdot q\cdot m)_{2m}^{2m}$$

$$= \int \frac{dp}{\sqrt{20}} e^{-i(p-q\cdot m)_{2m}^{2}}$$

$$= i q^{2m/2}$$

$$e^{i m q^{2}/2}$$
(1.18)

and arrive at

$$(1.20)$$

N: Normalisation, ne eq. (1.16). It will be taken core of later.

Correlation functions

We repeat the analysis in the presence of further position operators: t>t_>t_>t_>t_c $< q_f | \mathcal{U}(t_1, t_m) \neq \mathcal{U}(t_m, t_{m-1}) \cdots \mathcal{U}(t_2, t_n) \neq \mathcal{U}(t_1, t_0) | q_m >$ = < q+1t1 q(+n) · · · · q(+1)| qin, to>
Heisenberg pic. with $\hat{q}(t) = \mathcal{U}(0, t) \hat{q} \mathcal{U}(t, 0)$ $|q_i t\rangle = \mathcal{U}(0, t) |q\rangle$ n=0: <q, tlqin, to> = [Dq e islq]
(1.22) n=1: < q+, t| q(+1) | qm, to> = [dq < q+, t | q, t,) q < q, t, | q in, to> = \ind q q \int Dq \q (4) = q \in \int S[q] \int Dq \q (4) = q \in \int S[q] \q (4) = q \int S[q] $= \int \mathcal{D}q|_{q(t)=qt} \quad q(t_1) e^{iS[q]} \quad (1.23)$

in general: $t \ge t_m \ge \cdots \ge t_1 \ge t_0$ $(q_{\pm 1} t \mid \hat{q}(t_m) \cdots \hat{q}(t_1) \mid q_m, t_0)$ $= \int \mathcal{D}q \mid q(t_m) \cdots q(t_n) \in S[q]$ (1.24) $= q(t_0) = q_{t_0}$

In most cases we are interested in vacuum amplitudes (ree also QFTI, chapter)

(0| q(tm) ... q(tm) 10> (1.25)

For the projection on the vacuum 10>, Hlog-Folk

the lowest energy state, we introduce
a damping factor: (eq. (1.16), (1.17))

-i sth - p-i st(1-is) H

 $e^{-i\Delta t H} \rightarrow e^{-i\Delta t (1-i\epsilon) H}$ $= e^{-i\Delta t H} e^{-\Delta t H \epsilon} \qquad (1.76)$

Higher energy states are suppressed by e-(E-Fo)st: at each time step. It follows that

lûn $\langle q_f, T | \hat{q}(t_m) \cdots \hat{q}(t_1) | q_m, -T \rangle$ Tot

(1.27)

2 $\langle 0 | \hat{q}(t_m) \circ \circ \circ \hat{q}(t_1) | 0 \rangle$ Remark: Eq. (1.27) holds for all states

which overlap with the vacuum

< q+, 110> +0.

Hence we have: $t_n \ge t_{n-1} \ge \cdots \ge t_1$ $< 0 \mid \hat{q}(t_n) \cdot \circ \circ \hat{q}(t_1) \mid 0 >$ $= \int \mathcal{D}q \ q(t_n) \cdot \circ \circ q(t_1) \in iS_{\mathcal{L}}[q]$

with $S[q] = \int dt \left(\frac{1}{2} m \dot{q}^2 - V(q) + i \xi q^2 \right) (4.29)$

Eq. (1.29) has the same effect es eq. (1.26).

The derivation of eq. (1.28) was done with to > ton-1> 000 > the path integral or functional integral on the rhs of eq. (1.28) can be written down for arbitrary times to, --, ton. Hence we have finally

 $\langle 0|T \hat{q}(t_n) \circ \circ \circ \hat{q}(t_n)|0 \rangle$ (4.30) $\simeq \int \mathcal{D} q q(t_n) \circ \circ \circ q(t_n) e^{iS[qT]}$

Where the E-prescription eq. (1.29) is understood.
Normalised correlation functions read

 $\frac{\langle 0|T\hat{q}(t_n)\circ \hat{q}(t_n)|0\rangle}{\langle 0|0\rangle} = \frac{\int \mathcal{D}q \, q(t_n)\circ q(t_n)e^{iS|qT}}{\int \mathcal{D}q \, e^{iS|qT}}$ $= \frac{\int \mathcal{D}q \, q(t_n)\circ q(t_n)e^{iS|qT}}{\int \mathcal{D}q \, e^{iS|qT}}$ (131)

Remarks:

(1) The quadratic part of the action SE reads (m=1)

 $S_{\varepsilon}[q] = \frac{1}{2} \int dt \ q(t) \left[-\partial_{t}^{2} - \omega^{2} + i \varepsilon \right] q(t)$

The propagator that follows from eq. (1.32)

is in momentum space (trequency space)

p² - w² + i E (1.33)

Coveriance

wide is the time-ordered (Feynman) propagator.

(2)* Changing Ss in eq. (1.32), eq. (1.33) to path integrals that do not describe time-ordered products.

Choice of converience C < > choice of ordering

(1.35)

Generating Functional

The expectation values <01Tq(tu)==0q(tu)|0>

cerc the normalised moments of the path integral SDq e islat.

Toy ese cemple: consider $\int_{\mathbb{R}} dq e^{iS(q)}$ with

These moments are generated by

Z(j)= # [dq e i { S(q) + j.q?

 $=> \langle q^m \rangle = (-1)^m \frac{\partial^m z}{\partial j^m}$

$$= \frac{1}{16} \int_{R}^{16} dq e^{i\left(\frac{1}{2}q \times q + iq\right)^{2}}$$

$$= \frac{1}{16} \int_{R}^{16} dq e^{i\left(\frac{1}{2}(q + \frac{1}{4}i)^{2} - \frac{1}{2}i\frac{1}{4}i\right)^{2}}$$

$$= e^{-\frac{1}{2}i\left(\frac{1}{4}i\right)}$$
Covered a ce

/ Propagator

munuts:

Moments:

$$\langle q^{2n} \rangle = \frac{2n!}{n!} \frac{1}{2^n} \frac{1}{\sqrt{n}}$$

Interacting theory:
$$S(q) = \frac{1}{2}q \times q - V(q)$$

$$Z(j) = N_{p} e^{-iV(-i\frac{2}{3}j)} Z_{o}(j)$$

Perturbation theory: expansion in powers of V

See enercise

$$\frac{S_{j}(t)}{S_{j}(t+1)} := S(t-t')$$
 (1.36)

It follows that
$$\frac{\partial}{\partial j(t_{1})} = i \int_{\mathbb{R}} dt \frac{\partial j(t)}{\partial j(t_{1})} q(t) = i \int_{\mathbb{R}} dt \frac{\partial j(t)}{\partial j(t_{1})} q(t) e^{i \int_{\mathbb{R}} dt}$$

$$= i q(t_{1}) e^{i \int_{\mathbb{R}} dt} j(t) q(t)$$

$$= i q(t_{1}) e^{i \int_{\mathbb{R}} dt} j(t) q(t)$$

$$(1.37)$$

=> Generating functional:

$$Z[j] = \int Dq e^{i \int S[q] + \int dt j(t) q(t)}$$

$$(1.38)$$

$$Uith N = Dq e^{i \int S[q]}$$

with
$$\langle 0|T\hat{q}(t_1)\circ \circ \circ \hat{q}(t_m)|0\rangle /\langle 0|0\rangle$$

= $(-i)^m \frac{3^m 21i7}{3i(4n) \circ \circ \delta i(4m)}|i=0$

$$= (-i)^m \frac{3^m 2[i]}{3i(4n) \cdot 000 \cdot 5i(4m)} \Big|_{i=1}^{\infty}$$

FliJ functional of j(t), e.g. Fliffdt j(t) q(t)

functional derivative: Dg FIII

Fli+EqJ = FliJ+Dg FIII E

+ O (E 2)

With FIIT = fdt i(t) g(t)

=) Dg F[i] = [dt g(+) q(+)

Eq. (1.36): $D_{q}F[i] = q(t) \Rightarrow q(t) = \beta(t-t')$

Also: $D_g F [i] = \frac{\partial F [i + \epsilon g]}{\partial \epsilon}$

Generating functional:

with

$$q'(t) = q(t) - i \int dt' G(t,t') j(t')$$

 $(-\partial_t^2 - \omega^2) G(t,t') = i S(t-t')$
(4.41)

The path integral measure is translationinvoical $\mathcal{D}_{q} = \mathcal{D}_{q}'$ (1.42)

which Jollows directly from the translation invariance of dq = dq' and

Dq = \(\text{idq(fi)} \), eq. (1.18), p. 6

Consequently we have

$$Z_{0}[] = e^{-\frac{1}{2} \int dt dt' q(t) G(t,t') q(t')}$$

$$(1.43)$$

with the propagator G(+,+1). Nota that the choice of G(+,+1) determines the path integral.

Juteracting theory & SIqT = SolqT- Jet V(q)

$$Z[j] = \frac{N_o}{N} e^{-i\int dt. V[-i\frac{\partial}{\partial j}]} Z_o[j] \qquad (1.44)$$

with moments

$$\langle 0|T_{\hat{q}}(t_{1})\cdots\hat{q}(t_{m})|0\rangle/\langle 0|0\rangle$$

$$=\frac{S^{m}Z_{1}j_{1}}{S_{\hat{q}}(t_{1})\cdots S_{\hat{q}}(t_{m})}\Big|_{j=0}$$
(1.45)